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State-of-the-art cardiac electrophysiology models that are able to deliver physiologically

motivated activation maps and electrocardiograms (ECGs) can only be solved on

high-performance computing architectures. This makes it nearly impossible to adopt

such models in clinical practice. ECG imaging tools typically rely on simplified models, but

these neglect the anisotropic electric conductivity of the tissue in the forward problem.

Moreover, their results are often confined to the heart-torso interface. We propose a

forwardmodel that fully accounts for the anisotropic tissue conductivity and produces the

standard 12-lead ECG in a few seconds. The activation sequence is approximated with

an eikonal model in the 3d myocardium, while the ECG is computed with the lead-field

approach. Both solvers were implemented on graphics processing units and massively

parallelized. We studied the numerical convergence and scalability of the approach. We

also compared the method to the bidomain model in terms of ECGs and activation

maps, using a simplified but physiologically motivated geometry and 6 patient-specific

anatomies. The proposed methods provided a good approximation of activation maps

and ECGs computed with a bidomain model, in only a few seconds. Both solvers scaled

very well to high-end hardware. These methods are suitable for use in ECG imaging

methods, and may soon become fast enough for use in interactive simulation tools.

Keywords: ECG, eikonal model, lead fields, bidomain modeling, patient-specific modeling, electrophysiology

1. INTRODUCTION

The cardiac muscle or myocardium consists of electrically active muscle cells (myocytes) connected
to each other by gap junctions, embedded in extracellular fluid and other structures. The current
state of the art in forward simulation of the electrocardiogram (ECG) is to use a bidomain
reaction-diffusion model to simulate propagating electrical activation and repolarization as well
as the potential field in the torso (Vigmond et al., 2007). The bidomain model (Henriquez, 2014)
describes the electrical behavior of the cardiac tissue using two co-located domains to represent the
interpenetrating networks of intracellular and extracellular space. The conductivity of each domain
can be described by a conductivity tensor field Gi for the intracellular, and Ge for the extracellular
domain, respectively. These tensors have different degrees of anisotropy (Roth, 1997). The two
domains are separated by the volume-averaged cell membrane, but electrically connected to one
another through the ion channels in this membrane. The bidomain model can be described by a
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reaction-diffusion system











∇ ·
(

Gi∇(Vm + φe)
)

= β
(

Cm
∂Vm
∂t + Iion(Vm,w)

)

− Istim , (1)

∇ ·
(

(Gi + Ge)∇φe

)

= −∇ · (Gi∇Vm) , (2)
∂w
∂t = F(Vm,w) , (3)

where Vm is the transmembrane potential, φe the potential in the
extracellular domain, β the surface-to-volume ratio of the cell
membrane, Cm the membrane capacitance per unit area, Iion a
non-linear function representing the sum of all transmembrane
ionic currents, w a vector of state variables for the ionic currents,
F a non-linear function, and Istim an applied stimulus current.
Equation (1) describes the current flow across the membrane
and can be used together with Equation (3) to integrate the Vm

distribution. Equation (2) describes the conservation of charge
and can be used to solve φe from a given Vm.

The functions Iion and F represent the so-called membrane
model. If a physiologically detailed membrane model is chosen
and the torso model is sufficiently detailed, this allows highly
realistic ECGs to be simulated.

Much simpler models are presently being used inside inverse
models, which aim at recovering cardiac events from non-
invasive signals (Ramanathan et al., 2004; van Dam et al., 2009;
Tysler and Svehlikova, 2013; Wang et al., 2013; Erem et al., 2014),
and in interactive ECG-simulation tools (van Oosterom et al.,
2011). Typically, these models assume predefined propagation
velocities and predefined action potential waveforms. They
account for anisotropic propagation but neglect the effects of
anisotropic myocardial conductivity on the relation between
activation and the ECG. Whereas a bidomain reaction-diffusion
solution for a single heart beat takes in the order of amillion core-
seconds and is typically run on high-performance computing
(HPC) resources, simplified methods can obtain a solution in less
than a second on a single CPU core. Our purpose is to propose an
ECG simulation method that is intermediate between these two
extremes.

The conductivities play three roles in the ECG:

1. They determine the conduction velocity, which will also be
anisotropic;

2. They determine the current dipole density resulting from a
voltage gradient; and

3. They determine how the resulting current flows through the
heart and torso and thus what voltages will be measured by
the ECG electrodes.

While virtually all models nowadays account for anisotropic
propagation, rapid ECG models typically neglect the second
and third role of the anisotropic conductivities. The major
reason for this is that the conductivities are non-uniform:
the fiber orientation rotates around the cavities of the heart
and also changes transmurally. To account for it, therefore, a
volumetric discretization of the heart and torso is necessary.
By assuming isotropy, in contrast, existing methods simplify
the problem to one on the surface of the muscle (Geselowitz,
1992). However, the anisotropic conductivity has profound
effects on the ECG, especially on the standard precordial
electrodes, which are located near the heart (Potse et al., 2009)

and which are appreciated by cardiologists for the detailed
information they provide. We hypothesized that with today’s
computer technology one can build a rapid, fully anisotropic
ECG model that is fast enough to be employed inside an inverse
method.

One possible way to reduce the computational intensity of
the bidomain model is to use an eikonal model (Colli Franzone
and Guerri, 1993; Pullan et al., 2002) for the evolution of
the excitation wavefront. The excitation wavefront represents
a thin depolarized region of cardiac cells and an eikonal
equation can be used to compute the activation time at which a
wavefront reaches a given point in the myocardium. The eikonal
equation belongs to a broad class of Hamilton-Jacobi equations
(Bornemann and Rasch, 2006) and can be formally derived by a
perturbation argument applied to the bidomain equations (Colli
Franzone and Guerri, 1993). Therefore, both approaches can be
compared (Pullan et al., 2002).

The method we propose here uses a volumetric anisotropic
eikonal propagation model, pre-computed action potentials,
and an ECG simulation based on dipole sources and a set
of transfer functions known historically as lead fields. The
volumetric eikonal model, in contrast to the surface models
used by others (van Dam et al., 2009), provides us with an
activation sequence throughout the cardiac volume, which we
need to compute current dipoles at different locations with
different fiber orientations. The numerical scheme adopted is
guaranteed to converge to the correct viscosity solution of the
eikonal equation (Bornemann and Rasch, 2006), which in turn
correctly defines the fastest path between points through its
gradient.

