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Reprogramming of energy metabolism is a hallmark of cancer that enables the cancer

cells to meet the increased energetic requirements due to uncontrolled proliferation. One

prominent example is pancreatic ductal adenocarcinoma, an aggressive form of cancer

with an overall 5-year survival rate of 5%. The reprogramming mechanism in pancreatic

cancer involves deregulated uptake of glucose and glutamine and other opportunistic

modes of satisfying energetic demands in a hypoxic and nutrient-poor environment. In

the current study, we apply systems biology approaches to enable a better understanding

of the dynamics of the distinct metabolic alterations in KRAS-mediated pancreatic

cancer, with the goal of impeding early cell proliferation by identifying the optimal

metabolic enzymes to target. We have constructed a kinetic model of metabolism

represented as a set of ordinary differential equations that describe time evolution

of the metabolite concentrations in glycolysis, glutaminolysis, tricarboxylic acid cycle

and the pentose phosphate pathway. The model is comprised of 46 metabolites

and 53 reactions. The mathematical model is fit to published enzyme knockdown

experimental data. We then applied the model to perform in silico enzyme modulations

and evaluate the effects on cell proliferation. Our work identifies potential combinations

of enzyme knockdown, metabolite inhibition, and extracellular conditions that impede

cell proliferation. Excitingly, the model predicts novel targets that can be tested

experimentally. Therefore, the model is a tool to predict the effects of inhibiting

specific metabolic reactions within pancreatic cancer cells, which is difficult to measure

experimentally, as well as test further hypotheses toward targeted therapies.

Keywords: metabolic modeling, systems biology, kinetic model, sensitivity analysis, parameter optimization

1. INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a particularly aggressive and challenging form of
cancer (Hidalgo, 2010; Oberstein and Olive, 2013; Siegel et al., 2013; Blum and Kloog, 2014)
that is highly resistant to conventional chemotherapy. Mutations mediated by the KRAS or MYC
oncogenes, found in 95% of cases of PDAC (Almoguera et al., 1988; Uemura et al., 2004; Löhr et al.,
2005; Hezel et al., 2006; Kimmelman, 2015), promote reprogramming of the cellular metabolism,
enabling the cancer cells to optimally use available resources (Ying et al., 2012). Specifically, KRAS
promotes glucose uptake (Donahue and Dawson, 2016) and rewiring of glucose and glutamine
metabolism (Kerr et al., 2016) to satisfy the excess demand for nutrients and cellular resources
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needed to sustain proliferation. The cells use glycolysis (glucose
metabolism) to generate cellular resources needed to produce
more cells. Similarly, increased glutamine consumption enables
the cells to meet the larger demand for nitrogen needed to
generate building blocks such as amino acids and lipids (Eagle,
1955; Vasseur et al., 2010; Pavlova and Thompson, 2016). The
cells exhibit high survival and minimal death, even when the
primary nutrients and energetic resources are scarce, suggesting
that the cells adapt to the challenging conditions by altering their
metabolism (Yoshida, 2015). This reprogramming of metabolic
pathways is considered to be an emerging hallmark of most
cancers (Hanahan and Weinberg, 2011) and is a driver of
malignant growth. Moreover, the metabolic stress that occurs
as a result of KRAS-mediated metabolic alterations can lead to
further mutations and continued cell proliferation and tumor
progression (Cairns et al., 2011; Misale et al., 2012). For these
reasons, the dysregulated metabolic pathways can be used to
identify biomarkers to support cancer diagnosis (Chung et al.,
2003; Serkova and Boros, 2005; Pelicano et al., 2006). The
altered metabolism also represents potential therapeutic targets
(Macheda et al., 2005).

Pancreatic cancer cells are particularly reliant on glutamine
to sustain proliferation and promote cell survival. Glutamine is
a conditionally essential amino acid that fuels the tricarboxylic
acid (TCA) cycle. Upon being taken up by the cell, glutamine
is converted to glutamate by the glutaminase (GLS) enzyme,
and then enters the TCA cycle as α-ketoglutarate (Wise and
Thompson, 2010). Interestingly, PDAC has been characterized
by non-canonical metabolism of glutamine, whereby the
enzyme glutamic-oxaloacetic transaminase (GOT1) catalyzes
the conversion of cytosolic aspartate to oxaloacetate. This
enzyme is used in pancreatic cancer, instead of the glutamate
dehydrogenase enzyme (GLUD1) used by normal cells to convert
glutamate derived from glutamine to α-ketoglutarate in the
mitochondria (McGivan and Chappell, 1975; Newsholme et al.,
2003).

Glutamate, α-ketoglutarate, and aspartate are all important
glutamine metabolism intermediates needed for cell
proliferation. Glutamate-pyruvate transaminase (GPT), also
known as alanine amino-transferase, transfers nitrogen from
glutamate to pyruvate to make alanine and α-ketoglutarate.
This nitrogen supports amino acid synthesis needed to produce
cellular building blocks (i.e., lipids and nucleic acids). The α-
ketoglutarate obtained by the conversion of glutamate promotes
citrate production and lipid biosynthesis (Wise et al., 2011;
Metallo et al., 2012). Aspartate is converted to oxaloacetate
(Cohen et al., 2015), which is further converted to malate and
then to pyruvate through the action of malic enzyme (ME1).
The action of ME1 increases the NADPH/NADP ratio to
maintain the redox balance and to replenish the glutathione
(GSH) pool to quench the reactive oxygen species (ROS)
(Gaglio et al., 2011). Given the importance of glutamine in
pancreatic cancer, the enzymes that catalyze its metabolism,
including GLS, GOT1, and ME1, are potential targets for
impeding cell growth (Weinberg et al., 2010; Gross et al.,
2014). For example, knocking down GOT1 activity alters
the cells reductive capacity and is shown to inhibit cell

proliferation in vitro and tumor growth in vivo (Son et al.,
2013).

Pancreatic cancer cells also utilize the glycolytic pathway to
metabolize glucose. Glycolysis converts glucose to pyruvate, most
of which is used to form lactate, producing some ATP, rather
than incorporated into the TCA cycle for ATP production. The
increased reliance on glycolysis, despite the fact that oxidative
phosphorylation is more efficient in generating ATP is termed the
“Warburg effect” (Warburg, 1956) and has been widely studied
(Vander Heiden et al., 2009). However, glycolysis enables the
cells to meet their demand for precursors needed for biomass
synthesis, which outweighs their energetic demands for ATP or
NADH from the TCA cycle. The demand for the generation
of amino acids, lipids, and nucleic acids is further satisfied by
branching pathways that exploit the elevated glucose uptake,
including the pentose phosphate pathway (PPP) (DeBerardinis
et al., 2008; Weinberg et al., 2010; Patra and Hay, 2014). The
PPP provides NADPH for macromolecule biosynthesis and
quenching of reactive oxygen species (ROS), termed reductive
biosynthesis. It also generates ribose-5-phosphate (R5P) required
as a precursor for DNA and RNA biosynthesis (Recktenwald
et al., 2008; DeNicola et al., 2011). Glucose metabolism has
been targeted in attempts to inhibit cancer cell proliferation
(El Mjiyad et al., 2011), and it remains a target in pancreatic
cancer (Vander Heiden, 2011).

Mathematical modeling is necessary to understand metabolic
reprogramming in cancer cells. Predictive mathematical models
can incorporate the many metabolites, enzymes, and regulatory
mechanisms that characterize cellular metabolism to enable a
better understanding of the metabolic pathways (Vazquez et al.,
2010; Alberghina et al., 2012; Cazzaniga et al., 2014; Le Novère,
2015). Many published metabolic modeling techniques have
focused on constraint-based approaches in which certain
physical, chemical, or biological constraints are applied to
predict the metabolic phenotypes (Resendis-Antonio et al., 2010;
Bordbar et al., 2014). These are steady state stoichiometric
models that can predict the flux distributions, but fail
to capture the kinetic aspects (time course of metabolite
concentrations) in the system or time-varying heterogeneities
that arise due to environmental fluctuations. When considering
processes that are inherently transient, such as the effects
of reprogramming of cancer metabolism, kinetic modeling
is required to understand the dynamic relationship between
metabolic fluxes and metabolite concentrations (Markert and
Vazquez, 2015). Therefore, models that represent the metabolic
pathways using a system of nonlinear ordinary differential
equations (ODEs) are of particular importance. These kinetic
models provide a mechanistic description of the transient
dynamics of the system (Machado et al., 2012; Cazzaniga et al.,
2014), as well as provide steady state measurements. When
constructed and validated using experimental measurements,
kinetic models can be used to perform in silico experiments
to predict the dynamic effects of perturbing the metabolic
network. In this way, the models are a valuable alternative to wet
experiments that can be expensive and time-consuming.

In this study, we construct such a kinetic model of pancreatic
cancer cell metabolism. Given the importance of glutamine
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and glucose metabolism in promoting pancreatic cancer cell
proliferation, we apply the model to identify effective metabolic
targets for impeding proliferation. The model is used to simulate
the effects of altering specific metabolic enzymes and is a valuable
tool to quantitatively understand the dynamics of cancer cell
metabolism.

2. MATERIALS AND METHODS

2.1. Model Structure and Numerical
Implementation
We constructed a kinetic model of pancreatic cancer cell
metabolism using previously published models of metabolism
from various cell types (Mulukutla et al., 2010; Marín-
Hernández et al., 2011; Mulukutla et al., 2012; Marín-Hernández
et al., 2014; Shestov et al., 2014; Mulukutla et al., 2015).
Our model is comprised of a total of 46 metabolites and
53 enzymatic reactions including glycolysis, glutaminolysis,
the TCA cycle, the PPP, and malate-aspartate-ketoglutarate-
glutamate shuttles between the cytosolic and mitochondrial
compartments (Figure 1). Each step in the metabolic pathway
is modeled according to known enzymatic reactions, which
include reaction mechanisms ranging from simple Michaelis-
Menten to complicated random bi-bi kinetics, expressed as
different mathematical formulations. Rate laws for each reaction
mechanism are incorporated into a system of 46 nonlinear
ordinary differential equations (ODEs) that describe how the
metabolite concentrations evolve over time. There is a single
ODE for each metabolite, representing the rate of change of
the species concentration, which depends on the rates at which
the species is produced and consumed in the reaction network.
We used an implicit differential equation solver in MATLAB
(Guide, 1998) to numerically integrate the equations and
solve for the metabolite concentrations. This is a deterministic
model, which simulates the concentrations in a homogeneous
ensemble of cells that experience, on average, similar intra-
and extra-cellular environmental conditions. By integrating
the ODEs, we calculate the average dynamics of the cell
population.

We briefly summarize the model equations below, and the full
set of ODEs is provided in the Supplementary Material (model
files: “S1.m” and “S2.xml”). Abbreviations for the metabolites
and reaction names are given in Supplementary File S3 and the
values of the fixed parameters are listed in Supplementary File S4.
The detailed rate equations for glycolysis and their corresponding
kinetic constants are primarily based on the glycolysis model for
HeLa cells (Marín-Hernández et al., 2011, 2014). This glycolysis
reaction network was extended to include reactions from the
TCA cycle and PPP using kinetic rate laws and parameters from
Mulukutla and coworkers (Wu et al., 2007; Mulukutla et al.,
2010, 2012, 2015). Reactions that involve ATP consumption and
production in the cytoplasm were defined as in the model of
Shestov et al. (2014), and the ATP and ADP concentrations in
mitochondrial compartment were kept constant as in Mulukutla
et al. In addition, glutamine transport parameters were obtained
from Pingitore et al. (2013).

