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Many cell division processes have been conserved throughout evolution and are being

revealed by studies on model organisms such as bacteria, yeasts, and protozoa.

Cellular membrane constriction is one of these processes, observed almost universally

during cell division. It happens similarly in all organisms through a mechanical pathway

synchronized with the sequence of cytokinetic events in the cell interior. Arguably,

such a mechanical process is mastered by the coordinated action of a constriction

machinery fueled by biochemical energy in conjunction with the passive mechanics

of the cellular membrane. Independently of the details of the constriction engine, the

membrane component responds against deformation by minimizing the elastic energy

at every constriction state following a pathway still unknown. In this paper, we address

a theoretical study of the mechanics of membrane constriction in a simplified model

that describes a homogeneous membrane vesicle in the regime where mechanical

work due to osmotic pressure, surface tension, and bending energy are comparable.

We develop a general method to find approximate analytical expressions for the main

descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by

combining a perturbative expansion for small deformations with a variational approach

that was previously demonstrated valid at the reference state of an initially spherical

vesicle at isotonic conditions. The analytic approximate results are compared with the

exact solution obtained from numerical computations, getting a good agreement for

all the computed quantities (energy, area, volume, constriction force). We analyze the

effects of the spontaneous curvature, the surface tension and the osmotic pressure

in these quantities, focusing especially on the constriction force. The more favorable

conditions for vesicle constriction are determined, obtaining that smaller constriction

forces are required for positive spontaneous curvatures, low or negative membrane

tension and hypertonic media. Conditions for spontaneous constriction at a given

constriction force are also determined. The implications of these results for biological
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cell division are discussed. This work contributes to a better quantitative understanding

of the mechanical pathway of cellular division, and could assist the design of artificial

divisomes in vesicle-based self-actuated microsystems obtained from synthetic biology

approaches.

Keywords: cell division,membrane constriction, bending energy, spontaneous curvature, surface tension, osmotic

pressure, perturbative methods, analytical models

INTRODUCTION

The cell division cycle is a central process in biology, the
essential mechanism whereby cells grow and duplicate (Carlson,
2007). The mechanics of cell division is an essential part of
the epigenetic program that supports cellular reproduction in
all living organisms (Boal, 2012). The division program of any
cellular organism involves changes in cell shape that are directly
determined by the intrinsic deformability of the cellular plasma
membrane. Far from being a passive element, the mechanics
of the cellular plasma membrane is known to be physically, as
well as biochemically, influenced by different transport processes,
particularly, membrane biogenesis shuttled by lipid trafficking
from the sites of metabolic synthesis to the cellular membranes
(Blom et al., 2011), and stress-induced membrane remodeling
occurred under the action of the cytokinetic machinery which,
together with other passive skeletal structures, form the cellular
divisome. Cytokinetic machinery is different in prokaryotes (Bi
and Lutkenhaus, 1991; Romberg and Levin, 2003; Dajkovic
and Lutkenhaus, 2006; Lan et al., 2007) and eukaryotes
(Weiss, 1961; Cao and Wang, 1990; Rappoport, 1996; Alberts
et al., 2007; Carlson, 2007; Lecuit and Lenne, 2007), but both
provide mechanisms to generate constriction forces. Cytokinetic
membrane remodeling is assumed to arise from a mechanical
interplay between membrane tension, osmotic stresses and
constriction forces exerted by the divisome. These membrane
stresses underlie subcellular force effectors, which are structurally
and functionally coupled to dynamically adaptable plasma
membrane, the extracellular medium and the cytoskeleton
(Lecuit and Lenne, 2007). In prokaryote division, the constricted
cellular membrane is maintained under tension by the resistance
of an outer peptidoglycan layer, which is dynamically linked
to the inner lipid membrane (Koch et al., 1981; Huang et al.,
2008; Bisson-Filho et al., 2017). In eukaryotes, however, cortical
tensions generated under actomyosin contraction are assumed
to be the main source of membrane tension during cytokinesis
(Manning et al., 2010; Stewart et al., 2011). Secondarily,
membrane trafficking may have the effect of buffering membrane
tension by varying cell membrane surface (Sens and Turner,
2006). A quantitative insight on the membrane configurations
that minimize the mechanical energy during cytokinesis is an
important topic in cell biophysics (Lipowsky, 1991; Boal, 2012).
Such membrane-focused rationale should allow us to compute
the forces needed to divide the cell, thus providing a better
understanding about the different routes of cell division in
different organisms (Szostak et al., 2001; Chen, 2009; Budin and
Szostak, 2011). Cell growth and further division requires indeed
de novo synthesis of plasma membrane (Alberts et al., 2007).
All cells can synthesize lipid molecules that are dynamically