Precomputed action potentials are assigned and shifted
according to the computed activation times, resulting in a field
of transmembrane potentials at any desired time instant. For
each time instant, the current dipoles are computed with an
anisotropic formula, and the ECG potentials are computed
from them using a set of transfer coefficients. The transfer
coefficients are computed once for each model by solving a
bidomain problem in the full torso, again taking all anisotropic
conductivities into account. This method of ECG simulation is
mathematically equivalent with full bidomain solutions of the
torso potential based on monopole or dipole sources (Potse
et al., 2009; Jacquemet, 2015). The only simplification of our
model with respect to a full reaction-diffusion solution is the
assumption of fixed but possibly heterogeneous action potential
waveforms and conduction velocities that is inherent in the
eikonal formulation.

The eikonal model allows for the use of a much coarser spatial
resolution of 1mm (Colli Franzone and Guerri, 1993) than the
0.1mm scale required to reliably reconstruct the sharp upstroke
of the action potential by a reaction-diffusion model (Clayton
et al., 2011; Pezzuto et al., 2016). As a result much shorter
computation times can be reached. The spatial discretization
at a resolution of 1mm is high enough to resolve the local
fiber orientation and allow an anisotropic computation of the
dipole sources. Thus, the method is able to account for the
influence of anisotropic conductivity on the ECG, as well as on
the propagation velocity.
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The method was entirely implemented in C, C++ and CUDA
so it could run efficiently on general-purpose graphics processing
units (GPGPU).

Using a reaction-diffusion and bidomain model as a reference,
we evaluated the proposed model in terms of the accuracy of the
simulated activation sequence and ECG.

Evaluations were performed using six patient-specific heart-
torso models. Finally, we evaluated the parallel scalability of the
methods on GPGPUs.

2. MATERIALS AND METHODS

2.1. Reference Model
A “monodomain” reaction-diffusion model of the heart coupled
to a bidomain heart-torso model was used as reference. The
monodomain model can be derived from the bidomain model by
assuming that the two domains have the same anisotropy ratio,
Ge = λGi, with λ a constant scalar. Then Equations (1) and (2)
reduce to a single reaction-diffusion equation

∇ · (Gm∇Vm) = β

(

Cm
∂Vm

∂t
+ Iion

)

− Istim (4)

whereGm is an effective conductivity. Under the equal anisotropy
assumption, Gm = λ

1+λ
Gi. A monodomain reaction-diffusion

model is a very good approximation for its bidomain counterpart
even when the equal anisotropy assumption does not hold
(Potse et al., 2006; Nielsen et al., 2007; Bishop and Plank, 2011;
Coudière et al., 2014), provided that the effective conductivity
is chosen as Gm = Ge(Gi + Ge)

−1Gi. Spatial discretization
was performed with a semi-structured finite-difference mesh
with 0.2mm resolution. The time step was 0.01ms for both the
diffusion and the reaction, respectively solved with explicit Euler
and Rush-Larsen schemes. The activation time was computed as
the time when Vm became positive.

To compute the ECG, we solved the equation

∇ · [(Gi + Ge)∇φe] = −Iw, (5)

in a 3d finite-difference full torso model at 1-mm resolution,
including a downsampled heart model (Potse et al., 2009). The
term Iw is a projection of the transmembrane current∇·(Gi∇Vm)
onto the coarse mesh (Potse and Kuijpers, 2010). The surface
ECGs were derived by evaluating the potential at the electrode
locations.

All reference computations were performed with the propag-5
software (Potse et al., 2006; Krause et al., 2012) and ran on a Cray
XC40 computer.

2.2. Eikonal Model
To compute the activation sequence of the heart we used a
non-linear first-order Hamilton-Jacobi eikonal equation in the
form







α
√

β

√

Gm∇9 · ∇9 = 1, x ∈ � \ {sk}Kk=1,

9(sk) = τk k = 1, . . . ,K.

(6)

where9(x) is the activation time at the point x ∈ � and α = α(x)
is a scaling parameter for the conduction velocity. Propagation is
initiated at K > 0 early activation sites sk with initial time τk.

The Equation (6), which assigns a locally constant
front velocity, is one of the simplest eikonal models. More
sophisticated versions of the eikonal equation are also available,
where the velocity of the front depends also on the curvature
of the front itself and higher-order curvature terms, or where
the propagation is defined by a Finsler metric rather than a
Riemannian metric (Colli Franzone et al., 2014).

In general, the scaling parameter α is the velocity that the front
would have if the conductivity and β were set to one. Indeed,
given a propagation direction p, the conduction velocity arising
from the reaction-diffusionmodel (Equation 4) is proportional to

√
Gmp · p
√

β
(7)

which is exactly the conduction velocity given by the eikonal
model for α = 1. α depends only on the membrane capacitance
and the ionic model, in particular on the sodium-channel
conductivity and gating dynamics.

The implementation of our eikonal solver is based on a
local variational principle proposed by Bornemann and Rasch
(2006). Let δ(y, x) be the travel time between points y and x,
computed with respect to a local metric, and Iω a linear Lagrange
interpolation operator restricted to a patch ω. The numerical
solution 9h = {9h,i}Ni=1, with 9h,i the activation time at the
node xi of the mesh, is iteratively updated for each node by a local
map 3 defined as follows:

9
j+1

h,i
= 3i(9

j

h
): =







min
y∈∂ω(xi)

{

δ(y, xi)+ Iω(xi)(9
j

h
)(y)

}

if xi 6= sk,

τk if xi = sk,

(8)
for i = 1, . . . ,N. The nodal value 9h,i is updated using a
patch ω(xi) of tetrahedral elements from the neighboring nodes
(see Figure 1). The minimum in Equation (8) is taken over the
polyhedral boundary ∂ω(xi) of the patch. The new value of 9h,i,
if not enforced as boundary condition, is the minimum time at xi
traveling from the boundary of the patch.

The quantity δ(y, z) is defined as the travel time along the
fastest path γ from y to z with respect to metric C(x) =
β(x)α−2(x)G−1

m (x):

δ(y, z): = inf
γ∈C1([0,1],R3)

{
∫ 1
0 ‖γ̇ (t)‖C(γ (t)) dt : γ (0) = y,

γ (1) = z

}

. (9)

In order to compute it, we discretize the metric C−1(x)
as piecewise-constant on the patch ω(x), i.e., its value is
constant within each tetrahedron. Then the fastest path for each
tetrahedron is the segment connecting y and z, and the travel time
is ‖z − y‖C.

The minimization problem in Equation (8) is solved by taking
the minimum of the minima for each triangular face t of ∂ω(xi):

min
t∈∂ω(xi)

min
y∈t

{

‖xi − y‖C + If (9
j

h
)(y)

}

. (10)
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FIGURE 1 | Stencil of a single node of the computational grid. In 3D, we

use 6 neighbor nodes from which we define a virtual patch of tetrahedral

element. Within each tetrahedron, the parameters are assumed constant, thus

the fastest path is always a segment.