AKT is a strong promoter of KRAS-mediated pancreatic
cancer tumorigenicity (Asano et al., 2004) due to its influence
on the rates of metabolic reactions in glycolysis. It is known that
PDAC cells have increased glucose uptake (Ying et al., 2012),
which is mediated by upregulation of specific glycolytic enzymes,
including the glucose transporter-1 (GLUT1), hexokinase (HK),
and lactate dehydrogenase A (LDHA). Additionally, AKT
promotes increased glucose uptake by activating GLUT1, HK,
and the phosphofructokinase (PFK) enzyme (Rathmell et al.,
2003; Elstrom et al., 2004). We have incorporated the effect
of AKT in our metabolic model, simulating AKT-mediated
enhanced glycolytic activity. Specifically, the activities of the
GLUT1, HK, and PFK enzymes (represented by their individual
Vmax values) are modeled to have 20% basal activity, while 80%
of their activity is due to activation by AKT (Mosca et al., 2012;
Mulukutla et al., 2012).

In order to predict how the intracellular metabolic pathways
influence cell growth, we incorporate cell number with the
enzyme-catalyzed reactions. Specifically, the model is augmented
to include a 47th ODE that describes the time evolution of the
number of cancer cells, CN . Cell growth is implemented as a
logistic equation (Enderling and Chaplain, 2014) that accounts
for themaximal carrying capacity of the tumor,KCC (Equation 1).

d(CN)

dt
= [λ(1−

CN

KCC
)CN]− αdCN (1)

The number of cancer cells is directly linked to the
metabolism, where the growth rate depends on the intracellular
concentrations of three primary metabolites known to
influence cell proliferation: glucose, glutamine and ATP
(Venkatasubramanian et al., 2008; Zhu et al., 2012). The
dependence on these three metabolites is modeled assuming
Monod-type functions (Higuera et al., 2009) (Equation 2).

λ = αatp(
ATP

kap + ATP
)+ αglc(

Glcin

kgc + Glcin
)+ αgln(

Glnin

kgn + Glnin
)

(2)
The growth and death parameters αatp, αglc, αgln, and αd are in
the units of min−1. The concentration parameters kgc, kgn, and
kap have units of mM.

2.2. Initial Conditions
We simulated the model with multiple sets of starting metabolite
concentrations to identify the appropriate range of initial
conditions. There is limited information regarding the initial
intracellular metabolite concentrations in pancreatic cancer
cells. Therefore, we allowed the initial concentration for each
metabolite to vary within a specified range. We specified
the concentration ranges based on published measurements
obtained from various cell lines, including human cervical cancer
(Marín-Hernández et al., 2011, 2014), diseased and surrounding
normal tissue samples from stomach and colon cancer patients
(Hirayama et al., 2009), breast cancer cell extracts (Le Guennec
et al., 2012), PDAC cancer patient samples (Fontana et al., 2016)
and mouse myeloma and CHO cell lines (Mulukutla et al., 2012,
2015). Additional uncertainty for pancreatic cancer cells was
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FIGURE 1 | Model schematic. The metabolic network is comprised of 46 metabolites interacting through 53 enzymatic reactions. The major pathways involve

glycolysis, glutaminolysis, the TCA cycle, the PPP, and shuttle reactions between mitochondrial (shaded rectangle) and cytoplasmic compartments. The abbreviations

for the metabolites, cofactors, and enzymes are given in Supplementary File S3. The colored nodes represent the metabolites for which the fold-change has been

measured experimentally during the knockdown of enzyme GOT1 (shown in red). The arrows represent the direction of the reaction fluxes in the baseline model at the

initiation of the simulation.

considered by increasing and decreasing the upper and lower
bounds, respectively, by 20%. Due to the lack of measurements
that distinguish the metabolite levels in different cellular
compartments, the initial concentrations of metabolites that
were present in both mitochondrial and cytosolic compartments
were assumed to be the same. The ranges of metabolite
concentrations given in Table 1 account for variability in
literature measurements as well an additional uncertainty for
unknown intracellular concentration of pancreatic cancer cell
lines in particular.

Latin Hypercube Sampling (McKay et al., 2000; Oguz et al.,
2013) was applied to sample within the ranges selected for
each metabolite. LHS separates the range of concentrations
for the metabolites into multiple intervals and samples from

each interval exactly once, thereby efficiently exploring the
entire possible range of initial conditions for each metabolite.
We selected to obtain 100 sets of initial conditions for each
metabolite for parameter identifiability analysis (Section 3.1.1),
and then randomly selected 50 of those sets to be used in
parameter estimation (Section 3.1.3). This procedure adequately
explores the possible ranges of initial conditions while balancing
the computational resources required for global parameter
optimization.

2.3. Parameter Estimation
The baseline model, adapted from literature, has a total of 372
parameters, which includes 71 reaction velocities (the forward
and reverse rates,Vf andVr , respectively). The reaction velocities
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TABLE 1 | Bounds for initial conditions used in the model simulations.

Metabolite Lower (mM) Upper (mM) Metabolite Lower (mM) Upper (mM)

GLC 2.5×100 1.4× 101 GSH 9.9× 10−2 3.4×100

ATP 1.4×10−2 1.4× 101 mPYR 1.2× 10−2 1.4×101

G6P 6.1×10−3 2.1× 100 mAcCoA 1.7× 10−4 1.7× 10−1

ADP 2.6×10−3 4.8× 100 mCIT 6.4× 10−3 1.2×100

F6P 3.4×10−4 8.4× 10−1 mICIT 1.0× 10−2 5.6× 10−2

FBP 8.5×10−3 4.5× 10−1 mAKG 5.8× 10−3 2.3× 10−2

DHAP 2.9×10−3 1.2× 100 mSCoA 1.6× 10−1 3.0× 100

G3P 8.0×10−4 1.2× 100 mSUC 1.7× 10−1 2.8×100

NAD 1.8×10−2 2.2× 100 mFUM 1.7× 10−2 2.2× 10−1

13BPG 8.0×10−4 1.2× 10−1 mMAL 9.6× 10−2 2.4×100

3PG 8.4×10−3 4.9× 10−1 mOAA 9.6× 10−2 2.4×100

2PG 5.6×10−3 6.0× 10−2 mASP 2.3× 10−1 7.8×100

PEP 1.8×10−3 3.8× 10−1 mGLU 5.6× 10−3 6.6×100

PYR 1.2×10−2 1.4× 101 ASP 2.3× 10−1 7.8×100

LAC 8.0×10−2 7.3× 101 GLU 5.6× 10−3 6.6×100

AMP 3.6×10−5 3.4× 100 OAA 9.6× 10−2 2.4×100

6PG 3.2×10−3 1.1× 10−2 MAL 9.6× 10−2 2.4×100

Ru5P 9.4×10−3 7.8× 10−2 AKG 5.7× 10−3 2.3× 10−2

Xyl5P 8.0×10−5 1.9× 10−2 CIT 6.4× 10−3 1.2×100

R5P 3.0×10−3 2.2× 10−2 GLN 1.6× 10−1 5.6×100

E4P 8.0×10−5 2.7× 10−1 NADH 8.0× 10−4 1.0× 10−1

S7P 6.5×10−3 8.1× 10−2 NADPH 9.6× 10−4 6.9× 10−2

NADP 3.7×10−3 4.4× 10−1 GSSG 1.0× 10−1 1.1×100

reflect the amount of enzyme present and the corresponding
enzyme activity. Conventionally, the reaction velocities are
thought to distinguish the metabolism across different cell types.
Therefore, of the many kinetic parameters included in the
reaction rate equations, only the reaction velocities were fit to
the training data, and the other rate constants were held at their
literature values. We also fit the cell growth parameters shown
in Equations (1) and (2). Below, we describe the experimental
data used to train the model and the method used to perform
the parameter estimation.

The model is fit to experimental measurements from
Son et al. (2013), who measured the concentrations of 14
intracellular metabolites using targeted metabolomic analysis.
Son and coworkers sought to understand the non-canonical
glutamine metabolism in pancreatic cancer cells following
the knockdown of GOT1, a major enzyme in glutamine
metabolism. Themetabolite concentrations were measured when
the GOT1 enzyme was knocked down, relative to the no
knockdown condition. Thus, they quantified the fold-change in
the metabolite concentrations.

The experimental protocol used by Son and coworkers is
illustrated in Figure S1. We simulated the same sequence of
steps to predict the fold-change in the concentrations of the
14 metabolites. Since the relative enzyme expression level can
be correlated with the regulation of enzyme activity levels, we
simulate enzyme knockdown by multiplying the Vf by the factor
(1 - α) (Nolan and Lee, 2012). We take the value of α to be

0.85, based on the average GOT1 expression level from two
knockdown experiments reported in Son et al. (2013). The model
is simulated for GOT1 knockdown to predict the fold-change
in the concentration of the 14 metabolites relative to the no
knockdown case. We sought to minimize the weighted sum of
the squared error (WSSR) between the experimental data and the
model predictions.

Additionally, Son and colleagues use in vitro cell culture
to investigate how intracellular metabolism influences cell
proliferation. They measure the number of cells with and
without GOT1 knockdown and in the presence of varying
extracellular nutrient concentrations. We also simulate their
experimental protocols and compare the model predictions to
their experimental measurements.

Particle swarm optimization (PSO) was used to identify the
parameter values needed to enable the model predictions to
best fit the data and minimize the WSSR. PSO (Iadevaia et al.,
2010; Kennedy, 2010; Tashkova et al., 2011) is a biologically-
inspired stochastic global optimization technique developed by
Kennedy and Eberhart (1995). It is based on the concept of
the social behavior observed in nature. In PSO, many particles,
sets of parameters, are constantly updated from their random
starting values to identify the parameter values that best fit the
experimental data. Each particle has a position, representing the
location in themulti-dimensional parameter space, and a velocity
with which it moves toward a local minimum in the WSSR. The
particles communicate with one another to update their position

Frontiers in Physiology | www.frontiersin.org 5 April 2017 | Volume 8 | Article 217

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Roy and Finley Model of Pancreatic Cancer Cell Metabolism

and velocity, ultimately moving toward the global minimum
in the WSSR. We used PSO to estimate the reaction velocities
for the baseline model. Each particle represents a vector of all
reaction velocities to be optimized where the initial parameter
values are taken from awell sampled space with the given bounds.
To specify the bounds, the reaction velocities were allowed to
vary 100-fold up and down from their starting values (taken
from the literature, see Materials and Methods). Each run of the
PSO algorithm executes 2, 500 iterations, a user-defined value to
balance the computational expense of the parameter search. We
performed the parameter estimation twice for each set of initial
conditions (i.e., a total of 5, 000 iterations per initial condition)
and, for each case, selected the set of parameters that generated
the lowest error. This gave a total of 50 best-fit parameter sets,
one set for each initial condition.

Estimating the reaction velocities for each initial condition
was the first step of model fitting. In the second step of
model fitting, we sought to estimate the growth parameters
by minimizing the WSSR. Since there fewer parameters to
fit compared to the first fitting step, we used nonlinear least
squares optimization. We performed the fitting 100 times for
each initial condition to approach the global minimum in the
model error. Given limited prior knowledge of the range of base
values for growth parameters (Higuera et al., 2009), we searched
over a parameter space spanning seven orders of magnitude
for each parameter. The model simulations to optimize for cell
growth were conducted such that the same set of seven growth
parameters could fit the experimental growth curve for both no
knockdown and GOT1 knockdown conditions.