incorporated into their membranes (Morré, 1975; Nohturfft and
Zhang, 2009). Biosynthetic lipid transport ensures that each
cellular membrane have dynamically regulated an adequate lipid
composition, which supports the functions of the associated
proteins (Alberts et al., 2007). Cells have developed several, often
redundant, mechanisms to transport lipids during the different
stages of the cell cycle (Jackowski, 1996; McCusker and Kellog,
2012; Sanchez-Alvarez et al., 2015), which synchronize with
the membrane growth occurred during cytokinetic progression
(Dobbelaere and Barral, 2004; Albertson et al., 2005; Boucrot and
Kirchhausen, 2007). In this article, we provide a minimal physical
model for membrane constriction that considers either, impeded
growth of membrane area characterized by positive membrane
tension, which requests mechanical work to be exerted by the
cytokinetic machinery (Lan et al., 2007; Lecuit and Lenne,
2007), or facilitated membrane growth characterized by negative
membrane tension. Figure 1 depicts the possible modes of
deformation of a model (lipid bilayer) membrane under stresses
induced by constriction forces, and external fields with different
orientations. A great amount of energy, which ultimately depends
on cell size and membrane rigidity, is needed to distort the
unconstricted initial configuration of the deformable membrane.
The knowledge of these energies is especially interesting to know
how the cell performs the large curvature deformations required
for membrane constriction at the site of division.

In the present paper, the natural cell is depicted as a vesicle
compartment enclosed by a lipid bilayer membrane in which
a given constriction force is applied to create a circumferential
furrow positioned at the cell equator. Different methods are
available to obtain the minimum energy shape of a membrane
under given constrains and boundary conditions. They are
based on calculating the membrane bending energy with the
Canham-Helfrich Hamiltonian (Canham, 1970; Helfrich, 1973)
and minimizing it through numerical procedures (Seifert and
Lipowsky, 1995; Jülicher and Lipowsky, 1996), perturbation
methods (Höger et al., 2010; Almendro-Vedia et al., 2015),
or variational approaches (Almendro-Vedia et al., 2013). In a
previous paper (Almendro-Vedia et al., 2015), we combined a
perturbation expansion for small deformations with a variational
approach to compute the minimum energy shapes during the
symmetrical constriction of a tensionless vesicle. Here, using
a similar framework, we derive analytical formulas during
constriction under more general conditions, which account
of the additional effects of non-zero spontaneous curvature,
membrane tension, and osmotic pressure. Additionally, exact
results are computed numerically by solving the corresponding
Euler-Lagrange equations (see Section 1 of Supplementary
Material). This let us determine the accuracy of the approximate
analytical results. By expanding the quantities up to sixth-order
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FIGURE 1 | Sketch depiction of the different modes of deformation possible in a flexible membrane under the action of a constriction force (Fc)

(representative of the constriction deformations in cellular plasma membranes at the site of cell division), and of external stress fields applied either

transversally, as a hydrostatic osmotic pressure (1p), or longitudinally, as a lateral membrane tension (6). Positive osmotic pressure (1p > 0), represents a

cell at the inflated state of turgor, whereas negative osmotic pressure (1p < 0) is identified with a flaccid cellular membrane in a hypertonic medium. Regarding lateral

membrane tensions, positive surface tension (6 > 0) represents biological situations of membrane tension underlateral extensional stresses induced by cortical

tensions induced by either the eukaryote cytoskeleton, or the peptidoglycan layer in bacteria; negative surface tension (6 < 0) represents situations of regulated

creation of membrane area under in situ membrane biogenesis, or membrane uptake from membrane shuttles coming from the metabolic route of lipid synthesis (lipid

trafficking).

of perturbation in the deformations around the non-constricted
shape, a good agreement between analytic and exact results is
reached for low and intermediate constriction stages. Once the
shape that minimizes the energy was calculated, other relevant
properties of the system were obtained. Therefore, the proposed
method should be sufficiently powerful to map the energy
landscape of several mechanical pathways required for optimal
cell division in a wide variety of biological situations.

This paper is organized as follows: in Section Method, we
present the model used to compute the mechanical energy
of an axisymmetric vesicle. In Section Approximate Analytical
Expressions, we derive the analytical approximate formulas for
the main properties of the constricted vesicle up to sixth-
order of perturbation. In the next subsections, these formulas
are compared with the (exact) solution of the Euler-Lagrange
equations computed numerically following the procedure
explained in Section 1 of Supplementary Material (SM). In
Section Osmotic Pressure and Surface Tension Effects with
No Spontaneous Curvature, we show the effects of the surface
tension and osmotic pressure in the case of zero spontaneous
curvature, in Section Spontaneous Curvature Effects we analyze
the effects of the spontaneous curvature, focusing on its impact
on the constriction force, especially at the onset of spontaneous
constriction and, in Section Constant area and Constant Volume
Conditions, we show how to extend the model for constant
area and constant volume conditions. In Section Discussion we
discuss the main results in the context of the relevant biological
situations and finally, in Section Conclusions, we expose our
conclusions.