The minimization over the single triangular face is a convex
optimization problem, hence the minimum is unique.

It is possible to show that the map 3 has a unique fixed
point (Bornemann and Rasch, 2006). Moreover, the fixed point
converges to the correct viscosity solution of the eikonal equation
as h → 0. The convergence rate is generally O(h) or less, due
to the low regularity of the solution, which is only Lipschitz
continuous even for a regular domain and coefficients.

2.3. ECG
Each ECG lead potential V(t) at time t was computed as

V(t) =
∫

�

∇Z(x) · Gi(x)∇Vm(x, t) dx (11)

where � is the heart domain and Z(x) is the lead field (McFee
and Johnston, 1953) of the specific ECG lead. The lead field is the
potential field created by a unit current applied at the electrode
locations (Geselowitz, 1989)

∇ · (G∇Z) =











−1 at the positive electrode,

1 at the negative electrode,

0 elsewhere,

(12)

where G = Gi + Ge is the bulk conductivity (Gi = 0 outside
the heart) (Potse et al., 2009). Equation (12) was solved for Z
with propag-5 (Potse et al., 2006; Krause et al., 2012), using
the complete heart-and-torso model at 1-mm resolution. Both
the transfer function and the dipole sources (Gi∇Vm) were
computed with fully anisotropic conductivity values.

To obtain Vm(x, t) from 9(x) we used a fixed action potential
waveform U(t):

Vm(x, t) = U
(

t − 9(x)
)

. (13)

However, we may also introduce position-dependent action
potentials U

(

t − 9(x), x
)

. In the case of Equation (13), thanks

to the co-area formula, the ECG reads as follows

V(t) =
∞
∫

−∞

U ′(t−ξ )

(

−
∫

9−1(ξ )
∇Z · Gin d6

)

dξ = (U ′∗w)(t),

(14)
that is, the convolution of the first derivative of U(t) and the
function w(t) defined as:

w(t): = −
∫

9−1(ξ )
∇Z · Gin d6, (15)

where 9−1(t) = {x ∈ � : 9(x) = t} is the front surface
within the heart and n is its normal oriented in the propagation
direction. The function w(t) is exactly the ECG V(t) when
the template action potential U(t) is the Heaviside function,
representing a sharp interface between the depolarized and the
resting tissue.

We implemented two methods for the computation of the
ECGs: one based on the general formula (11), termed “simple
method” (SM), and one based on formulas (14) and (15), named
“fast method” (FM). The former can account for action potential
heterogeneity, which is important for the T-wave in the ECG.
When focusing on the QRS complex, the main differences
between the proposed methods are the way the cardiac sources
are computed and resulting execution speed of the computation
of the ECGs.

The SM computes the ECG by direct evaluation of Equation
(11). The heart domain � is discretized into voxels v ∈
�h. The functions Z and Vm are approximated by piecewise
linear functions Zh and (Vm)h, respectively, thus ∇Zh and
∇(Vm)h(t) are piecewise constant vectors within each voxel v.
The gradient of Vm is computed for each time step. The
intracellular conductivity Gi is assumed piecewise-constant. The
time window is prescribed and the time step τ > 0 is fixed
(usually 1ms). Consequently, the numerical approximation Vn

of the ECG at time t = nτ reads:

V(nτ ) ≈ Vn =
∑

v∈�h

|v| ∇Zh|v · Gi|v ∇(Vm)h(nτ )
∣

∣

v
,

n = 0, . . . ,Nτ . (16)

The convergence rate with respect to h is quadratic, for smooth
Z(x) and Vm(x, t). In practice, Zh(x) is the solution of a discrete
Laplace equation, which converges quadratically in the L2 norm
to the analytical solution (far from the electrodes, where the
solution is not singular). The action potential depends on the
activation time 9h(x) computed with the eikonal equation, and
the convergence rate is linear or less in the L∞ norm. Hence, the
overall error of Equation (16) is dominated by the error on the
activation time.

The FM, based on Equation (14), consists of two steps. First,
the piecewise linear interpolants in time of w(t), wn ≈ w(nτ ),
and of U(t), Un ≈ U(nτ ), are computed. Then, the surface over
which the integral (Equation 15) is defined, is approximated with
a triangular surface. This latter is produced from the activation
map by means of the marching cubes algorithm (Lorensen and
Cline, 1987; Newman and Yi, 2006), a well-known and commonly
used algorithm for extracting triangulated isosurfaces from 3D
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scalar fields. It has the important advantage of being intrinsically
parallel.

The interpolated function wn,h reads as follows:

w(nτ ) ≈ wn,h = −
∑

v∈�h

(

∇Zh|v · Gi

(

∑

t∈Th(v,n)
|t|nt

)

)

,

(17)
where Th(v, n) is the triangulation of the surface v∩9−1(nτ ), and
nt is the normal to the triangle t.

It is important to note at this stage that 9−1(τn) ∩ v is
empty for most of the values of n. Actually, it is non-empty
for minv 9h ≤ τn ≤ maxv 9h. This helps to reduce the
computational cost significantly. For instance, with τ = 1ms,
the activation front is found in the voxel on average only for 2
to 3 time instants. Moreover, the expression (Equation 17) can be
further simplified since the normal nt and the area |t| are related:
let v1,t, v2,t and v3,t be the vertices of the triangle t, then we have

|t|nt =
1

2
(v2,t − v1,t) ∧ (v3,t − v1,t). (18)

Finally, the second step is the convolution, approximated by

V(nτ ) ≈ Vn =
1

2

∑

p∈Z

(Up+1 − Up−1)wn−p, (19)

which results from a central finite difference approximation of
U ′(t) combined with the midpoint quadrature rule.

2.4. GPGPU Implementation
The proposed computational methods for activation times and
ECG were designed to run on GPGPU architectures. The power
of GPGPU computation lies in a massive parallelism that can
hide long-latency operations such as memory accesses. The
latency hiding is possible thanks to the warp schedulers, which
continuously switch among warps whose instructions are ready
for execution.

The solvers were implemented in C and C++ with CUDA
extension (Nickolls et al., 2008; Cheng et al., 2014), version
8.0. In all our experiments a single precision floating point
representation of numbers was used, sufficient for stability and
accuracy of the solvers.

The eikonal Equation (6) is solved by means of the Fast
IterativeMethod (FIM), proposed by Jeong andWhitaker (2008).
Although a popular alternative for solving the eikonal equation is
the Fast Marching Method (FMM) (Sethian, 1996), we opted for
the FIM for two reasons: first, to increase the parallelization of the
code and to make it suitable for GPGPU. Second, the updating of
map (Equation 8) requires some care for anisotropic media in the
FMM (Mirebeau, 2014).