2.4. Data Extraction
Experimental data for model training and validation was
extracted from Son et al. (2013) using the MATLAB GRABIT
program (Guide, 1998). Training data includes the fold-change
in metabolite concentrations and cell number under GOT1
knockdown. Validation data includes the cell number under
nutrient deprivation.

2.5. Parameter Identifiability Analysis
We used structural parameter identifiability analysis (Maly
and Petzold, 1996; Ascher and Petzold, 1998; Shampine
et al., 1999; Finley et al., 2011; Berthoumieux et al., 2013)
to reduce the number of model parameters being fit to
the training data. Parameter identifiability determines implicit
dependencies among parameters. If two parameters are found
to be correlated, we can specify a mathematical relationship
between the parameters and only fit one in the parameter
estimation procedure. Here, we only specify the relationship
between correlated forward and reverse reaction velocities, where
the reverse reaction velocity, Vr , is expressed as a function of the
forward reaction velocity, Vf , with the equilibrium constant, Veq:
Vr = Vf /Veq. In these cases, only the forward reaction velocity is
fit to the experimental data, thereby reducing the number of fitted
parameters. TheVeq is calculated using the published works from
which our model is derived (Wu et al., 2007; Mulukutla et al.,
2010, 2012, 2015; Marín-Hernández et al., 2011, 2014).

2.6. Sensitivity Analysis
We applied global sensitivity analysis (Saltelli et al., 2008) to
determine which of the model parameters most significantly
influence the predicted metabolite concentrations. Specifically,
we used the extended Fourier Amplitude Sensitivity Test (eFAST)
method (Marino et al., 2008), a variance-based approach, to
understand the robustness of the model outputs (metabolite
concentrations) given variance in the model inputs (the reaction
velocities) (Zi, 2011). We allowed the model inputs to vary
two orders of magnitude up and down from their literature
values. The eFAST method calculates two indices that provide
an estimate of the sensitivity of the model outputs with respect
to the model parameters. The first order index, Si, quantifies the
variance of the model output with respect to the variances of
each individual input, and the total FAST index, Sti, quantifies
the variance of the model output with respect to the variances of
each input and covariances between combinations of inputs. The
Si, then, is a measurement of local sensitivity of the model output
to each individual input, whereas Sti is a measure of the global
sensitivity, accounting for the interactions or correlations among
multiple inputs.

3. RESULTS

We have constructed a kinetic model that predicts the
dynamics of cellular metabolism in pancreatic cancer cells.
The model is based on a priori knowledge of the molecular
species involved and the reactions and interactions between
the species. The complete model describing the metabolic
network dynamics incorporates enzymatic reactions involved in
glycolysis, glutaminolysis, the TCA cycle, and the PPP (Figure 1).
We represent the cell using a cytoplasmic compartment and
the mitochondria. Through glycolysis, glucose is metabolized
to pyruvate, which enters the tricarboxylic acid cycle (in the
mitochondria), or pyruvate can form lactate (in the cytoplasm),
which is excreted from the cell. Glycolysis and pentose phosphate
pathway take place in the cytoplasm and are linked through
three metabolites: G6P, F6P and G3P. The TCA cycle in the
mitochondrial compartment takes the influx of cytoplasmic
pyruvate from glycolysis. Additionally, the following metabolites
are exchanged between the cytoplasm and the mitochondria:
malate, aspartate, citrate, glutamate and alpha-ketoglutarate. In
total, the model includes 46 metabolites interacting through
53 enzymatic reactions where the evolution of the metabolites’
concentrations are calculated by solving a set of nonlinear ODEs.
The complete set of model reactions and the baseline parameter
values from literature are included in the Supplementary
Material.

3.1. Training of the Complete Kinetic Model
We performed parameter estimation to fit the model to
quantitative experimental data and estimate the reaction
velocities (Vf and Vr) that allow the model predictions to best
match the available experimental data. As described in the
Methods, the complete model is constructed using equations
from multiple sources, each of which contains parameters that
characterize the rates of the metabolic reactions. Therefore, we fit
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the model to data specific to pancreatic cancer in order to obtain
a validated model that can be used to predict the dynamics of
metabolism in pancreatic cancer cells.

3.1.1. Parameter Identifiability Analysis
Wefirst performed parameter identifiability (PI) to determine the
pairs of correlated parameters. Specifically, we aimed to identify
which of the total 71 forward and reverse reaction velocities are
mathematically correlated. Completing this analysis allowed us
to fit the forward rate, and calculate the reverse rate using the
equilibrium constant. Initially 100 sets of initial conditions are
chosen from Latin Hypercube Sampling. We sum the calculated
correlation coefficients for each of the 100 initial conditions and
subsequently normalized the estimated correlation coefficients.
When the forward and reverse reaction velocities (Vf and Vr ,
respectively) for a particular reaction are shown to be highly
correlated for multiple sets of initial conditions, we fit the Vf and
calculate Vr using the equilibrium constant, Veq. We performed
the PI analysis once using the baseline model and all 71 reaction
velocities, identifying 10 correlated pairs (“round 1”). We then
performed the analysis again, after specifying the Vr values
found to be correlated in round 1, which identified another two
correlated pairs (“round 2"). Through this analysis, we reduced
the number of reaction velocities to be fit from 71 to 59. The
results of the parameter identifiability are shown in Figures
S2–S4.

3.1.2. Global Sensitivity Analysis
Next, we performed global sensitivity analysis to determine
which of the reaction velocities most significantly influence the
model outputs. Ideally, estimating the sensitivity of the predicted
concentrations of the 14 metabolites to variance in the reaction
velocities reduces the number of fitted parameters, where only
the values of the most influential parameters are estimated.
Therefore, we applied the eFAST method (see Section 2) to
calculate the sensitivity of the fold-change in the metabolite
concentrations given variance in the 59 reaction velocities
included in the model, for each set of initial conditions. The
cumulative result of the sensitivity analysis is shown in Figure S5,
where we sum the sensitivity coefficients for the 50 sets of initial
conditions. However, the results show that each of the parameters
influence at least one of the predicted fold-changes for each set of
initial conditions. Therefore, we moved forward with fitting all
59 parameters, so as not to omit any parameter that affects the
predicted fold-changes.

3.1.3. Parameter Estimation
Finally, we used particle swarm optimization (PSO) to find the
optimal values for each reaction velocity that allow the fold-
changes in the metabolite concentrations predicted by the model
to accurately match the fold-changes measured experimentally.
By performing the model training, the predicted fold-changes
match very closely to the experimental data, as shown in Figure 2.
As a result, we estimated the values of the reaction velocities for
each set of initial conditions. The estimated parameter values are
given in the Supplementary Material (“S5.xlsx”).

We incorporated growth kinetics with the trained metabolic
model to predict the number of cells over time. The cell growth is

simulated in the presence of complete media (35 mM of glucose
and 6 mM of glutamine) for a total time period of 5 days. The
model is able to match the training data for the growth curves
measured by Son et al. (2013) (Figure 3A). By training the model,
we estimated the cell death rate and growth parameters that
characterize how the concentrations of glucose, glutamine, and
ATP contribute to the rate of cell proliferation (Equations 1 and
2). As a result, four initial conditions out of the total 50 starting
initial conditions obtained from LHS were able to fit the data
equally well (Figure 3A).

3.2. Model Validation
We validated the model with available experimental
measurements for cell proliferation under conditions of nutrient
deprivation. The validation step confirms that the model is
able to predict data not used in the model training. Two initial
conditions with their corresponding fitted parameters (reaction
velocities and growth parameters) could successfully validate the
experimental growth curves measured under minimal glucose
and glutamine concentrations (Figure 3B). These validated sets
of initial conditions (Table 2) represent physiologically possible
intracellular levels of metabolites present in pancreatic cancer
cells. We therefore used only these sets of initial conditions
and their corresponding fitted parameters in simulating various
conditions and generating predictions that provide novel insight
into pancreatic cancer metabolism.

The best-fit parameter sets estimated using these two initial
conditions are remarkably consistent. A total of 69 and 71% of
the reaction velocities and growth parameters, respectively, are
within 100-fold of one another, as highlighted in Supplementary
File S3. This consistency confirms the robustness of the
identified parameter values and their physiological possibility
within the intracellular environment of a pancreatic cancer
cell, which is difficult to determine experimentally. However,
given the large number of parameters that needed to be
optimized, along with their interdependence due to upstream
and downstream metabolite concentrations, some parameters
showed high variability, as is common in systems biology models.
Specifically, two growth parameters, αglc and kgc, vary as widely
as seven orders of magnitude between the two sets of best-
fit parameter values estimated using the two validated initial
conditions. These parameters characterize the contribution of
glucose to the overall rate of cell proliferation. However, the
ratio of α to k for glucose is very similar across the two sets
of initial conditions, again pointing to the robustness of the
estimated parameter values. The occurrence of high variability
in the best-fit parameters is to be expected in highly nonlinear
and complex kinetic models (Bellu et al., 2007). However, the
strength of the model optimization lies in the fact that despite
high variability in certain parameters, the model validation for
both initial conditions is highly comparable, as evident from
Figure S6.

3.3. Model Robustness
To test the robustness of the model predictions, we predicted
how the number of cancer cells increase for varying metabolite
initial conditions.We performed aMonte Carlo analysis, running
the model with 1,000 different values of initial conditions
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FIGURE 2 | Model fit to experimental data. The model predictions for the fold-change in the metabolite concentrations (orange bars) match the experimental

measurements from Son et al. (2013) (gray bars). Error bars for the predicted fold-change represent the standard deviation in the model predictions for the best fit

from each of the 50 initial conditions. The simulated values of the metabolites derived from the mitochondria and cytoplasm are summed together to determine the

total cellular metabolite pool, which was measured in the experiments.

FIGURE 3 | Model training and validation using cell proliferation data.

The model is used to estimate the relative number of cells. (A) Simulated cell

proliferation with complete media (35 mM glucose and 6 mM glutamine) for 5

days with no knockdown (black) and under GOT1 knockdown (red). Results

are shown for the four initial conditions that match the training data. (B)

Simulated cell proliferation when cells are grown in complete media for 5 days

(black) or in complete media for 24 h, followed by glucose and glutamine

deprivation for 4 days (blue). Results are shown for the final two initial

conditions that match the validation data. In both (A,B), triangles and squares

represent the experimental data with error bars as available. The solid lines

indicate the mean of predicted results for the given sets of initial conditions,

and the shading shows the standard deviation.

randomly selected from a Gaussian distribution. The baseline
initial condition for each metabolite is allowed to vary 50%
up and down. Here, the mean is the baseline value for the
initial condition, and the standard deviation is 1/6 of the mean.
This ensures that all of the values selected from the Gaussian
distribution are within three standard deviations of the mean.
The predicted results for one of the validated sets of initial

conditions are shown in Figure 4. The simulations indicate
that cell proliferation is fairly sensitive to the initial metabolite
concentrations. Therefore, our careful procedure of identifying
an appropriate set of initial conditions is important in generating
valid model predictions.