METHODS

Simplified Mechanical Model for Cells and
Vesicles
As previously stated, the natural cell is depicted as a vesicle
compartment enclosed by a lipid bilayer membrane in which

a given constriction force is applied to create a circumferential
furrow positioned at the cell equator. The cellular membrane
is characterized by bending rigidity, spontaneous curvature
and surface tension. The turgor of the vesicle is maintained
under a positive difference of osmotic pressure between the
inside cell and the outside extracellular milieu, which represents
hypotonic conditions. Flaccid configurations are defined, in
general by iso-, hypertonic conditions characterized by zero,
or negative, osmotic pressure. Whereas positive membrane
tension represents tensioned membrane vesicles forced to create
area at the expenses of delivering work of dilation, negative
membrane tension will be allowed to consider flaccid vesicles
under continuous membrane biogenesis. The problem will be
considered in the regime where mechanical work due to osmotic
pressure, surface tension, and bending energy are comparable.
We extend here the technique presented in Almendro-Vedia
et al. (2015), which combines a perturbation expansion for
small deformations with a variational approach to compute the
minimum energy shapes during the symmetrical constriction of
a tensionless vesicle. In such reference problem, a flaccid vesicle
was assumed to be constricted at isotonic conditions, and to have
a homogeneous membrane with zero spontaneous curvature and
negligible tension. In that case, the initial configuration was a
spherical vesicle.

The constriction region was described with approximate
solutions based on trigonometric functions, whose local
curvature is allowed to change depending on the constriction
stage. We found previously in Almendro-Vedia et al. (2013)
that such ansatz accurately reproduced the results of numerical
computations in a broad range of constriction stages. When
the spontaneous curvature, surface tension, and osmotic
pressure are non-zero, the initial equilibrium configuration of
the vesicle (or the cell) is, in general, non-spherical, but can
be approximately represented by an ellipsoid, which can be
oblate, prolate or spherical in function of the specific values
of these parameters. This represents a more general physical
scenario and lets us analyze the effect of the spontaneous
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curvature, the surface tension and the osmotic pressure on
vesicle constriction and explain in more detail the biological and
physical meaning of these quantities. Spontaneous curvature,
C0, describes membranes with possible asymmetries in the
two lipid monolayers resulting in a convex (C0 > 0), flat
(C0 = 0), or concave (C0 < 0) membrane at mechanical
equilibrium (see Figure 2). The symmetrical case results in a
flat membrane at mechanical equilibrium (C0 = 0), which was
the case discussed in Almendro-Vedia et al. (2015). Surface
tension, 6, is defined as the mechanical work per unit area
required to increase the membrane area (6 > 0). It allows to
describe different extensional states of biological membranes as
the key regulator of cell surface mechanics (Booth et al., 2007;
Lecuit and Lenne, 2007). The differential pressure between
inside and outside the vesicle, 1p, usually realized as an
osmotic pressure, gives the work per unit volume to increase
the vesicle volume and allows describing different turgor states
of the constricted vesicles, or cells, either turgid (1p > 0), or
flaccid (1p ≤ 0). Specifically, we consider analytic solutions
to the general problem of a constricted vesicle constrained by
non-zero values of spontaneous curvature, osmotic pressure,
and membrane tension, in the regime where these effects and
bending energy are comparable, this is when C0Rm ≈ 1, and
1pR2m ≈ 6R2m ≈ κ(1− C0Rm)2 (Rm being the vesicle radius,
and κ the bending modulus).

Elastic Energy of a Membrane Vesicle:
Bending Hamiltonian and Total Energy
under Non-Zero Osmotic Pressure and
Non-Zero Surface Tension
The membrane of a vesicle, or of a living cell, is composed of
a lipid bilayer with a thickness that is much smaller than the
dimensions of the vesicle. Therefore, the lipid bilayer can be
represented approximately by a two-dimensional mathematical
surface in the context of the mechanics of the whole cell. In 1973,
Helfrich (1973), proposed a simple expression for the bending
energy of a membrane in terms of the contributions from mean
curvature H (first term, Em) and Gaussian curvature K (second

term, EG), which are the two geometrical invariants that define
the local curvature of the membrane:

Eb = Em + EG =
κ

2

∫

�

(2H − C0)
2dA + κG

∫

�

KdA. (1)

Here, � is the closed surface that defines the membrane vesicle,
and dA its element of area. The parameters κ and κG are the
bendingmodulus and the Gaussian bending rigidity, respectively.
The spontaneous curvature, C0, permits to describe bilayers that
are spontaneously curved in their equilibrium state due to the
compositional inhomogeneity between the inner and the outer
monolayers. This term represents the spontaneous tendency of
the membrane to build up in a concave (as C0 < 0), convex (as
C0 > 0), or flat (as C0 = 0) surface (see Figure 2). In this work,
we assume that C0 is uniform over the vesicle.