Briefly, the FIM algorithm proceeds as follows: first, the
activation map is initialized to +∞ except at the boundary
points; then, we iterate until a list of active nodes is empty.
At each iteration, threads operate on single active nodes of the
grid. For each node, the local minimization problem (Equation
10) is solved, and the new value is assigned to the node,
according to Equation (8). When all nodes have been updated,

all the neighbors of the active nodes that are not converged are
appended to the active list, and activation time is re-computed.
Active nodes whose activation times do not differ from their
previous values are removed from the active list and marked as
converged.

The implementation of ECG computation with the SM and
FM is similar. Each cube is assigned to an individual thread, and
each thread updates the local contribution of one cube to the
ECG. For the SM, the kernel iterates over time and computes Vn

according to Equation (16). The time-independent term Gi∇Z is
evaluated only once by each thread.

The FM has two kernels: one for the computation
of w(t) Equation from Equation (15), and another for the
convolution (Equation 14). The first kernel implements the
marching cubes algorithm through a look-up table that stores
all the possible cases on how the front intersects the voxel. The
marching cubes look-up table and the template action potential
are stored in texture memory for fast indexing. The array wn is
updated concurrently by the threads. Each voxel contributes to
wn only when the front is within it (see Figure 2).

The computational complexity in time of the SM is O(L/h3 ·
Tmax/τ ), where L is the characteristic length of the activation
wavefront and Tmax is the maximum activation time. In the FM,
the voxel contribution is evaluated roughly ≈ h

τ θ
times, where

θ is the average conduction velocity within the voxel. Thus, the
complexity in this case is O(L θ−1 h−2 τ−1). The ratio between
SM and FM complexity is≈ Tmaxθ/h.

Since the computations of individual ECG leads are
independent from each other, we also utilized parallel CUDA
streams to support simultaneous execution of multiple kernels
computing multiple ECG leads. All memory transfers between
the CPU and GPU are asynchronous, in order to support also
overlapping of the data transfers with the kernel executions.

2.5. Model Geometries
Patient-specific heart and torso geometries were created as
described previously (Nguyên et al., 2015). Model parameters
were tuned to each patient to match both the activation sequence
on the endocardium and the twelve-lead ECG (Potse et al., 2014).

The model geometry was described in terms of a set
of Catmull-Clark subdivision surfaces. The simulations were
performed on semi-structured hexahedral meshes, i.e., while the
basis of the mesh was regular, we did not store information
for mesh nodes that did not play a role in the computation.
These meshes were created by overlying the mesh base on the
set of surfaces and assigning the properties of the mesh elements
based on the surfaces in which they were included. Passive
tissue characteristics were properties of elements, while active
parameters and variables applied to nodes. The node properties
followed from the element properties using a set of rules that
ensured model consistency (Potse et al., 2006).

3. RESULTS

3.1. Numerical Assessment
In order to check the convergence of the method, we performed
two numerical experiments. In both of them, we solved the
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FIGURE 2 | Implementation of FM for ECG computation. Each voxel of the grid updates the value of w(t) only for the time instants when the front is crossing it.

Once all the voxels are done, the convolution is computed.

eikonal equation on a tissue slab of size 1.5 × 2 × 2 cm, with a
single pacing site at x0 = (0, 1, 1) cm.

In the first experiment, parameters were selected such that
an analytical solution for both the activation times and the
function w(t) defined in Equation (15) was available, and such
that the ECG was easy to approximate with high accuracy. In
particular, we considered fibers oriented along the z-axis. The
ECG was computed with the lead-field function Z(x, y, z) = −x
and an action potential defined as follows:

U(t) = Vref+
Vdep − Vref

2

(

tanh

(

2
t

εdep

)

− tanh

(

2
t − APd

εrep

)

)

,

(20)
where the definitions and numerical values of the parameters are
given in Table 1.

The exact solution for the activation times reads:

9(x) =
1

α

√

βG−1
m (x− x0) · (x− x0). (21)

The ECG solution is the convolution between the first derivative
of the action potential (20) and the function w(t). The latter
was computed exactly, being proportional to the difference in
depolarized area between the two faces of the slab orthogonal to
the x-axis:

w(t) ∼ Area
(

{(y, z) ∈ [0, 2]2 : 9(0, y, z) ≤ t}
)

−Area
(

{(y, z) ∈ [0, 2]2 : 9(1.5, y, z) ≤ t}
)

. (22)

The activated region on these two faces of the slab was always
the intersection between an axis-aligned ellipse and a square. The

TABLE 1 | Values of the parameters adopted in the two convergence tests.

Parameter Description Value

α Conduction velocity scaling 2.0 cmms−1 mS−1/2

β Surface-to-volume ratio 1000 cm−1

σel Longitudinal extra-cellular conductivity 3 mScm−1

σet Transverse extra-cellular conductivity 1.2 mScm−1

σec Cross extra-cellular conductivity 1.2 mScm−1

σil Longitudinal intra-cellular conductivity 3 mScm−1

σit Transverse intra-cellular conductivity 0.3 mScm−1

σic Cross intra-cellular conductivity 0.3 mScm−1

Vref Resting potential −80 mV

Vdep Depolarization potential 30 mV

εdep Depolarization time-scale 1 ms

εrep Repolarization time-scale 100 ms

APd Action potential duration 200 ms

corresponding area was derived from elementary geometry. See
the Appendix in Supplementary Materials for further details and
the explicit formula. The convolution was eventually computed
numerically with high accuracy.

The convergence rate for the activation map was O(h0.6),
as reported in Figure 3. This affected the ECG computation
as well. This sub-linear convergence can be explained by the
low regularity of the solution, which is singular at the source
point. We also tested the ECG computation with the exact
solution (Equation 21), in order to assess the convergence rate
of the SM and FM alone. In this case, we observed quadratic
convergence rate, as expected from the theory.

The SM and the FM perform similarly, with FM being slightly
more accurate than SM at coarser grids. The high accuracy
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FIGURE 3 | Double-logarithmic plot of the error on the activation map,

the function w(t) and the ECG. The dashed lines refer to the computation of

the ECG using the exact activation map. The triangles are such that the slope

of their longest side is equal to the indicated number, in logarithmic

coordinates. The convergence rate of the solid lines is sub-linear.

of the SM is surprising because the template action potentials
had very steep gradients in space (0.2mm thick), clearly not
captured by the coarse grid. But a closer inspection of the method
showed that while the current per unit volume was not correctly
approximated, the total current once integrated over the voxel
was accurate.