3.4. Predicted Effects of Nutrient
Availability
We applied the model to investigate the effects of the availability
of glucose and glutamine in the extracellular environment.
The cell proliferation rate is explicitly dependent on the
concentrations of glucose and glutamine (Ramanathan et al.,
2005; Yun et al., 2009), as well as the ability to convert the
nutrient sources into ATP. Therefore, we explored how the
cell count varied given changes in the extracellular levels of
glucose and glutamine. We simulated the model under varying
conditions of both glucose and glutamine (Figure 5). The model
predicts that nutrient availability influences cell proliferation in a
nonlinear manner. Additionally, the number of pancreatic cells
is predicted to be more dependent on glutamine availability,
as compared to glucose, particularly given longer times for cell
growth. This result, which holds true for both validated sets of
initial conditions, is consistent with experimental observations
(Gaglio et al., 2011).

3.5. Predicted Effects Metabolic Fluxes
The model predicts the dynamic reaction fluxes under varying
conditions, providing insight into the metabolic phenotype of the
pancreatic cancer cells. The flux through the enzyme-catalyzed
reactions indicates the functional impact of each connection
in the metabolic network (Sauer, 2006). Therefore, we applied
the model to predict the dynamic reaction fluxes through
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TABLE 2 | Final sets of initial conditions that fit the training data and match the validation data well.

Metabolite IC #1 (mM) IC #2 (mM) Metabolite IC #1 (mM) IC #2 (mM)

GLC 1.4× 101 3.1× 100 GSH 2.1×100 3.1×100

ATP 7.7× 100 9.9× 100 mPYR 7.9×100 6.9×100

G6P 1.2× 100 1.8× 100 mAcCoA 1.2× 10−1 1.0× 10−1

ADP 1.9× 100 1.0× 100 mCIT 9.8× 10−2 5.0× 10−1

F6P 2.1× 10−1 2.8× 10−2 mICIT 1.7× 10−2 2.49× 10−2

FBP 1.0× 10−1 3.8× 10−1 mAKG 2.0× 10−2 1.57× 10−2

DHAP 8.8× 10−1 7.7× 10−1 mSCoA 7.2× 10−1 1.5×100

G3P 5.7× 10−1 4.4× 10−2 mSUC 2.5×100 1.8×100

NAD 3.1× 10−1 8.1× 10−1 mFUM 1.6× 10−1 1.6× 10−1

13BPG 6.7× 10−3 1.4× 10−2 mMAL 1.2×100 2.2×100

3PG 3.4× 10−1 9.9× 10−2 mOAA 1.9×100 1.7×100

2PG 4.9× 10−2 4.5× 10−2 mASP 4.3×100 3.2×100

PEP 5.4× 10−2 2.1× 10−1 mGLU 2.0×100 3.0× 10−1

PYR 8.1× 100 4.4× 100 ASP 7.0×100 6.7×100

LAC 1.9× 101 6.3× 101 GLU 2.8×100 3.2×100

AMP 2.5× 10−1 1.3× 100 OAA 1.2×100 1.2×100

6PG 4.5× 10−3 9.4× 10−3 MAL 1.9×100 2.1×100

Ru5P 2.7× 10−2 7.6× 10−2 AKG 6.1× 10−3 2.1× 10−2

Xyl5P 1.3× 10−2 1.3× 10−2 CIT 5.1× 10−1 1.7× 10−1

R5P 1.4× 10−2 6.0× 10−3 GLN 4.3×100 5.5×100

E4P 1.8× 10−1 5.2× 10−2 NADH 6.1× 10−2 9.7× 10−3

S7P 5.7× 10−2 7.1× 10−2 NADPH 5.6× 10−3 3.3× 10−2

NADP 3.8× 10−1 7.2× 10−2 GSSG 3.2× 10−1 9.1× 10−1

FIGURE 4 | Model robustness. Model simulation using 1,000 random initial

conditions selected from a Gaussian distribution, as described in Section 3.3.

(A) Simulations under no knockdown (black) and GOT1 knockdown (red). (B)

Simulations with complete media (black) and nutrient deprivation after 24 h

(blue). In both (A,B), triangles and squares represent the experimental data

with error bars as available. The solid lines indicate the mean of predicted

results for 1,000 sets of initial conditions, where the shading shows the

standard deviation.

the metabolic reactions both in the baseline model with no
GOT1 knockdown (Figure 6A) and under GOT1 knockdown
(Figure 6B). The differences in the reaction fluxes between these
two conditions provide mechanistic insight into how altering a
single enzyme-catalyzed reaction has a systemic effect on the
metabolic network. The model predicts that GOT1 knockdown

influences the magnitude and direction of the adenylate kinase
(AK) reaction. The AK enzyme catalyzes the production of ADP
from ATP and AMP, and in the baseline model, this reaction
mostly proceeds in the reverse direction (i.e., there is a net
production of ATP). With GOT1 knockdown, the flux through
the AK reaction switches after 24 h of cell growth. In this case, less
ATP is available to be consumed for proliferation, hence lower
cell growth is observed. Additionally, GOT1 knockdown causes
the glutamate-pyruvate transaminase (GPT) reaction to proceed
in the opposite direction, as compared to the no knockdown case.
This means that with GOT1 knockdown, the GPT reaction works
to produce glutamate rather than consume it, compensating for
the lower glutamate production that occurs when the GOT1
enzyme is not fully active.

3.6. Predicted Response to Metabolic
Perturbations
The model predicts the systems-level response to various
metabolic perturbations. With the ability to predict the number
of pancreatic cancer cells over time and the dynamic reaction
fluxes, the model can help identify the enzyme-catalyzed
reactions that are effective therapeutic targets to inhibit tumor
metabolism and impede cell growth. Therefore, we applied the
model to predict the effects of inhibiting various enzymes in
the metabolic network. We implemented enzyme knockdowns
by decreasing the forward reaction velocity (Vf ) by 85%, either
alone or in combination with GOT1 knockdown. We first
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FIGURE 5 | Predicted effects of varying nutrient availability. Predicted relative number of pancreatic cancer cells with varying extracellular concentrations of

glucose and glutamine at: (A) 1 day and (B) 5 days.

FIGURE 6 | Predicted metabolic fluxes. Dynamic fluxes predicted by the model for: (A) no knockdown and (B) GOT1 knockdown. The color bar indicates the

magnitude of the flux on a log scale. Black triangles denote the time points at which the flux is in the opposite direction (i.e., negative flux), compared to the baseline

model shown in Figure 1.

targeted enzymes that directly influence the three metabolites
involved in the cell proliferation rate (glucose, glutamine,
and ATP). These enzymes include GLUT1, which catalyzes
glucose uptake by the cell, GLS, the enzyme that converts
glutamine to glutamate, and OXPHOS, the reaction simulating
oxidative phosphorylation. The model predicts that inhibiting
these enzymes influences cell growth to varying degrees. GLUT1
knockdown alone is not as effective in reducing cell growth
as GOT1 knockdown (Figure 7A). Moreover, knockdown of
both GLUT1 and GOT1 is as effective in reducing cell growth
as GOT1 knockdown alone. Thus, the model indicates that
GLUT1 is not an optimal target, as compared to GOT1.
In comparison, OXPHOS knockdown leads to lower cell
proliferation compared to GOT1 knockdown (Figure 7B).
Also, under GLS knockdown, cell growth is significantly

reduced (Figure 7C), alone or in combination with GOT1
knockdown.

The model predicts novel strategies to reduce pancreatic
cancer cell metabolism that lead to reduced cell proliferation.
After targeting enzymes that directly influence the metabolites
whose concentrations influence the cell proliferation rate, we
examined the effects of altering other enzymes in the metabolic
network, individually and in combination. We conducted a
local sensitivity analysis by varying the reaction velocities
and predicting the effects on the relative cell number. We
systematically reduced each of the 59 fitted reaction velocities in
the trained model from 5% knockdown up to complete knockout
(Burgard et al., 2003; Meister et al., 2013). In this way, the
model is used to specifically pinpoint which enzyme-catalyzed
reactions contribute most to cell growth inhibition. Reducing
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FIGURE 7 | Predicted response to metabolic perturbations. The model predicts the relative number of pancreatic cancer cells when the activity of the target

enzyme was reduced by 85% alone or in combination with 85% GOT1 knockdown. The targets investigated were (A) GLUT1, (B) OXPHOS, (C) GLS, (D) MALPi, (E)

GAPDH, and (F) GOT2.

the reaction velocity in the GOT1 reaction showed an expected
direct correlation of decrease in cell growth with increasing effect
of knockdown (Figure S7). However, it is more interesting to
apply themodel to identify combination therapies, i.e., systematic
combinations of knockdown of essential enzymatic reactions.
Therefore, we identified how knockdown (reducing the reaction
velocity by 85%) for a target enzyme influences the predicted cell
growth, alone and in combination with GOT1 knockdown. The
model predicts three relevant classes of behaviors that lead to
a reduction in cell proliferation, as described below. We show
the relative cell count for a representative example from each
case in Figure 7D, MALPi; Figure 7E, GAPDH; and Figure 7F,
GOT2.

1. Knockdown of the target enzyme alone is not as effective as
GOT1, but its knockdown synergizes with GOT1 knockdown to
further decrease cell count.We identified themalate-phosphate
shuttle (MALPi) as a representative example. MALPi is
responsible for phosphate shuttle across the cytoplasmic and
mitochondrial compartment and hence for the conversion
of ATP and ADP. MALPi, in conjunction with the citrate
malate shuttle (CITMAL), generates citrate required for lipid
synthesis. Therefore, targeting MALPi exhibits is expected to
reduce tumor growth, which the model predicts (Figure 7D).

2. Knockdown of the target enzyme reduces cell proliferation as
much as GOT1 knockdown alone, and is even more effective
when combined with GOT1 knockdown. This behavior is
illustrated in the case of targeting GAPDH, the enzyme
responsible for converting G3P to BPG, accompanied by the

reduction of NAD to NADH. Interestingly, over-expression
of GAPDH has been observed in many types of cancers
(Norris et al., 2008; Ganapathy-Kanniappan et al., 2012;
Krasnov et al., 2013). Inhibiting GAPDH would decrease
the production of downstream metabolites, hence reducing
the formation of lipids and amino acids, which are required
for cell proliferation (Pereira et al., 2009). As expected, the
model predicts reduced cell proliferation upon inhibiting the
GAPDH enzyme (Figure 7E).

3. Knockdown of the target enzyme alone is very effective
in reducing cell proliferation, and combining it with
GOT1 knockdown does not have any additional effect. A
representative example of this behavior is shown by targeting
glutamate oxaloacetate transaminase 2 (GOT2). This enzyme
promotes synthesis of OAA by AKG via glutamate. The
expression level and activity of the GOT2 enzyme has been
found to be highly elevated in pancreatic and breast cancer
cells (Chakrabarti et al., 2015; Korangath et al., 2015; Yang
et al., 2016). The model predicts that targeting GOT2 activity
is a potential lethal approach to target glutamine metabolism
to inhibit tumor growth (Figure 7F).

4. DISCUSSION

4.1. Robust and Predictive Computational
Model
We present a predictive model that enables quantification of the
kinetics of the intracellular metabolism of pancreatic cancer cells.
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The model provides an understanding of how the cells depend
on the extracellular conditions (Vander Heiden et al., 2009) and
the resulting dynamic reaction fluxes. The ultimate goal is to use
the model to tackle this aggressive disease by identifying novel
strategies to alter the reprogrammed metabolism within cancer
cells (Hanahan and Weinberg, 2011).