In terms of the local principal curvatures of the membrane
surface, C1 and C2, we have H = (C1 + C2)/2 and K = C1C2,
and the bending energy of the vesicle takes the form:

Eb =
κ

2

∫

�

(C1 + C2 − C0)
2dA + κG

∫

�

C1C2dA. (2)

For a spherical shell of radius R0, C1 = C2 = 1/R0, the bending

energies are E
(sph)
m = 8πκ(1−R0C0/2)

2 and E
(sph)
G = 4πκG

for the mean and Gaussian contributions, respectively. A non-
zero value for the spontaneous curvature has strong effects on
the configuration of the spherical shell. First, it introduces a
characteristic length scale lc ≈ C−1

0 , differently to the case of
zero spontaneous curvature for which the deformation energy is
a size invariant, this is Eb(C0 = 0) = 8πκ + 4πκG. Since the
bending energy of a spherical shell with C0 6= 0 is dependent on
R0 as Eb(R0;C0) = 8πκ(1−R0C0/2)

2 + 4πκG, it minimizes at
a radius R0 = Rmin = 2C−1

0 , with the evident consequence that

the spherical shell with the lowest bending energy E
(min)
b

(Rmin) =

4πκG corresponds to the particular size Rmin= 2C−1
0 at C0 6=

0. This conclusion is true for arbitrary shapes (Boal, 2012),
meaning that the bending energy is a function not only of cell
shape but also of cell size at C0 6= 0. In addition, the sign of

FIGURE 2 | Cartoon illustrating how local membrane curvature is determined by the molecular structure of the constituting lipids. Usual phospholipids

with a cylindrical molecular aspect assemble as planar membrane aggregates (only a monolayer is shown). In this case (central panel), the equilibrium configuration

essentially corresponds to flat bilayer with a zero spontaneous curvature. Charged phospholipids, or lysed species with only one acyl chain present, which show an

inverted-cone molecular aspect, cause the membrane to spontaneously bend in a convex configuration (left panel). Inclusion of these membrane molecular formers

with a bigger polar head than the thin hydrophobic counterpart leads to situations with positive values of local spontaneous curvature (C0 > 0). Conversely, cone-like

phospholipids (right panel), with a big hydrophobic counterpart thicker than the polar head, leads to membrane aggregates with a concave configuration, which

represents an equilibrium bending characterized by a negative spontaneous curvature (C0 < 0).
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C0 influences the favored shape of the deformed vesicle (Boal,
2012); predominantly convex pear-like shapes are preferred if
C0> 0, and predominantly concave shapes are favored if C0< 0
(Figure 2).

Under the osmotic pressure 1p (the inner minus the outer
pressure; 1p > 0 for an inflated vesicle) and under the action of
the surface tension 6, the total energy of a vesicle is given by:

ET = Eb +

∫

�

6dA + 1p

∫

V
dV , (3)

where dV is the element of volume enclosed by the vesicle. Here,
we assume that 6 is uniform along the membrane surface and
1p isotropic. Consequently, we can express the Equation (3) as:

ET = Eb + 6A + 1pV . (4)

Obviously, changing the membrane shape from its equilibrium
configuration changes the total energy (Equation 4). However,
the Gauss-Bonnet theorem1, shows that the integral over the
Gaussian curvature, the second term in Equations (1) and (2),
is constant for surfaces with the same topology. Since the
constriction process in a vesicle does not change its topology,
and only involves shapes that are topologically equivalent to a
sphere (no holes), the contribution of EG can be ignored because

it remains constant, with EG = E
(sph)
G = 4πκG, independently

of the size and shape of the vesicle. For the final state, in which
the vesicle splits into two separated daughters, it is required to
consider the Gaussian contribution since the topological change
to two spheres requires an increase of curvature energy by1EG =

4πκG. Therefore, during the constriction process (before the final
fission), we only analyze the variations of energy due to the mean
curvature Em and the effects of osmotic pressure and surface
tension.

We consider the particular case of axisymmetric shapes with
the axis of symmetry along the x–axis. When these shapes are
represented in Cartesian coordinates as −→r = (x, y, h(x, y)) with
h(x, y), the surface profile can be given as a height on the x − y
plane:

h(x, y) = ±

√
R2(x) − y2, (5)

where R(x) is the functional form describing the membrane
profile in the x−z plane (see Figure 3A). If themembrane surface
is located between xi and xf , its bending energy is given by Boal
(2012):

Em = πκ

∫ xf

xi

Km(x)dx, (6)

with the kernel

Km(x) =

[
1 + R2x − RxxR − RC0

(
1 + R2x

)3/2]2

R(1+ R2x)
5/2

, (7)

1Gauss-Bonet Formula. Available: http://mathworld.wolfram.com/Gauss-

BonnetFormula.html. Accessed 6 January 2017.