The function w(t), defined in Equation (15), was well-
approximated already at the coarsest grid (Figure 4). As the mesh
was refined, the support of the function narrowed, reflecting the
fact that the total activation time was shortening.

The second numerical experiment mimicked a transmural
specimen of left ventricle. Fibers were parallel to the yz-plane
and formed an angle with respect to the y-axis linearly varying
from −π/3 at x = 0 to π/3 at x = 1.5. Parameters were as in
the previous experiment. The lead field function was the solution
of the problem (Equation 12) in R

3 with uniform conductivity
σt = 2mS cm−1 and reads as follows:

Z(x) =
1

4πσt

(

1

|x− x−|
−

1

|x− x+|

)

, (23)

with negative terminal x
− = (3, 1, 1) cm and positive

terminal x+ = (−1, 1, 1) cm.
In contrast to the first experiment, an analytical solution for

the activation times, and thus for the ECG, was not available.
The error was estimated using a solution obtained at a resolution
of 2−8 ≈ 0.004 cm as reference. The convergence rate was
roughly O(h0.9); higher than in the previous experiment but still
sub-linear. The function w(t) and the ECG were not correctly
captured at the coarser resolution, as certified by Figure 4. This
was likely due to the too coarse representation of the fiber field.

From these experiments we concluded that a resolution of 1
or 0.5mm for the eikonal solver provides reasonably accurate
solutions, with a relative error lower than 5%.

3.2. Comparison to Bidomain with a Tissue
Slab
The quantitative evaluation of the modeling error introduced
by the proposed model with respect to the reference reaction-
diffusion (R-D) model was conducted on a simple geometry but
with physiologically motivated heterogeneities in the parameters.
For this comparison we focused on the depolarization phase.

We considered a tissue slab shaped as in the previous section
and embedded at the center of an electrically conductive bath of
dimension 2.5× 3× 3 cm. The fiber organization in the slab was
exactly as in the second experiment above, but we also introduced
a 0.5mm thick rapidly conducting layer at the bottom face of
the slab. The propagation was initiated in a 0.5 × 1 × 1mm
volume at the center of the rapidly conducting layer. The bath
was composed of two homogeneous and isotropic media, one
1mm thick placed on top of the bath, which we named “skeletal
muscle,” and the other, called “fluid,” filling the remaining part of
the volume. The activation time was measured only in the tissue
slab. A bipolar ECG was also produced by taking the potential
difference between two electrodes placed at the centers of the top
and bottom faces of the bath. An overview of the experimental
setting is depicted in Figure 5.

The parameters in the R-D model and the proposed model,
summarized in Table 2, were the same when applicable. The
electric conductivity in the tissue slab and the fast conducting
layer was transversely isotropic, while it was assumed fully
isotropic but heterogeneous in the bath. The surface-to-volume
ratio was reduced in the fast layer in order to increase the
conduction velocity with a factor 2. The ionic model, only present
in the R-D model, was TNNP (ten Tusscher et al., 2004).

The value for α in the eikonal model was obtained from the
conduction velocity θ observed in a 1d preparation of the R-D
model (Equation 4) through the relation

α =
√

β

σ
· θ . (24)

For instance, with β = 1, 000 cm−1, σ = 1.5mS/cm we observed
θ = 0.075935 cm/ms, the latter being 4-digit accurate, hence
α = 1.961 cmms−1 mS−1/2. From the same 1d preparation we
also extracted the template action potentialU(t) by evaluating the
resulting transmembrane potential.

The propagation was triggered differently in the two models.
In the eikonal model, we assumed that the pacing region was
activated with an initial time of 1.12ms, the latter obtained from
the monodomain simulation. This delay is associated to the time
required by the current injection to start the propagation.

In order to minimize the numerical error with respect to the
modeling error, we performed the comparison on a uniform
grid with voxels of side 0.05mm. The eikonal model and the
monodomain equation were solved only in the tissue slab. The
forward bidomain problem was eventually solved including also
the bath, and injecting the transmembrane currents in the tissue
slab. The lead field, depicted in the right panel of Figure 5,
was computed from Equation (12) with a second order finite-
difference scheme on a 0.1mm spaced uniform grid and then
interpolated at 0.05mm resolution.
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FIGURE 4 | Convergence history of the function w(t) for the first experiment (on the left) and the second experiment (on the right). The mesh size h ranges

from 2−1 cm to 2−5 cm.

FIGURE 5 | Pictorial representation of the geometry of the tissue slab, embedded in a heterogeneous conductive bath, and the corresponding lead

field. The tissue slab is 1.5× 2× 2 cm and positioned at the center of the bath. At the bottom of the slab there is a rapidly conducting layer, 0.5mm thick, where the

surface-to-volume ratio is reduced. At the top of the bath there is a 1mm thick layer of skeletal muscle, with a reduced electric conductivity with respect to the

underlying conductive medium (labeled “fluid” in the picture). There is a single early activation site at the bottom of the slab.

The results are reported in Figure 6. In the R-D model, the
slab fully depolarized after 50.04ms, while in our model the latest
activation was at 49.48ms. The maximum absolute and the L2

errors were both around 3ms, and for 95% of the nodes the error
was lower than 2ms. In the R-D model, the activation occurred
later than the activation from the eikonal model for all the nodes.
Moreover, the largest error was localized at the boundaries and
specifically in the fast layer.

We computed three ECGs in total: one with the R-D model,
one with the proposed model, and one using the lead-field
approach with the activation map obtained from the R-D
model. The third was computed to evaluate the modeling error
introduced by assuming a template action potential. The ECGs
were very similar in shape and amplitude. In the terminal part
of the QRS complex from the R-D model we observed a deeper

inflection than in the other cases, and this seemed to be due to the
assumption (Equation 13), since this was absent also in the case
of the R-D model with lead field.

Finally, we performed the same comparison for a coarser
grid resolution, observing a longer QRS duration in the R-
D model. This is consistent with the fact that the finite-
difference scheme underestimates the conduction velocity at
coarser resolution (Pezzuto et al., 2016). Differences in the
activation map for the eikonal model at coarser resolution were
negligible.

3.3. Comparison to Bidomain with
Patient-Tailored Anatomy
Similarly to the previous section, we conducted an extensive
comparison between the proposed model and the reference
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model on six patient-tailored anatomies, assuming the same
parameters for both the models. Patients included in this
study had a clinical indication for CRT; the ECG, cardiac
resonance imaging, and an electrophysiological study, including
3D electro-anatomical mapping were clinically indicated. They
were performed as part of the work-up for device selection, i.e.,
to evaluate scar location and extent, inducibility of ventricular
tachycardia, and pacing site selection. The study was performed
in compliance with the Declaration of Helsinki. The institutional
review board approved the study protocol, and all patients gave
oral and written informed consent for each investigation.