The model is predictive of pancreatic cancer cell metabolism
in particular, as we carefully calibrated the model to pancreatic
cancer-specific data from the 8988T cell line. The calibrated
model predicts the metabolite concentrations, reaction fluxes,
and number of pancreatic cells over time. As a result of
model calibration and validation to data not used in training,
we identify feasible sets of initial conditions and kinetic
parameters that together provide a model that is specific to
pancreatic cancer. We apply the validated model to predict the
effects of perturbing specific metabolic reactions, alone and in
combination. Interestingly, the model simulations show that
targeting the PPP, TCA cycle, or mitochondrial-cytoplasmic
shuttle reactions presents an equally important and synergistic
role with targets to regulate tumor metabolism.

Computational modeling offers a powerful tool to incorporate
the complexity and robustness of the interconnected metabolic
pathways and predict how individual and subsets of metabolic
reactions give rise to the systemic behavior of the cells. Through
parameter identification, sensitivity analyses, and parameter
estimation, we obtained a predictive computational model that
matches experimental data and can be used to predict metabolic
phenotypes of pancreatic cancer. We utilized a quantitative
approach to predict how altering nutrient availability and enzyme
activity inhibits cancer cell metabolism, and ultimately, cancer
cell proliferation. In this way, the model is a valuable framework
that generates hypotheses regarding novel therapeutic strategies.
The model provides quantitative insight into how the dynamics
of metabolism are affected by strategic knockdown of enzyme
activity. The strategies that we implemented computationally can
be tested experimentally using shRNA to selectively reduce the
activity of the targeted enzyme(s). Thus, when combined with
experimental studies, the model can prove useful in designing
and understanding pre-clinical trials.

Our approach of fitting the model with different sets
of initial conditions to generate multiple parameter sets is
akin to ensemble modeling for metabolic systems (Tran
et al., 2008; Srinivasan et al., 2015; Saa and Nielsen, 2016).
The ensemble modeling approach, which has been applied
to build dynamic genome-scale models, generates multiple
parameter sets (an ensemble of models) that produce the same
steady state conditions. Given additional data, such as the
distributions of the reaction fluxes under certain perturbations,
the number of feasible models can be reduced. The ensemble
of models is produced by sampling the parameter space for
the kinetic rates, given certain constraints (i.e., thermodynamics
or growth requirements). Analogously, we have sampled the
space of possible initial metabolite concentrations and trained
the model for each set of initial conditions to generate a
set of possible kinetic parameters. We then use the cell
proliferation data to further identify the sets of appropriate
parameters and initial metabolite concentrations. This procedure

resulted in two possible models, which are then evaluated to
determine their robustness, and finally applied to generate novel
predictions.

4.2. Comparison to Other Studies
The metabolic model constructed in this work is a significant
expansion beyond existing kinetic models of cancer metabolism.
Previously published kinetic models in the context of cancer
have mostly focused on the glycolytic pathway. Such models
have successfully identified enzymes that are associated with
tumor growth and malignancy and are important targets
in inhibiting metabolism, including GLUT, HK, PFK-1, and
GAPDH (Marín-Hernández et al., 2011, 2014; Shestov et al.,
2014). However, the enzymes involved in the TCA cycle
and glutaminolysis also significantly contribute to cancer cell
proliferation, particularly in case of pancreatic cancer. Our paper
is the first to combine these pathways, along with cell growth,
in a model for pancreatic cancer, thereby advancing the field of
dynamic metabolic modeling of cancer. The impact of enzymes
that catalyze glutaminolysis and TCA cycle reactions was proven
experimentally by Son et al. (2013) and our simulations also
confirm their importance.

We can compare the model predictions to experimental
studies published in the literature. Over-expression of GLUT
has been identified in almost all types of cancer and hence
is a key signature of malignancy (Ganapathy-Kanniappan and
Geschwind, 2013). Targeting GLUT has been shown to inhibit
glucose transport and reduce cell growth(Liu et al., 2012; Granchi
et al., 2014). However, due to the ubiquitous expression of GLUT
in all cell types, blockage of GLUT remains a critical challenge.
Using the model, we could successfully confirm the presence of
alternative targets described in the literature, as well as identify
novel targets. The model predicts the effects of targeting other
pathways by which tumor cells metabolize nutrients and produce
building blocks needed for cell proliferation. For example, the
model predicts that targeting oxidative phosphorylation (via
the OXPHOS enzyme) can significantly reduce cell growth, in
combination with inhibition of the GOT1 enzyme. Indeed, the
literature has shown that targeting this pathway by which the
cell generates ATP in the mitochondria (Caro et al., 2012; Haq
et al., 2013; Vazquez et al., 2013; Viale et al., 2014; Weinberg
and Chandel, 2015), synergistically with optimal inhibition of
glycolysis and glutaminolysis may increase effectiveness of cancer
therapeutics (Lu et al., 2015; Yadav et al., 2015). Another example
is inhibition of glutaminase (GLS), the enzyme responsible for
converting glutamine to glutamate. The glutamate produced in
this reaction subsequently enters in the TCA cycle to ultimately
generate metabolites such as OAA, AKG, acetyl-CoA, and citrate
for lipid production and nitrogen for DNA synthesis (Chen
and Cui, 2015). The GLS enzyme is reported to have a positive
correlation with cancerous tumor growth from normal cells due
to enhanced glutaminolysis (Lora et al., 2004; Xiang et al., 2015),
making it is a potential target for effective cancer therapeutic.
The model predicts a synergistic effect when GLS is inhibited
in combination with GOT1. Interestingly, inhibitors of GLS are
being explored: BPTES (DeLaBarre et al., 2011; Hartwick and
Curthoys, 2012) and CB839 (Gross et al., 2014) have been shown
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to induce apoptosis in cancer cells. These predicted effects of
targeting OXPHOS and GLS, along with those described in
Section 3.6 and illustrated in Figure 7 demonstrate the utility of
the model and confirm its validity. Excitingly, this comparison
of the model results and known experimental studies lends great
confidence to the model’s predictions.

4.3. Model limitations
Our model accurately reproduces, both quantitatively and
qualitatively, experimental data used for training and validation.
However, there are certain limitations that can be addressed as
additional quantitative data become available for model fitting.
Currently, the model only considers cancer cells; however, it is
important to consider additional cell types within the tumor.
We can extend the model to predict the effects of interactions
between multiple cell types and to understand the dynamics
of exchange of nutrients between the cells. Expanding the
model in this way could enable a better understanding of
the symbiosis between cells (Mendoza-Juez et al., 2012) and
how the tumor microenvironment can alter the cells’ metabolic
dependencies and induce apoptosis (Phipps et al., 2015). Another
limitation is that the model does not include intracellular
recycling pathways or scavenging mechanisms such as autophagy
(organelle degradation by autophagosomes) or macropinocytosis
(engulfing the nutrients followed by lysosomal degradation).
Additionally, the model assumes that the concentrations of
glucose, glutamine, and ATP directly correlate to the cellular
resources required for biomass production and cell proliferation.
Therefore, we do not include the steps toward amino acid
synthesis or nucleotide synthesis through the non-oxidative arm
of the PPP or the hexosamine biosynthesis pathway. These are
processes that enable cancer cells to promote biomass synthesis
and could be added as future extensions to the existing model.
Finally, given additional data, themodel can be adapted to predict
the metabolism in a range of cancer cell types beyond pancreatic
cancer.

5. CONCLUSION

The metabolic model presented here is a novel computational
tool for investigating the metabolism of pancreatic cancer

cells. The model includes enzyme-catalyzed reactions in
central metabolic pathways and is trained and validated using
quantitative experimental measurements, specific to pancreatic
cancer lines. As a result, we have constructed the first kinetic
model of pancreatic cancer metabolism. The model predicts
the effects of both intracellular and extracellular perturbations,
providing the metabolic fluxes and the number of cancer cells
over time. With a successful identification of appropriate initial
conditions and parameter values for pancreatic cancer, the model
serves as a good starting point to predict the dynamicmetabolism
in other pancreatic cancer cell lines as well as a template for
studying cell growth in other cell types. Additionally, using
model simulations, we can design novel in silico combinatorial
therapies toward impeding cancer cell proliferation. Thus, the
model can be used to complement in vitro and in vivo pre-clinical
studies.

AUTHOR CONTRIBUTIONS

SF designed the research. MR constructed the model and
performed the simulations and analyses. All authors contributed
to writing the manuscript and approved of its final version.

FUNDING

This work is supported by The Rose Hills Foundation and the
USC Provost’s Office (research grant to SF).

ACKNOWLEDGMENTS

The authors thank members of the Finley research group for
helpful discussions. Computation for the work described in this
paper was supported by the University of Southern California’s
Center for High-Performance Computing (https://hpcc.usc.edu).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fphys.
2017.00217/full#supplementary-material

REFERENCES

Alberghina, L., Gaglio, D., Gelfi, C., Moresco, R. M., Mauri, G., Bertolazzi, P., et al.
(2012). Cancer cell growth and survival as a system-level property sustained by
enhanced glycolysis and mitochondrial metabolic remodeling. Front. Physiol.
3:362. doi: 10.3389/fphys.2012.00362

Almoguera, C., Shibata, D., Forrester, K., Martin, J., Arnheim, N., and Perucho,
M. (1988). Most human carcinomas of the exocrine pancreas contain mutant
ck-ras genes. Cell 53, 549–554. doi: 10.1016/0092-8674(88)90571-5

Asano, T., Yao, Y., Zhu, J., Li, D., Abbruzzese, J. L., and Reddy, S. A. (2004). The
PI 3-kinase/Akt signaling pathway is activated due to aberrant pten expression
and targets transcription factors NF-κB and c-Myc in pancreatic cancer cells.
Oncogene 23, 8571–8580. doi: 10.1038/sj.onc.1207902

Ascher, U. M., and Petzold, L. R. (1998). Computer Methods for Ordinary

Differential Equations and Differential-Algebraic Equations, Vol. 61.
Philadelphia, PA: SIAM.