FIGURE 3 | (A) Profile R(x) of a symmetrically constricted vesicle with the axis

of symmetry along the x–axis and its characteristic parameters. Left polar cap

is shaded in yellow and the left half of the constriction zone is shaded in blue.

(B) Surface obtained from the revolution around the x–axis of the previous

profile R(x).

where Rx = ∂R/∂x and Rxx = ∂Rx/∂x are, respectively,
the first and second derivatives of the membrane profile R(x).
Furthermore, other relevant vesicle properties can also be
computed, particularly the membrane area and the volume
enclosed. For a given profile shape R(x), the area of the
corresponding revolution surface around the x–axis is:

A = 2π

∫ xf

xi

R
√
1+ R2xdx, (8)

and the volume enclosed by this surface is:

V = π

∫ xf

xi

R2dx. (9)

Note that Equations (7)–(9) are independent of the coordinate
y, as expected for surfaces with rotational symmetry around x.
Along the constriction pathway, the vesicle will take the shapes
that minimize the total energy ET (up to thermal effects). In
particular, ET must be stationary under an infinitesimal scale
transformation −→r → λ

−→r with small λ − 1. This leads to the
following transformations (Seifert and Lipowsky, 1995), κ → κ ,
C0 → C0/λ, C1 → C1/λ, C2 → C2/λ, A → λ2A, V → λ3V ,
6 → 6/λ2, and 1p → 1p/λ3. This means that the shape
that minimizes the energy with C0, 6, and 1p, has the same
energy (and also minimize the energy) under an overall dilatation
−→r → λ

−→r with C0 → C0/λ, 6 → 6/λ2, and 1p →

1p/λ3. Note that when C0 = 6 = 1p = 0, the total energy
of the vesicle, which is equal to the bending energy, becomes

Frontiers in Physiology | www.frontiersin.org 5 May 2017 | Volume 8 | Article 312

http://mathworld.wolfram.com/Gauss-BonnetFormula.html
http://mathworld.wolfram.com/Gauss-BonnetFormula.html
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Beltrán-Heredia et al. Mechanics of Cell Division

size invariant. This particular case was previously studied by us
(Almendro-Vedia et al., 2013, 2015). Here, we consider the more
general case, where C0, 6, and 1p are non-zero, and analyze the
effects of these parameters for the more relevant properties of the
system.

Perturbation Method
We consider the constriction process of a membrane vesicle
with rotational symmetry around the longitudinal axis and with
central symmetry. The break of the central symmetry can be
treated as a stability problem against a linear perturbation from
the symmetric case (Almendro-Vedia et al., 2013, 2015). The
initial vesicle deforms by the action of a radial tension exerted
as a constriction ring at its equator, which decreases the equator
radius till formation of a saddled neck that becomes thinner and
thinner under the action of the constriction force (see Figure 3).
These processes will be followed by the vesicle splitting into
two separated daughter vesicles. In previous papers (Almendro-
Vedia et al., 2013, 2015), we restricted the study to the case of
zero spontaneous curvature C0 = 0, negligible tension 6 = 0,
and no pressure difference between internal and external media
1p = 0, in which the total energy of the vesicle corresponds
exclusively to the bending energy (up to thermal effects). In
that particular case, the unconstricted initial configuration is a
sphere of radius Rm and the constriction process is assumed to
proceed by keeping this maximum radius Rm constant, which is
equivalent to consider that the two polar caps are hemispheres of
radius Rm during the whole process. In the present case, as the
parameters C0, 6, and 1p are non-zero, the initial configuration
is not, in general, a sphere of radius Rm, but a spheroid with
polar radius Rm (distance from the center to the upper pole of
the spheroid). This spheroid can be an oblate spheroid (when the
polar distance Lp, see Figure 3A, is smaller than Rm), a prolate
spheroid (when the polar distance Lp is greater than Rm) or a
sphere (when the polar distance Lp is equal to Rm). The value
of the dimensionless ratio Lp/Rm will depend on the particular
values of the dilatation invariant products C0Rm, 6R2m, and
1pR3m. As in Almendro-Vedia et al. (2013, 2015) the constriction
is assumed to proceed by keeping the polar radius Rm constant,
which implies that, by fixing constant C0, 6, and 1p, the shape
of the polar caps remains equal to the initial configuration
at all stages of constriction. Consequently, the total energy of
the polar caps does not change during constriction, making
all energy variations arise from central constriction region that
goes from Rc = Rm to Rc = 0 (see Figure 3). The case
of constant Rm may describe cells whose structure or contents
(cytoskeleton, peptidoglycan wall, nucleoid exclusion) exert an
effective line tension at the maximum radius sites toward the
exterior, 6m. Similarly, the force needed to constrain up to a
radius Rc is delivered by an effective line tension 6c around all
the constriction ring and directed toward the cell interior (see
Figure 3A). Each constriction state can be characterized by a
constriction parameter s, which is defined in terms of the ratio
between the constriction radius Rc and the polar radius Rm in the
form:

s = 1 − Rc/Rm. (10)