Characteristics of the heart meshes are listed in Table 3. In
our heart models we assumed a layered structure of substances.
Each ventricular model consisted of eight layers. Four transmural
layers called fast, endo, mid, and epi were created in the right
ventricle (RV) and another four similar transmural layers were
created in the left ventricle (LV). During the experiments we
set the conduction velocity to be faster in the fast layers of
both ventricles, in order to mimic the presence of the Purkinje
network, which our models did not include. Both in the eikonal
model and in the reaction-diffusionmodel the increase in velocity
was achieved by reducing the local value of β . For patient 3 only
the RV was given a fast layer. Additional details are given in Potse

TABLE 2 | Electric conductivity (mScm−1) and surface-to-volume ratio

(cm−1) of the media employed in the comparison test.

Medium σil σit σel σet β

Tissue 3.0 0.3 3.0 1.2 800

Fast 3.0 0.3 3.0 1.2 356

Muscle – – 0.44 0.44 –

Fluid – – 6.0 6.0 –

et al. (2014) for patient 1 and 2 and in Nguyên et al. (2015) for
patient 3 and 4.

The following electric conductivities were used for all the
patients: torso 2mS/cm; blood 6mS/cm; lungs 0.5mS/cm;
skeletal muscle 3.55mS/cm in the tangent plane and 0.44mS/cm
in the radial direction. The conductivities in the myocardium
differed per patient as they were tailored to fit the measured
ECG and activation sequence. A tuning was necessary for the
activation time at the early activation sites (EASs) and the CV
scaling parameter α, not present in the reaction-diffusion model.
Left bundle branch block (LBBB) was assumed for all patients,
and was modeled by placing the EASs only in the RV. The
number of EASs for each patient is reported in Table 3.

The initiation of the activation in the R-D model was
performed by injecting a transmembrane source current of
200mA/cm3 for 2ms on 1mm3 of tissue centered at the
corresponding EAS location. The currents can be applied at
different times. In the eikonal solver, the activation time of the

TABLE 3 | Specification of the heart meshes for the eikonal model used in

the experiments.

Patient Mesh dimension #Nodes #Cubes #EASs

1 165× 91× 119 191,734 151,959 3

2 205× 107× 151 292,585 235,502 1

3 186× 123× 126 289,252 230,968 1

4 178× 117× 147 350,584 290,166 2

5 156× 91× 108 222,951 187,534 1

6 238× 145× 162 493,006 413,252 4

Nodes are vertices in the mesh that represent active tissue. Cubes are non-void voxels

of the geometry. The last column reports the total number of early activation sites (EASs)

used in the experiments.

FIGURE 6 | Spatial modeling error between the proposed model and the reaction-diffusion model (left panel), and QRS complexes of the simulated ECGs

(right panel). On the left panel, the error is presented with a “heat map,” being brighter where the error is larger. The brightest area of the map corresponds to an

error of 3ms. On the right panel, we report the QRS complex simulated by the reaction-diffusion model, by the proposed model, and by an intermediate approach

that consists in using the lead field approximation with the activation map produced by the monodomain equation.
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EASs was enforced as boundary condition and shifted in time
in order to mimic the delay observed in the R-D model between
current injection and depolarization.

The activation times were compared in terms of maximum
absolute error quantiles at the nodes and specific timing markers
of cardiological interest at the LV endocardium. In particular, we
measured the Trans-Septal Time (TST) and the Total Activation
Time (TAT), which are the time of initial and the latest time
of activation of the LV endocardium, respectively, and the QRS
complex duration (QRSd), defined as the last activation time.
Results are reported in Table 4. A bull’s eye plot of the LV
endocardium is also provided in Figure 7 for an average case in
terms of error (Patient 1).

The overall propagation direction was captured for all the
patients. The total activation time differed by 3 to 5ms, being
higher in the reaction-diffusion model. Thus, in the latter the
excitation front was slower. The scaling parameter α was roughly
2 cmms−1mS−1/2 in all cases, with a variability within 1%.

The isochrones were very similar in shape. The absolute error
was well-distributed in the anatomy, although we observed a
slightly larger error at the apex and in the LV. The EASs regions
also differed, with the eikonal solution more ellipsoidal than the
R-D model.

On average, we found that 90% of the nodes had an absolute
error lower than 10ms. QRSd, TAT and TST were very similar
in all the cases, with the exception of patient 2, where QRSd
with the R-D model was very high. The difference was due to
the lower resolution geometry employed in the eikonal model
(1 vs. 0.2mm of the R-D model), which may introduce artifacts
in the propagation. In patient 2, the anatomy included a thin,
late-activated ventricular bundle stemming from the posterior LV
free-wall, observed in MRI. In the downsampled geometry, this
bundle was poorly reproduced resulting in a shorter activation
time.

For the sake of completeness, in Figure 7 we also reported
the electro-anatomical map performed on Patient 1 (NOGA R©

XP, Biologic Delivery Systems, Division of Biosense Webster
a Johnson & Johnson Company, USA). Quantitatively, the
mismatch between themeasured time and the simulated time was
on average 11 ± 8ms for the R-D model and 14 ± 8ms for the
eikonal model. The fitting was performed on the R-D model in
previous work (Potse et al., 2014; Nguyên et al., 2015).

The ECGs were computed according to the standard 12-lead
ECG definition (Malmivuo and Plonsey, 1995;Macfarlane, 2012),
i.e., three limb leads (I, II, III), three “augmented” limb leads
(aVR, aVL, aVF) and six precordial leads (V1 to V6), with time
resolution of 0.5ms over a time window of 600ms. The 12 lead
fields were computed according to Equation (12) on a 3d finite-
difference grid at 1mm resolution. The total number of voxels
was on average 30 million. Each computation took roughly a
minute and 80GB of memory in total using 576 MPI processes
on 16 nodes of a Cray XC30 supercomputer.

The ECGs for all the patients were computed from the
activation time provided by the eikonal model and then
compared against the bidomain solution. We adopted the action
potential template in Equation (20) with uniform parameters
in space with values from Table 1, enabling the computation

with the FM. The APD was tuned per patient to match the T-
wave onset. An example for Patient 1 is provided in Figure 8,
where we also report the measured ECG from the patient and
a magnification of the QRS complex. In this case the APD was
250ms.