Bellu, G., Saccomani, M. P., Audoly, S., and D’Angiò, L. (2007). Daisy:
a new software tool to test global identifiability of biological and
physiological systems. Comput. Methods Prog. Biomed. 88, 52–61.
doi: 10.1016/j.cmpb.2007.07.002

Berthoumieux, S., Brilli, M., Kahn, D., De Jong, H., and Cinquemani, E. (2013). On
the identifiability of metabolic network models. J. Math. Biol. 67, 1795–1832.
doi: 10.1007/s00285-012-0614-x

Blum, R., and Kloog, Y. (2014). Metabolism addiction in pancreatic cancer. Cell
Death Dis. 5:e1065. doi: 10.1038/cddis.2014.38

Bordbar, A., Monk, J. M., King, Z. A., and Palsson, B. O. (2014). Constraint-based
models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15,
107–120. doi: 10.1038/nrg3643

Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003). Optknock: a
bilevel programming framework for identifying gene knockout strategies for
microbial strain optimization. Biotechnol. Bioeng. 84, 647–657. doi: 10.1002/bit.
10803

Frontiers in Physiology | www.frontiersin.org 13 April 2017 | Volume 8 | Article 217

https://hpcc.usc.edu
http://journal.frontiersin.org/article/10.3389/fphys.2017.00217/full#supplementary-material
https://doi.org/10.3389/fphys.2012.00362
https://doi.org/10.1016/0092-8674(88)90571-5
https://doi.org/10.1038/sj.onc.1207902
https://doi.org/10.1016/j.cmpb.2007.07.002
https://doi.org/10.1007/s00285-012-0614-x
https://doi.org/10.1038/cddis.2014.38
https://doi.org/10.1038/nrg3643
https://doi.org/10.1002/bit.10803
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Roy and Finley Model of Pancreatic Cancer Cell Metabolism

Cairns, R. A., Harris, I. S., and Mak, T. W. (2011). Regulation of cancer cell
metabolism. Nat. Rev. Cancer 11, 85–95. doi: 10.1038/nrc2981

Caro, P., Kishan, A. U., Norberg, E., Stanley, I. A., Chapuy, B., Ficarro,
S. B., et al. (2012). Metabolic signatures uncover distinct targets in
molecular subsets of diffuse large b cell lymphoma. Cancer Cell 22, 547–560.
doi: 10.1016/j.ccr.2012.08.014

Cazzaniga, P., Damiani, C., Besozzi, D., Colombo, R., Nobile, M. S., Gaglio, D.,
et al. (2014). Computational strategies for a system-level understanding of
metabolism.Metabolites 4, 1034–1087. doi: 10.3390/metabo4041034

Chakrabarti, G., Moore, Z. R., Luo, X., Ilcheva, M., Ali, A., Padanad, M., et al.
(2015). Targeting glutamine metabolism sensitizes pancreatic cancer to parp-
driven metabolic catastrophe induced by ß-lapachone. Cancer Metab. 3:1.
doi: 10.1186/s40170-015-0137-1

Chen, L., and Cui, H. (2015). Targeting glutamine induces apoptosis: a cancer
therapy approach. Int. J. Mol. Sci. 16, 22830–22855. doi: 10.3390/ijms160922830

Chung, Y.-L., Troy, H., Banerji, U., Jackson, L. E., Walton, M. I., Stubbs, M., et
al. (2003). Magnetic resonance spectroscopic pharmacodynamic markers of
the heat shock protein 90 inhibitor 17-allylamino, 17-demethoxygeldanamycin
(17AAG) in human colon cancer models. J. Nat. Cancer Inst. 95, 1624–1633.
doi: 10.1093/jnci/djg084

Cohen, R., Neuzillet, C., Tijeras-Raballand, A., Faivre, S., de Gramont, A.,
and Raymond, E. (2015). Targeting cancer cell metabolism in pancreatic
adenocarcinoma. Oncotarget 6:16832. doi: 10.18632/oncotarget.4160

DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., and Thompson, C. B. (2008). The
biology of cancer: metabolic reprogramming fuels cell growth and proliferation.
Cell Metab. 7, 11–20. doi: 10.1016/j.cmet.2007.10.002

DeLaBarre, B., Gross, S., Fang, C., Gao, Y., Jha, A., Jiang, F., et al. (2011). Full-
length human glutaminase in complex with an allosteric inhibitor. Biochemistry

50, 10764–10770. doi: 10.1021/bi201613d
DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C.,

Frese, K., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS
detoxification and tumorigenesis. Nature 475, 106–109. doi: 10.1038/nature
10189

Donahue, T. R., and Dawson, D. W. (2016). Leveraging mechanisms governing
pancreatic tumorigenesis to reduce pancreatic cancer mortality. Trends

Endocrinol. Metab. 27, 770–781. doi: 10.1016/j.tem.2016.06.009
Eagle, H. (1955). The minimum vitamin requirements of the l and hela cells in

tissue culture, the production of specific vitamin deficiencies, and their cure. J.
Exp. Med. 102, 595–600. doi: 10.1084/jem.102.5.595

El Mjiyad, N., Caro-Maldonado, A., Ramírez-Peinado, S., and Munoz-Pinedo, C.
(2011). Sugar-free approaches to cancer cell killing. Oncogene 30, 253–264.
doi: 10.1038/onc.2010.466

Elstrom, R. L., Bauer, D. E., Buzzai, M., Karnauskas, R., Harris, M. H., Plas, D. R.,
et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64,
3892–3899. doi: 10.1158/0008-5472.CAN-03-2904

Enderling, H., and Chaplain, M. A. (2014). Mathematical modeling of
tumor growth and treatment. Curr. Pharm. Design 20, 4934–4940.
doi: 10.2174/1381612819666131125150434

Finley, S. D., Gupta, D., Cheng, N., and Klinke, D. J. (2011). Inferring relevant
control mechanisms for interleukin-12 signaling in naïve CD4+ T cells.
Immunol. Cell Biol. 89, 100–110. doi: 10.1038/icb.2010.69

Fontana, A., Copetti, M., Di Gangi, I. M., Mazza, T., Tavano, F., Gioffreda, D., et
al. (2016). Development of a metabolites risk score for one-year mortality risk
prediction in pancreatic adenocarcinoma patients. Oncotarget 7, 8968–8978.
doi: 10.18632/oncotarget.7108

Gaglio, D., Metallo, C. M., Gameiro, P. A., Hiller, K., Danna, L. S., Balestrieri, C.,
et al. (2011). Oncogenic k-Ras decouples glucose and glutamine metabolism to
support cancer cell growth.Mol. Syst. Biol. 7:523. doi: 10.1038/msb.2011.56

Ganapathy-Kanniappan, S., and Geschwind, J.-F. H. (2013). Tumor glycolysis
as a target for cancer therapy: progress and prospects. Mol. Cancer 12:152.
doi: 10.1186/1476-4598-12-152

Ganapathy-Kanniappan, S., Kunjithapatham, R., and Geschwind, J.-F. (2012).
Glyceraldehyde-3-phosphate dehydrogenase: a promising target for
molecular therapy in hepatocellular carcinoma. Oncotarget 3, 940–953.
doi: 10.18632/oncotarget.623

Granchi, C., Fancelli, D., and Minutolo, F. (2014). An update on therapeutic
opportunities offered by cancer glycolytic metabolism. Bioorg. Med. Chem. Lett.

24, 4915–4925. doi: 10.1016/j.bmcl.2014.09.041

Gross, M. I., Demo, S. D., Dennison, J. B., Chen, L., Chernov-Rogan, T.,
Goyal, B., et al. (2014). Antitumor activity of the glutaminase inhibitor CB-
839 in triple-negative breast cancer. Mol. Cancer Therapeut. 13, 890–901.
doi: 10.1158/1535-7163.MCT-13-0870

Guide, M. U. (1998). The mathworks Inc. Natick, MA 5:333.
Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next

generation. Cell 144, 646–674. doi: 10.1016/j.cell.2011.02.013
Haq, R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G. C., et

al. (2013). Oncogenic braf regulates oxidative metabolism via pgc1α and mitf.
Cancer Cell 23, 302–315. doi: 10.1016/j.ccr.2013.02.003

Hartwick, E. W., and Curthoys, N. P. (2012). Bptes inhibition of hga124–551, a
truncated form of human kidney-type glutaminase. J. Enzyme Inhibit. Med.

Chem. 27, 861–867. doi: 10.3109/14756366.2011.622272
Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N., and DePinho, R. A.

(2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev.
20, 1218–1249. doi: 10.1101/gad.1415606

Hidalgo, M. (2010). Pancreatic cancer. New Engl. J. Med. 362, 1605–1617.
doi: 10.1056/NEJMra0901557

Higuera, G., Schop, D., Janssen, F., van Dijkhuizen-Radersma, R., van Boxtel, T.,
and Van Blitterswijk, C. (2009). Quantifying in vitro growth and metabolism
kinetics of human mesenchymal stem cells using a mathematical model. Tissue
Eng. A 15, 2653–2663. doi: 10.1089/ten.tea.2008.0328

Hirayama, A., Kami, K., Sugimoto, M., Sugawara, M., Toki, N., Onozuka,
H., et al. (2009). Quantitative metabolome profiling of colon and
stomach cancer microenvironment by capillary electrophoresis
time-of-flight mass spectrometry. Cancer Res. 69, 4918–4925.
doi: 10.1158/0008-5472.CAN-08-4806

Iadevaia, S., Lu, Y., Morales, F. C., Mills, G. B., and Ram, P. T. (2010). Identification
of optimal drug combinations targeting cellular networks: integrating phospho-
proteomics and computational network analysis. Cancer Res. 70, 6704–6714.
doi: 10.1158/0008-5472.CAN-10-0460

Kennedy, J. (2010). “Particle swarm optimization,”’ in Encyclopedia of Machine

Learning, eds C. Sammut and G. I. Webb (Boston, MA: Springer USA),
760–766. doi: 10.1007/978-0-387-30164-8_630

Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization,” in IEEE

International Conference on Neural Networks, Proceedings, Vol. 4, 1942–1948.
doi: 10.1109/ICNN.1995.488968

Kerr, E. M., Gaude, E., Turrell, F. K., Frezza, C., and Martins, C. P.
(2016). Mutant kras copy number defines metabolic reprogramming
and therapeutic susceptibilities. Nature 531, 110–113. doi: 10.1038/nature
16967

Kimmelman, A. C. (2015). Metabolic dependencies in ras-driven cancers. Clin.
Cancer Res. 21, 1828–1834. doi: 10.1158/1078-0432.CCR-14-2425

Korangath, P., Teo, W.W., Sadik, H., Han, L., Mori, N., Huijts, C. M., et al. (2015).
Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin.
Cancer Res. 21, 3263–3273. doi: 10.1158/1078-0432.CCR-14-1200

Krasnov, G. S., Dmitriev, A. A., Snezhkina, A. V., and Kudryavtseva, A. V.
(2013). Deregulation of glycolysis in cancer: glyceraldehyde-3-phosphate
dehydrogenase as a therapeutic target. Expert Opin. Ther. Targets 17, 681–693.
doi: 10.1517/14728222.2013.775253

Le Guennec, A., Tea, I., Antheaume, I., Martineau, E., Charrier, B., Pathan, M., et
al. (2012). Fast determination of absolute metabolite concentrations by spatially
encoded 2D NMR: application to breast cancer cell extracts. Anal. Chem. 84,
10831–10837. doi: 10.1021/ac3033504

Le Novère, N. (2015). Quantitative and logic modelling of molecular and gene
networks. Nat. Rev. Genet. 16, 146–158. doi: 10.1038/nrg3885

Liu, Y., Cao, Y., Zhang,W., Bergmeier, S., Qian, Y., Akbar, H., et al. (2012). A small-
molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces
cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo.Mol. Cancer

Ther. 11, 1672–1682. doi: 10.1158/1535-7163.MCT-12-0131
Löhr, M., Klöppel, G., Maisonneuve, P., Lowenfels, A. B., and Lüttges, J. (2005).