This parameter increases from s = 0 when there is no
constriction and Rc = Rm to s = 1 when the constriction is
maximal and Rc = 0 (see Figure 4).

Once the origin of the x coordinate is established in themiddle
point of the vesicle (see Figure 3), the constriction profile is
given by:

R (x; s) =





Rleft polar cap(x) if x ∈ [−Lp − Lm, −Lm]
Rcz(x; s) if x ∈ [−Lm, Lm]
Rright polar cap(x) if x ∈ [Lm, Lm + Lp]

(11)

where Lm and Lp represent the half of the length of the
constriction zone and the polar distance, respectively (see
Figure 3A). Note that the constriction profilemust be continuous
in the boundaries of the zones. In addition, since the shape
has central symmetry we have the relation Rleft pole cap(x) =

Rright pole cap(−x).
The perturbative method allows us to easily obtain

approximate analytical formulas in terms of C0, 6, 1p and
the scaling parameter Rm. We need to determine the shapes that
minimize the total energy of the vesicle along the constriction
pathway, i.e., for each constriction stage s between 0 and 1.
In order to determine the approximate shape we assume an
appropriate ansatz for R(x) in each of the existence intervals.
These ansatzs will be expressed in terms of the characteristic
length rates of each zone: Lp/Rm for the polar caps and Lm/Rm
and s for the constriction zone (recall that the polar caps remain
constant independently of s). The constriction profile R(x),
together with its first and second derivatives, Rx = ∂R/∂x
and Rxx = ∂Rx/∂x, allow us computing the integrand Km

(Equation 7) in each zone. Recall that we are assuming that
C0 and 6 are uniform along the whole surface. In order to
apply the perturbative method it is convenient to define a small
deformation function and expand Km in power series of it and
of its first- and second-order derivatives. Then, introducing
this simplified integrand in the total energy (Equation 6),
we can perform the integration between the two boundaries
that define the corresponding surface interval (Equation 11).
Finally, the total energy minimization with respect to the
characteristic length of each zone provides their optimal
values:

∂ET, polar caps
(
Lp,Rm,C0,6,1p, κ

)

∂Lp
= 0

yields
−→L

opt
p , (12a)

∂ET, cz(s, Lm, Rm,C0, 6, 1p, κ)

∂Lm

∣∣∣∣
s

= 0
yields
−→ L

opt
m (s). (12b)

As the polar caps do not change their shape during the whole
constriction process, the polar distance Lp (Equation 12a) is
independent of the constriction parameter s, (and therefore,
the other properties of the system calculated on the polar
caps zone are independent of s too). However, the length of
the constriction zone changes with the constriction parameter

s. Once the optimal total length L
opt
p + L

opt

m
(s) is obtained, it

is possible to determinate approximate analytical expressions
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FIGURE 4 | Shapes at various constriction stages characterized by the constriction parameter s (Equation 10) (s = 0; s = 0.25; s = 0.5; s = 0.75; and

s = 0.9) for initially unconstricted prolate, spherical, and oblate vesicles. Prolate case (Lp = 1.5Rm) with 3 = 0.5, spherical case (Lp = Rm) with 3 = 1, and

oblate case (Lp = 0.5Rm) with 3 = 1.5, and Ŵ = −24 for the three cases represented (see Equations 24 and 25) for the definitions of 3 and Ŵ in terms of C0Rm,

6̃R2m and (1p̃R3m). When Ŵ > −29: 3< 1 gives prolate polar caps (i.e., Lp > Rm), 3= 1 gives spherical polar caps (i.e., Lp = Rm), and 3> 1 gives oblate polar caps

(i.e., Lp < Rm); while when Ŵ < −29 the opposite relation between the values of 3 and the shape of the polar holds.

for the more relevant properties of the system as are the
total energy, the membrane area, the volume enclosed and the
constriction force at any stage of constriction. These quantities
will have the form of a series expansion in powers of the
constriction parameter, s. In general, we found that, as expected,
that the higher the order included, the better the predictions
obtained.