The error analysis was limited to the QRS complex, since
T-waves cannot be properly modeled by the eikonal approach.
We compared the ECGs computed with the R-D model and the
eikonal model in terms of: difference in maximum amplitude,
area and positivity range, correlation, and L2-dot product of the
L2-normalized ECGs, defined as follows:

∫ T
0 V1(t)V2(t) dt

(∫ T
0 V2

1 (t) dt
)1/2 (∫ T

0 V2
2 (t) dt

)1/2
, (25)

where V1(t) and V2(t) are two signals. The closer the L2-dot
product to unity, the closer the two signals. We reported the
L2-dot product for all the leads and all the patients in Figure 9.

The ECGs computed with the SM and FM were very similar
(not shown), with a small difference in amplitude in the QRS
complex (FM was lower). The QRS complex was correctly
captured in most of the leads for all the patients except for patient
6, where we observed large deviations in limb leads andmoderate
differences in precordial leads, whilst the activation map was
fairly similar between the two approaches. This patient has a
scar in the LV free wall that was modeled in the R-D model as
purely passive. We suspect that in the downsampled geometry
adopted by the eikonal model the scar was particularly jagged,
hence affecting the ECG. In some cases our model provided a
slightly larger amplitude in the signal than the bidomain model.
Only in one case, for lead V5 of patient 5, we observed discordant
QRS complexes. The discrepancies were particularly marked in
leads with small amplitude. For patient 2, the discrepancy in the
QRS duration was not present when calculated according to the
ECG rather then activation map. As reported above, this was due
to a ventricular bundle that did not affect the ECG. In general,
the correlation between the bidomain model and the proposed
model was very good in most of the leads, and the error lower
than 0.5mV.

3.4. Performance and Scaling
The runtimes of the proposed eikonal solver and ECG solvers
on the GPU were tested for six patient-specific geometries with
1-mm resolution.

We tested our code on two different Nvidia GPUs: a low-
end (LE) GeForce GT 650M on a laptop (384 cores, 950 MHz
clock, 0.73 Tflops of theoretical peak performance), and a high-
end (HE) GeForce GTX 1080 (2,560 cores, 1,607 MHz clock, 8.2
Tflops of peak performance) on a local cluster node.

In Figure 10 runtimes of the Fast Iterative Method (FIM)
for solving the eikonal model, and the Fast Method (FM) and
Simple Method (SM) for the ECG computation are shown, on
both the LE and HE GPU. In Table 5 we report the speedup of
HE GPU vs. LE GPU for FIM, FM and SM, and the speedup of
the FM vs. SM for ECG computation. The reported variability
in the computational time was due to the size of the heart and
to the number of EASs. This was apparent for patient 6, whose
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TABLE 4 | Activation times markers for the eikonal model compared to the reaction-diffusion equation (between parentheses), and quantiles of the

absolute error between the two models, computed node-wise.

Patient QRSd [ms] TST [ms] TAT [ms] Error quantiles [ms]

0.50 0.75 0.90

1 155.48 (157.39) 45.93 (39.10) 109.54 (118.29) 7.11 10.77 12.91

2 184.20 (225.03) 20.15 (19.76) 136.58 (136.66) 5.02 8.95 11.99

3 137.95 (137.92) 42.04 (40.16) 87.98 (88.67) 2.58 5.06 8.06

4 143.15 (145.41) 38.47 (36.85) 104.67 (107.94) 3.76 6.15 9.15

5 144.64 (146.22) 32.01 (31.42) 105.84 (109.17) 2.64 4.52 6.83

6 165.60 (165.58) 30.04 (28.30) 128.40 (128.99) 2.88 5.02 7.72

The markers are the QRS duration (QRSd), the Trans-Septal Time (TST), which measures the time of first activation of LV endocardium, and Total Activation Time (TAT), which marks

the latest activation time in the LV endocardium.

FIGURE 7 | Bull’s eye plot of the activation time at the LV endocardium for the eikonal model (on the left) and the reaction-diffusion model (on the right), in

the case of Patient 1. The filled circles in the plot represent the measured activation time from the electro-anatomical map.

heart was extremely dilated and with 4 EASs reported by the
electro-anatomical map.

4. DISCUSSION

A critical issue in computational cardiac electrophysiology is
the complexity of the reaction-diffusion model. It is nearly
impossible to consider this model for inverse problems, unless
appropriate model reduction techniques are employed (Gerbeau
et al., 2015; Quarteroni et al., 2017). Patient-tailoring of such
models (Krueger et al., 2010; Potse et al., 2014) is also a tedious
and time-consuming activity. The most expensive part of the
procedure is the localization of early activation sites (EASs) and
the determination of the local conduction velocity (CV). The
proposed combination of an eikonal model for the activation
sequence and an ECG computed with lead fields is a viable
alternative for such a purpose. Given the EASs and the CV

the activation map is found in a few seconds. Since the lead
fields do not depend on these parameters, they can be computed
once and repeatedly used for ECG simulation. The method can
be used as part of inverse models to estimate patient-specific
parameters and to make patient-specific predictions of cardiac
activation patterns for complex procedures such as cardiac
resynchronization therapy (CRT) (Pashaei et al., 2011). The
computational power of the current parallel eikonal solver is so
high, that our proposed methods are even suitable for real-time
interactive simulations (Sermesant et al., 2007; van Oosterom
et al., 2011) and therapy simulations based on virtual reality
(Pernod et al., 2011).

The proposed method compares adequately to the bidomain
model, in terms of accuracy of the delivered solution. The average
modeling error in the patient-specific context was roughly 15%
for the activationmap (Table 4), without adapting the parameters
to compensate the numerical error. The ECG was less accurate in
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FIGURE 8 | ECG for Patient 1 (left) and magnification of QRS complex (right), computed with FM. The blue curve is the solution with the eikonal solver and the

lead fields formulation. The black curve is the bidomain solution. The minor grid lines are spaced 40ms on the horizontal axis and 0.1mV on the vertical axis. The

measured ECG of the patient is shown in red.

absolute value, but the overall electrocardiographic features of the
QRS complex were generally captured. It is well-known that the
ECG is very sensitive even to small variations in the activation
map. Thus, the mismatch between the reaction-diffusion model
and the eikonal model was clearly visible, especially in leads
where the potential is small.

The T-wave was almost never captured by our model. This
was expected, since our model assumed that the repolarization
follows exactly the depolarization, which was not the case in the
reaction-diffusion model.

Finally, scalability was excellent for SM, and very good for the
FIM and FM.Moreover, the SM and the FMprovided very similar
QRS complexes for all the patients and with different resolutions,
but the FM is two orders of magnitude faster than the SM.