Frequency of K-ras mutations in pancreatic intraductal neoplasias associated
with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-
analysis. Neoplasia 7, 17–23. doi: 10.1593/neo.04445

Lora, J., Alonso, F. J., Segura, J. A., Lobo, C., Márquez, J., and Matés, J. M. (2004).
Antisense glutaminase inhibition decreases glutathione antioxidant capacity
and increases apoptosis in ehrlich ascitic tumour cells. Eur. J. Biochem. 271,
4298–4306. doi: 10.1111/j.1432-1033.2004.04370.x

Frontiers in Physiology | www.frontiersin.org 14 April 2017 | Volume 8 | Article 217

https://doi.org/10.1038/nrc2981
https://doi.org/10.1016/j.ccr.2012.08.014
https://doi.org/10.3390/metabo4041034
https://doi.org/10.1186/s40170-015-0137-1
https://doi.org/10.3390/ijms160922830
https://doi.org/10.1093/jnci/djg084
https://doi.org/10.18632/oncotarget.4160
https://doi.org/10.1016/j.cmet.2007.10.002
https://doi.org/10.1021/bi201613d
https://doi.org/10.1038/nature10189
https://doi.org/10.1016/j.tem.2016.06.009
https://doi.org/10.1084/jem.102.5.595
https://doi.org/10.1038/onc.2010.466
https://doi.org/10.1158/0008-5472.CAN-03-2904
https://doi.org/10.2174/1381612819666131125150434
https://doi.org/10.1038/icb.2010.69
https://doi.org/10.18632/oncotarget.7108
https://doi.org/10.1038/msb.2011.56
https://doi.org/10.1186/1476-4598-12-152
https://doi.org/10.18632/oncotarget.623
https://doi.org/10.1016/j.bmcl.2014.09.041
https://doi.org/10.1158/1535-7163.MCT-13-0870
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.ccr.2013.02.003
https://doi.org/10.3109/14756366.2011.622272
https://doi.org/10.1101/gad.1415606
https://doi.org/10.1056/NEJMra0901557
https://doi.org/10.1089/ten.tea.2008.0328
https://doi.org/10.1158/0008-5472.CAN-08-4806
https://doi.org/10.1158/0008-5472.CAN-10-0460
https://doi.org/10.1007/978-0-387-30164-8_630
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1038/nature16967
https://doi.org/10.1158/1078-0432.CCR-14-2425
https://doi.org/10.1158/1078-0432.CCR-14-1200
https://doi.org/10.1517/14728222.2013.775253
https://doi.org/10.1021/ac3033504
https://doi.org/10.1038/nrg3885
https://doi.org/10.1158/1535-7163.MCT-12-0131
https://doi.org/10.1593/neo.04445
https://doi.org/10.1111/j.1432-1033.2004.04370.x
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Roy and Finley Model of Pancreatic Cancer Cell Metabolism

Lu, C.-L., Qin, L., Liu, H.-C., Candas, D., Fan, M., and Li, J. J. (2015). Tumor
cells switch to mitochondrial oxidative phosphorylation under radiation via
mtor-mediated hexokinase ii inhibition-a warburg-reversing effect. PLoS ONE
10:e0121046. doi: 10.1371/journal.pone.0121046

Machado, D., Costa, R. S., Ferreira, E. C., Rocha, I., and Tidor, B. (2012). Exploring
the gap between dynamic and constraint-based models of metabolism. Metab.

Eng. 14, 112–119. doi: 10.1016/j.ymben.2012.01.003
Macheda, M. L., Rogers, S., and Best, J. D. (2005). Molecular and cellular regulation

of glucose transporter (glut) proteins in cancer. J. Cell. Physiol. 202, 654–662.
doi: 10.1002/jcp.20166

Maly, T., and Petzold, L. R. (1996). Numerical methods and software for sensitivity
analysis of differential-algebraic systems. Appl. Numer. Math. 20, 57–79.
doi: 10.1016/0168-9274(95)00117-4

Marín-Hernández, A., Gallardo-Pérez, J. C., Rodríguez-Enríquez, S., Encalada,
R., Moreno-Sánchez, R., and Saavedra, E. (2011). Modeling cancer glycolysis.
Biochim. Biophys. Acta 1807, 755–767. doi: 10.1016/j.bbabio.2010.11.006

Marín-Hernández, A., López-Ramírez, S. Y., Mazo-Monsalvo, D., Gallardo-
Pérez, J. C., Rodríguez-Enríquez, S., Moreno-Sánchez, R., et al. (2014).
Modeling cancer glycolysis under hypoglycemia, and the role played by
the differential expression of glycolytic isoforms. FEBS J. 281, 3325–3345.
doi: 10.1111/febs.12864

Marino, S., Hogue, I. B., Ray, C. J., and Kirschner, D. E. (2008). A methodology
for performing global uncertainty and sensitivity analysis in systems biology. J.
Theor. Biol. 254, 178–196. doi: 10.1016/j.jtbi.2008.04.011

Markert, E. K., and Vazquez, A. (2015). Mathematical models of cancer
metabolism. Cancer Metab. 3, 1–13. doi: 10.1186/s40170-015-0140-6

McGivan, J., and Chappell, J. (1975). On the metabolic function of
glutamate dehydrogenase in rat liver. FEBS Lett. 52, 1–7. doi: 10.1016/
0014-5793(75)80624-7

McKay, M. D., Beckman, R. J., and Conover, W. J. (2000). A comparison
of three methods for selecting values of input variables in the
analysis of output from a computer code. Technometrics 42, 55–61.
doi: 10.1080/00401706.2000.10485979

Meister, A., Li, Y. H., Choi, B., and Wong, W. H. (2013). Learning a nonlinear
dynamical systemmodel of gene regulation: a perturbed steady-state approach.
Ann. Appl. Stat. 7, 1311–1333. doi: 10.1214/13-AOAS645

Mendoza-Juez, B., Martínez-González, A., Calvo, G. F., and Pérez-García, V. M.
(2012). A mathematical model for the glucose-lactate metabolism of in vitro

cancer cells. Bull. Math. Biol. 74, 1125–1142. doi: 10.1007/s11538-011-9711-z
Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., et al.

(2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under
hypoxia. Nature 481, 380–384. doi: 10.1038/nature10602

Misale, S., Yaeger, R., Hobor, S., Scala, E., Janakiraman, M., Liska, D., et al. (2012).
Emergence of kras mutations and acquired resistance to anti-EGFR therapy in
colorectal cancer. Nature 486, 532–536. doi: 10.1038/nature11156

Mosca, E., Alfieri, R., Maj, C., Bevilacqua, A., Canti, G., and Milanesi, L. (2012).
Computational modeling of the metabolic states regulated by the kinase akt.
Front. Physiol. 3:418. doi: 10.3389/fphys.2012.00418

Mulukutla, B. C., Gramer, M., and Hu, W.-S. (2012). On metabolic shift to lactate
consumption in fed-batch culture ofmammalian cells.Metab. Eng. 14, 138–149.
doi: 10.1016/j.ymben.2011.12.006

Mulukutla, B. C., Khan, S., Lange, A., and Hu, W.-S. (2010). Glucose metabolism
in mammalian cell culture: new insights for tweaking vintage pathways. Trends
Biotechnol. 28, 476–484. doi: 10.1016/j.tibtech.2010.06.005

Mulukutla, B. C., Yongky, A., Grimm, S., Daoutidis, P., and Hu, W.-S. (2015).
Multiplicity of steady states in glycolysis and shift of metabolic state in cultured
mammalian cells. PLoS ONE 10:e0121561. doi: 10.1371/journal.pone.0121561

Newsholme, P., Procopio, J., Lima, M. M. R., Pithon-Curi, T. C., and Curi, R.
(2003). Glutamine and glutamate their central role in cell metabolism and
function. Cell Biochem. Funct. 21, 1–9. doi: 10.1002/cbf.1003

Nolan, R. P., and Lee, K. (2012). Dynamic model for cho cell engineering. J.
Biotechnol. 158, 24–33. doi: 10.1016/j.jbiotec.2012.01.009

Norris, A. J., Sartippour, M. R., Lu, M., Park, T., Rao, J. Y., Jackson, M. I., et al.
(2008). Nitroxyl inhibits breast tumor growth and angiogenesis. Int. J. Cancer
122, 1905–1910. doi: 10.1002/ijc.23305

Oberstein, P. E., and Olive, K. P. (2013). Pancreatic cancer: why is it so hard to
treat? Ther. Adv. Gastroenterol. 6, 321–337. doi: 10.1177/1756283X13478680

Oguz, C., Laomettachit, T., Chen, K. C., Watson, L. T., Baumann, W. T., and
Tyson, J. J. (2013). Optimization and model reduction in the high dimensional
parameter space of a budding yeast cell cycle model. BMC Syst. Biol. 7:53.
doi: 10.1186/1752-0509-7-53

Patra, K. C., and Hay, N. (2014). The pentose phosphate pathway and cancer.
Trends Biochem. Sci. 39, 347–354. doi: 10.1016/j.tibs.2014.06.005

Pavlova, N. N., and Thompson, C. B. (2016). The emerging hallmarks of cancer
metabolism. Cell Metab. 23, 27–47. doi: 10.1016/j.cmet.2015.12.006

Pelicano, H., Martin, D., Xu, R., and Huang, P. (2006). Glycolysis inhibition for
anticancer treatment. Oncogene 25, 4633–4646. doi: 10.1038/sj.onc.1209597

Pereira, D. S. A., El-Bacha, T., Kyaw, N., dos Santos, R., Da-Silva, W., Almeida,
F., et al. (2009). Inhibition of energy-producing pathways of HepG2 cells by
3-bromopyruvate. Biochem. J. 417, 717–726. doi: 10.1042/BJ20080805

Phipps, C., Molavian, H., and Kohandel, M. (2015). A microscale mathematical
model for metabolic symbiosis: investigating the effects of metabolic
inhibition on atp turnover in tumors. J. Theor. Biol. 366, 103–114.
doi: 10.1016/j.jtbi.2014.11.016

Pingitore, P., Pochini, L., Scalise, M., Galluccio, M., Hedfalk, K., and
Indiveri, C. (2013). Large scale production of the active human ASCT2
(SLC1A5) transporter in Pichia pastoris—functional and kinetic asymmetry
revealed in proteoliposomes. Biochim. Biophys. Acta 1828, 2238–2246.
doi: 10.1016/j.bbamem.2013.05.034

Ramanathan, A.,Wang, C., and Schreiber, S. L. (2005). Perturbational profiling of a
cell-line model of tumorigenesis by using metabolic measurements. Proc. Natl.
Acad. Sci. U.S.A. 102, 5992–5997. doi: 10.1073/pnas.0502267102

Rathmell, J. C., Fox, C. J., Plas, D. R., Hammerman, P. S., Cinalli, R. M., and
Thompson, C. B. (2003). AKT-directed glucose metabolism can prevent bax
conformation change and promote growth factor-independent survival. Mol.

Cell. Biol. 23, 7315–7328. doi: 10.1128/MCB.23.20.7315-7328.2003
Recktenwald, C. V., Kellner, R., Lichtenfels, R., and Seliger, B. (2008).

Altered detoxification status and increased resistance to oxidative
stress by K-ras transformation. Cancer Res. 68, 10086–10093.
doi: 10.1158/0008-5472.CAN-08-0360

Resendis-Antonio, O., Checa, A., and Encarnación, S. (2010). Modeling core
metabolism in cancer cells: surveying the topology underlying the warburg
effect. PLoS ONE 5:e12383. doi: 10.1371/journal.pone.0012383

Saa, P. A., and Nielsen, L. K. (2016). Construction of feasible and accurate
kinetic models of metabolism: a bayesian approach. Sci. Rep. 6:29635.
doi: 10.1038/srep29635

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al.
(2008). Global Sensitivity Analysis: The Primer. Chichester: John Wiley & Sons.

Sauer, U. (2006). Metabolic networks in motion: 13c-based flux analysis.Mol. Syst.