Shape of the Polar Caps Zone: Area and
Volume
The polar caps of a tensionless vesicle (6= 0), without pressure
difference (1p = 0) and for zero spontaneous curvature
(C0 = 0) with maximum radius Rm fixed constant, remain
as hemispheres of radius Rm during the whole constriction
process (Almendro-Vedia et al., 2013, 2015). However, if these
parameters (6, 1p, and C0) are not zero, we have to consider
a more general profile for the polar caps. We consider here an
ellipsoid with semi-axis Rm (polar radius) and Lp (polar distance)
centered in x = Lm (see Figure 3A) with rotational symmetry
around x-axis given by:

Rright polar cap (x) = ± Rm

√
1−

(
x− Lm

Lp

)2

, (13)

with x ∈ [Lm, Lm+Lp]. Now, in order to apply the perturbative
method, we define the small deformation function in the polar
caps zone as (see Figure 3):

ε =
Lp − Rm

Rm
, (14)

which leads to:

Lp = Rm(1+ ε). (15)

The global sign of ε determines the shape of the polar caps.When
ε is negative, positive, or zero, the polar caps are oblate, prolate,
or spherical, respectively.

Once we have calculated the length Lp, other relevant
magnitudes can be obtained, particularly the membrane are of
the polar caps and the volume enclosed on them. Using the
expressions for a surface of revolution (Equations 8 and 9) with
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the profile of the Equation (13), and integrating between the
limits xi = Lm and xf = Lm + Lp (see Figure 3A) we obtain
for the membrane area:

Apolar caps/Asph = 1 +
2

3
ε +

1

15
ε2 + . . . , (16)

where Asph = 4πR2m, and for the volume enclosed:

Vpolar caps/Vsph = 1 + ε = Lp/Rm, (17)

where Vsph= 4/3πR3m. Note that the (Equation 16) can be also
obtained by expanding the surface area of the spheroid around
ε = 0, Aspheroid = 2πR2m [1 + Lp/(Rme)ArcSin(e)] with e2 =

1 −
(
Rm/Lp

)2
= ε(ε + 2)/(1 + ε)2; and the (Equation 17) is

exact and corresponds to the volume of the spheroid, Vspheroid =

4/3πR2mLp.

Shape of the Constriction Zone: Area and
Volume
In Almendro-Vedia et al. (2015), we used the variational
approach to find the shape that minimize the energy for different
constriction stages in the case of C0 = 0, 6 = 0 and 1p = 0.
There, we considered a family of solutions of the form:

R(x; s) = R0(x) +

∞∑

i= 1

aiRi(x) (18)

in order to describe the constriction region, where the assumed
zeroth-order function family was:

R0(x; s) = Rm

{
1−

s

2

[
1+ cos

(
πx

Lm

)]}
. (19)

This simple zeroth-order provided good approximations for low
and intermediate constriction regimes, as we previously saw in
Almendro-Vedia et al. (2013). Consequently, we use here this
term as the profile of the constriction region in order to apply
the perturbative method to the general case. We define the small
deformation function in the constriction region as:

u(x; s) = Rm − Rcz(x; s) = (Rm/2) s [1+ cos (πx/Lm)] .(20)

Introducing Rcz(x; s) in terms of u(x; s) in the kernel of the total
energy (Equation 7) and expanding it up to the fourth-order of
perturbation in u (a higher-order expression can be found in

Section 2 of SM) we obtain:

KT,cz =
1

Rm
− 2C0 + C2

0 Rm + 1p̃R2m + 2Rm6̃

+
1

R2m
u − C2

0u − 21p̃Rmu − 2 6̃u + 2uuxx

− 2 C0Rmux +
1

R3m
u2 + 1p̃u2 + 2 C0uuxx + Rmu

2
xx

−
1

2Rm
u2x + 6̃Rmu

2
x +

1

R4m
u3 − 3 u2xuxx

+ 2C0Rmu
2
xuxx − uu2xx −

C2
0

2
uu2x −

1

2R2m
uu2x

− 6̃uu2x +
1

R5m
u4 − 2 C0uu

2
xuxx −

5Rm

2
u2xu

2
xx

+
3

8Rm
u4x −

1

2R3m
u2u2x −

C2
0Rm

8
u4x + . . . . (21)

As in the polar caps zone, once we know the dimensionless ratio
Lm/Rm, we can determine other relevant vesicle properties, as
are the membrane area of the constriction zone and the volume
enclosed on it. Introducing the functional form R(x) in terms
of the small-u(x) variable (Equation 20) in the formula of the
membrane area (Equation 8) and expanding the integrand in a
Taylor series up to fourth order in u, we obtain:

Acz = 2π

∫ xf

xi

R
√
1 + R2xdx = 2π

∫ xf

xi

[
Rm − u +

Rm

2
u2x

−
1

2
uu2x −

Rm

8
u4x+ . . .