4.1. Appropriateness of the Eikonal Model
The eikonal model can be much faster than a reaction-diffusion
equations for three reasons. First, the computational domain is
reduced by one dimension, because the dependent variable is no
longer a function of time. Second, the mesh can be coarser (1
vs. 0.1mm), which results in much shorter computation times
and much lower memory requirements. Last, it does not require
computation of the ionic currents, which takes most of the
computational time in the reaction-diffusion solution. Pullan
et al. (2002) discussed that because the activation time, unlike the
transmembrane potential, does not exhibit internal layers and is

a smooth function in the cardiac tissue, it can be assumed that
a 1-mm spatial scale is fine enough to accurately reconstruct the
changes of the activation time as well as the changes in the speed
of the wavefront propagation. They also discussed that sharp
changes in the propagation speed can occur, for example when
a wavefront collides with another wavefront or boundary, but
the fine details of the wavefront shape in these small collision
regions are not expected to have much influence on the overall
ventricular function.

The numerical comparison on a simple geometry has shown
that the eikonal equation is able to approximate the activation
times of a bidomain model very accurately, and that there is no
advantage in using the full bidomain formulation whenmodeling
the excitation wavefront propagation if the conduction velocities
are given.

The disadvantages of the eikonal model are obvious: the
effects of ionic currents on conduction, for example partial
refractoriness, cannot be simulated at all, simulation of reentrant
arrhythmia is very difficult, and there is no calcium transient
available for a realistic coupling to a mechanical model. Although
several alternative eikonal-like models have been proposed in the
literature aiming to improve the accuracy in such situations, such
as fibrillation (Herlin and Jacquemet, 2011; Pernod et al., 2011)
and high-order curvature effects (Dierckx et al., 2011), in our
opinion reaction-diffusion models are necessary to study such
phenomena.
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FIGURE 9 | Comparison of ECG obtained with the bidomain model and with the eikonal equation with lead fields, only limited to the QRS complex, in

terms of the normalized dot-product of the two signals, as defined in Equation (25).

FIGURE 10 | Runtimes (in seconds) for FIM, SM, and FM on the LE and HE GPU. Logarithmic scale is used on the vertical axis.

4.2. Sources of Differences between
Models
We believe that most of the discrepancy in the activation
map between the R-D model and the proposed model
is explained by the numerical error, and only minimally
by the physiological phenomena that the eikonal model
neglects.

The bidomain equation requires a mesh resolution that is

comparable to the excitation front thickness, which depends on

the conductivity in the propagation direction (Pezzuto et al.,

2016). In practical situations it is in the order of 0.1mm. In the

cross-fiber direction, however, the conductivity is 10-fold lower,
resulting in a steeper wavefront with thickness of 25µm or lower,
which the grid could not resolve. The effect is a significantly
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TABLE 5 | Speedup factors of HE GPU vs. LE GPU for FIM, SM and FM,

and FM vs. SM on both HE and LE GPU.

Speedup factor

Patient 1 2 3 4 5 6 Average

HE vs. LE GPU FIM 5.1 5.9 5.3 6.1 5.2 6.2 5.6

SM 17.3 17.6 17.8 17.9 18.1 19.4 18.0

FM 1.4 2.5 1.6 1.7 1.5 3.0 1.9

FM vs. SM HE GPU 4.2 7.3 6.1 7.2 4.8 12.2 7.0

LE GPU 53.8 51.3 67.7 76.3 57.1 79.5 64.3

slower CV and a higher total activation time. In this situation, we
estimated a 20% numerical error in the relative maximum norm,
which is substantial.

The eikonal solver was affected by a 5% error at 1mm
resolution on a simple geometry. Moreover, the activation time
was generally overestimated by the solver, similarly to the slower
propagation observed in the reaction-diffusion model when
solved with a finite-difference scheme. However, it is hard to
tell whether the differences between the reaction-diffusion model
and the proposed model are due to numerical errors or modeling
errors. Very likely it is a mix of the two.

In our opinion, the eikonal model may have been more
accurate than the reaction-diffusion model in the presented
experiments. A comparison of the two models in Section 3.2
reported a modeling error of about 6%. A small modeling error
is also reported by others for an idealized LV geometry with
physiologically motivated fiber architecture (Colli Franzone et al.,
2014).

4.3. Scalability Issues for the FIM and FM
The FIM ran on the HE-GPU on average only 5.6 times faster
than on the LE-GPU. This is about half the ideal scaling. This
may be explained by the fact that, at each iteration, only a fraction
of the threads are active. In the FIM, only the activation times at
the active nodes are evaluated, and hence only a few thousands
of threads are running concurrently. A lower number of threads
implies a lower number of active CUDA blocks and warps, and
this may cause a paucity of warps prepared to hide the latencies of
the long-lasting operations. The critical parts are the initial phase
of the excitation process when the front starts to propagate from
the EASs and the final phase when the last cells are activated. In
these two phases only tens or hundreds of threads evaluate the
solution and the GPU resources are not fully exploited.

Scalability of the FM was also not optimal. The FM ran on
the HE-GPU on average only 4.5 times faster than on the LE-
GPU. This means that the performance of the FM is more limited
by the internal structure of the kernel than by the number of
available GPU cores. The kernel generates one thread per cube
in the computational domain. Warp divergence arises because
individual threads compute their contribution only when the
excitation front intersects the cube. With respect to the scaling,
not the warp divergence itself is problematic, but rather the fact
that different warpsmay require different numbers of clock cycles
to finish their execution. The higher the number of time instants
for which the warp thread evaluates the solution, the higher

the warp execution time. Due to unbalanced execution times of
different warps in the computational domain the linear scaling of
the FM was broken.

5. CONCLUSIONS

We proposed a combination of an eikonal model for action
potential propagation and an ECG simulation method based on
lead fields. It can simulate an activation sequence and ECG in
about 3 s on a GPGPU desktop platform (less than a second
on HE-GPGPU). This method is suitable as a component of an
inverse electrocardiographic model in an HPC context, but may
in the near future also become practical within interactive ECG
simulation tools. While we based our work largely on classical
ideas, we believe that the following aspects are novel.

• We proposed a new method to compute the ECG, based on
the marching cubes method, which allows for several orders of
magnitude speedup.

• We compared the results of the eikonal model to those of
a monodomain reaction-diffusion model, pointing out the
difficulties of such a comparison.

• We compared the simulated ECGs with those of a bidomain
torso model and identified the most important causes of
differences.

• We discussed how the proposed methods can be implemented
on a GPGPU.

• We showed that the proposed methods can simulate a highly
realistic ECG in a few seconds.
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