Biol. 2:62. doi: 10.1038/msb4100109
Serkova, N., and Boros, L. G. (2005). Detection of resistance to

imatinib by metabolic profiling. Am. J. Pharmacogenom. 5, 293–302.
doi: 10.2165/00129785-200505050-00002

Shampine, L. F., Reichelt, M. W., and Kierzenka, J. A. (1999). Solving
index-1 daes in matlab and simulink. SIAM Rev. 41, 538–552.
doi: 10.1137/S003614459933425X

Shestov, A. A., Liu, X., Ser, Z., Cluntun, A. A., Hung, Y. P., Huang, L., et al.
(2014). Quantitative determinants of aerobic glycolysis identify flux through
the enzyme gapdh as a limiting step. Elife 3:e03342. doi: 10.7554/eLife.03342

Siegel, R., Naishadham, D., and Jemal, A. (2013). Cancer statistics, 2013.CACancer

J. Clin. 63, 11–30. doi: 10.3322/caac.21166
Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., et al.

(2013). Glutamine supports pancreatic cancer growth through a kras-regulated
metabolic pathway. Nature 496, 101–105. doi: 10.1038/nature12040

Srinivasan, S., Cluett, W. R., and Mahadevan, R. (2015). Constructing kinetic
models of metabolism at genome-scales: a review. Biotechnol. J. 10, 1345–1359.
doi: 10.1002/biot.201400522

Tashkova, K., Korošec, P., Šilc, J., Todorovski, L., and Džeroski, S. (2011).
Parameter estimation with bio-inspired meta-heuristic optimization:
modeling the dynamics of endocytosis. BMC Syst. Biol. 5:159.
doi: 10.1186/1752-0509-5-159

Tran, L. M., Rizk, M. L., and Liao, J. C. (2008). Ensemble modeling of
metabolic networks. Biophys. J. 95, 5606–5617. doi: 10.1529/biophysj.108.1
35442

Frontiers in Physiology | www.frontiersin.org 15 April 2017 | Volume 8 | Article 217

https://doi.org/10.1371/journal.pone.0121046
https://doi.org/10.1016/j.ymben.2012.01.003
https://doi.org/10.1002/jcp.20166
https://doi.org/10.1016/0168-9274(95)00117-4
https://doi.org/10.1016/j.bbabio.2010.11.006
https://doi.org/10.1111/febs.12864
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1186/s40170-015-0140-6
https://doi.org/10.1016/0014-5793(75)80624-7
https://doi.org/10.1080/00401706.2000.10485979
https://doi.org/10.1214/13-AOAS645
https://doi.org/10.1007/s11538-011-9711-z
https://doi.org/10.1038/nature10602
https://doi.org/10.1038/nature11156
https://doi.org/10.3389/fphys.2012.00418
https://doi.org/10.1016/j.ymben.2011.12.006
https://doi.org/10.1016/j.tibtech.2010.06.005
https://doi.org/10.1371/journal.pone.0121561
https://doi.org/10.1002/cbf.1003
https://doi.org/10.1016/j.jbiotec.2012.01.009
https://doi.org/10.1002/ijc.23305
https://doi.org/10.1177/1756283X13478680
https://doi.org/10.1186/1752-0509-7-53
https://doi.org/10.1016/j.tibs.2014.06.005
https://doi.org/10.1016/j.cmet.2015.12.006
https://doi.org/10.1038/sj.onc.1209597
https://doi.org/10.1042/BJ20080805
https://doi.org/10.1016/j.jtbi.2014.11.016
https://doi.org/10.1016/j.bbamem.2013.05.034
https://doi.org/10.1073/pnas.0502267102
https://doi.org/10.1128/MCB.23.20.7315-7328.2003
https://doi.org/10.1158/0008-5472.CAN-08-0360
https://doi.org/10.1371/journal.pone.0012383
https://doi.org/10.1038/srep29635
https://doi.org/10.1038/msb4100109
https://doi.org/10.2165/00129785-200505050-00002
https://doi.org/10.1137/S003614459933425X
https://doi.org/10.7554/eLife.03342
https://doi.org/10.3322/caac.21166
https://doi.org/10.1038/nature12040
https://doi.org/10.1002/biot.201400522
https://doi.org/10.1186/1752-0509-5-159
https://doi.org/10.1529/biophysj.108.135442
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Roy and Finley Model of Pancreatic Cancer Cell Metabolism

Uemura, T., Hibi, K., Kaneko, T., Takeda, S., Inoue, S., Okochi, O., et al. (2004).
Detection of K-ras mutations in the plasma DNA of pancreatic cancer patients.
J. Gastroenterol. 39, 56–60. doi: 10.1007/s00535-003-1245-1

Vander Heiden, M. G. (2011). Targeting cancer metabolism: a therapeutic window
opens. Nat. Rev. Drug Discov. 10, 671–684. doi: 10.1038/nrd3504

Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009). Understanding
the warburg effect: the metabolic requirements of cell proliferation. Science 324,
1029–1033. doi: 10.1126/science.1160809

Vasseur, S., Tomasini, R., Tournaire, R., and Iovanna, J. L. (2010). Hypoxia induced
tumor metabolic switch contributes to pancreatic cancer aggressiveness.
Cancers 2, 2138–2152. doi: 10.3390/cancers2042138

Vazquez, A., Liu, J., Zhou, Y., and Oltvai, Z. N. (2010). Catabolic efficiency
of aerobic glycolysis: the warburg effect revisited. BMC Syst. Biol. 4:58.
doi: 10.1186/1752-0509-4-58

Vazquez, F., Lim, J.-H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., et al. (2013).
Pgc1α expression defines a subset of human melanoma tumors with increased
mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23,
287–301. doi: 10.1016/j.ccr.2012.11.020

Venkatasubramanian, R., Henson, M. A., and Forbes, N. S. (2008). Integrating
cell-cycle progression, drug penetration and energy metabolism to identify
improved cancer therapeutic strategies. J. Theor. Biol. 253, 98–117.
doi: 10.1016/j.jtbi.2008.02.016

Viale, A., Pettazzoni, P., Lyssiotis, C. A., Ying, H., Sánchez, N., Marchesini, M.,
et al. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on
mitochondrial function. Nature 514, 628–632. doi: 10.1038/nature13611

Warburg, O. (1956). On the origin of cancer cells. Science 123, 309–314.
doi: 10.1126/science.123.3191.309

Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, J., Lopez,
M., et al. (2010). Mitochondrial metabolism and ROS generation are essential
for kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 107, 8788–8793.
doi: 10.1073/pnas.1003428107

Weinberg, S. E., and Chandel, N. S. (2015). Targeting mitochondria metabolism
for cancer therapy. Nat. Chem. Biol. 11, 9–15. doi: 10.1038/nchembio.1712

Wise, D. R., and Thompson, C. B. (2010). Glutamine addiction: a
new therapeutic target in cancer. Trends Biochem. Sci. 35, 427–433.
doi: 10.1016/j.tibs.2010.05.003

Wise, D. R., Ward, P. S., Shay, J. E., Cross, J. R., Gruber, J. J., Sachdeva,
U. M., et al. (2011). Hypoxia promotes isocitrate dehydrogenase-dependent
carboxylation of α-ketoglutarate to citrate to support cell growth and viability.
Proc. Natl. Acad. Sci. U.S.A. 108, 19611–19616. doi: 10.1073/pnas.11177
73108

Wu, F., Yang, F., Vinnakota, K. C., and Beard, D. A. (2007). Computer
modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation,
metabolite transport, and electrophysiology. J. Biol. Chem. 282, 24525–24537.
doi: 10.1074/jbc.M701024200

Xiang, Y., Stine, Z. E., Xia, J., Lu, Y., O’Connor, R. S., Altman, B. J., et al. (2015).
Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous
tumorigenesis. J. Clin. Invest. 125, 2293–2306. doi: 10.1172/JCI75836

Yadav, N., Kumar, S., Marlowe, T., Chaudhary, A., Kumar, R., Wang, J.,
et al. (2015). Oxidative phosphorylation-dependent regulation of cancer
cell apoptosis in response to anticancer agents. Cell Death Dis. 6:e1969.
doi: 10.1038/cddis.2015.305

Yang, L., Achreja, A., Yeung, T.-L., Mangala, L. S., Jiang, D., Han, C., et al.
(2016). Targeting stromal glutamine synthetase in tumors disrupts tumor
microenvironment-regulated cancer cell growth. Cell Metab. 24, 685–700.
doi: 10.1016/j.cmet.2016.10.011

Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-
Sananikone, E., et al. (2012). Oncogenic kras maintains pancreatic tumors
through regulation of anabolic glucose metabolism. Cell 149, 656–670.
doi: 10.1016/j.cell.2012.01.058

Yoshida, G. J. (2015). Metabolic reprogramming: the emerging concept
and associated therapeutic strategies. J. Exp. Clin. Cancer Res. 34:1.
doi: 10.1186/s13046-015-0221-y

Yun, J., Rago, C., Cheong, I., Pagliarini, R., Angenendt, P., Rajagopalan, H., et al.
(2009). Glucose deprivation contributes to the development of kras pathway
mutations in tumor cells. Science 325, 1555–1559. doi: 10.1126/science.1174229

Zhu, Q., Zhang, A., Liu, P., and Xu, L. X. (2012). Study of tumor growth
under hyperthermia condition. Comput. Math. Methods Med. 2012:198145.
doi: 10.1155/2012/198145

Zi, Z. (2011). Sensitivity analysis approaches applied to systems biology models.
IET Syst. Biol. 5, 336–346. doi: 10.1049/iet-syb.2011.0015

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Roy and Finley. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 16 April 2017 | Volume 8 | Article 217

https://doi.org/10.1007/s00535-003-1245-1
https://doi.org/10.1038/nrd3504
https://doi.org/10.1126/science.1160809
https://doi.org/10.3390/cancers2042138
https://doi.org/10.1186/1752-0509-4-58
https://doi.org/10.1016/j.ccr.2012.11.020
https://doi.org/10.1016/j.jtbi.2008.02.016
https://doi.org/10.1038/nature13611
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1073/pnas.1003428107
https://doi.org/10.1038/nchembio.1712
https://doi.org/10.1016/j.tibs.2010.05.003
https://doi.org/10.1073/pnas.1117773108
https://doi.org/10.1074/jbc.M701024200
https://doi.org/10.1172/JCI75836
https://doi.org/10.1038/cddis.2015.305
https://doi.org/10.1016/j.cmet.2016.10.011
https://doi.org/10.1016/j.cell.2012.01.058
https://doi.org/10.1186/s13046-015-0221-y
https://doi.org/10.1126/science.1174229
https://doi.org/10.1155/2012/198145
https://doi.org/10.1049/iet-syb.2011.0015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Model Structure and Numerical Implementation
	2.2. Initial Conditions
	2.3. Parameter Estimation
	2.4. Data Extraction
	2.5. Parameter Identifiability Analysis
	2.6. Sensitivity Analysis

	3. Results
	3.1. Training of the Complete Kinetic Model
	3.1.1. Parameter Identifiability Analysis
	3.1.2. Global Sensitivity Analysis
	3.1.3. Parameter Estimation

	3.2. Model Validation
	3.3. Model Robustness
	3.4. Predicted Effects of Nutrient Availability
	3.5. Predicted Effects Metabolic Fluxes
	3.6. Predicted Response to Metabolic Perturbations

	4. Discussion
	4.1. Robust and Predictive Computational Model
	4.2. Comparison to Other Studies
	4.3. Model limitations

	5. Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