]
dx. (22)

Similarly, expressing the integrand of the formula of the volume
enclosed (Equation 9) in terms of the small variable u(x)
(Equation 20) we obtain the exact result:

Vcz = π

∫ xf

xi

R2dx = π

∫ xf

xi

(Rm − u)2dx

= π

∫ xf

xi

(
u2 − 2Rmu + R2m

)
dx. (23)

Exact Numerical Method: Euler-Lagrange
Equations
Analytical formulas derived with the perturbative method are
compared with the (exact) solution of the Euler-Lagrange
equations computed numerically. The Euler-Lagrange equations
do not have an analytical solution in general, but can be solved
numerically and different methods have been developed to solve
them. As we previously made when we studied the case with
C0 = 6 = 1p = 0 in Almendro-Vedia et al. (2015), we use
the methodology proposed in Jülicher and Lipowsky (1996) and
Seifert and Lipowsky (1995), and apply it to axisymmetric shapes
subject to equatorial constriction stress with polar radius Rm
maintained constant (see Section 1 of SM for a brief explanation
of the numerical procedure followed).
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Experimental Values of Bending and
Gaussian Moduli
Experimental measurements of the bending modulus κ of lipid
bilayers in the fluid state give values in the order of 10−19J, or 10−
20 kB T at ambient temperatures (Marsh, 2006; Rodríguez-García
et al., 2009; Boal, 2012; Nagle, 2013). They are obtained mostly
either from analysis of thermally induced bending fluctuations,
or more recently from pipette-aspiration techniques (Marsh,
2006). Observations of the phase behavior of lipid bilayers
suggests that κG ≈ −0.8κ (Siegel and Kozlov, 2004; Marsh,
2006), which yields a Gaussian energy contribution to the energy
of membrane fusion 4πκG in the order of 10−18J, or 100kBT at
ambient temperatures (Mingyang et al., 2012). Recall that the
Gaussian curvature energy is constant for surfaces with the same
topology, independently of the size and shape of the surface.
Only when fusion process happen, will the Gaussian energy
contribution be considered.

RESULTS

The fundamental scales of the physical problem are determined
both by the polar radius Rm, which defines the spatial scale,
and the bending rigidity κ , which defines the energy scale.
In a scaling description, given a set of constitutive parameters
(κ ,C0,Rm), the perturbation problem can be analytically solved
for different values of the external fields (6,1p). The geometrical
descriptors (volume, area, length, etc. . . ) and the mechanical
ones (energy, force, etc.) will be defined in terms of power
series of two form parameters, the small parameter κ , which
defines the shape aspect of the polar caps (see Equation 14),
and the constriction parameter s, which defines the shape of
the constriction region (see Equation 19). Furthermore, the two
conditions for energy minimization (see Equation 12) establish
additional constraints in the equilibrium problem, which are
described by two independent linear relationships between
constitutive properties and external fields; these are:

3 = (1− C0Rm)2 + 26̃R2m + 1p̃R3m, (24)

Ŵ = (2−C0Rm)2 + 26̃R2m − 1, (25)

With:

6̃ =
6

κ
, 1p̃ =

1p

κ
. (26)

where 3 and Ŵ represent functional forms for the variations of
the elastic Hamiltonian that minimize the energy of the vesicle
for generalized geometry. In the particular case of constant
3 and Ŵ, these functional forms are linked to geometrical
conditions that minimize the energy and constitute generalized
Young-Laplace equations (Seifert et al., 1991; Zheng and Liu,
1993), which establish the equilibrium condition between the
surface tension and the differential pressure for the different
spheroidal geometries defined by the specific values of 3 and Ŵ.
In particular, values of3 6= 1 correspond to spheroids while3=

1 stands for the sphere. The meaning of 3 is more cumbersome,
however since Ŵ = 3 + 2 (1− C0Rm) − 1p̃R3m, it essentially
refers to the inflation status of a given spheroidal shape. The

exact numerical method depicted in Section Exact Numerical
Method: Euler-Lagrange Equations, and further described in
Section 1 of SM, allows for an accurate description of the
constriction pathways of the different spheroids, whose initial
surface area and volume are mutually linked for given values
of the constitutive parameters

{
C0,6,1p

}
through Equations

(24)–(26). A graphical summary of the main results is shown in
Figure 4, which shows the constriction shapes of representative
spheroids along the minimal energy pathway defined at constant
3. In the following, the approximate solutions provided by
perturbationmethod proposed in Sections SimplifiedMechanical
Model for Cells and Vesicles to Shape of the Constriction Zone:
Area andVolume are comparedwith the exact solutions provided
by the numerical analysis of the Euler-Lagrange equations (see
Section Exact Numerical Method: Euler-Lagrange Equations).

Approximate Analytical Expressions
In this subsection we show the approximate analytical
expressions obtained for both polar caps and constriction
zone in the regime where mechanical work due to osmotic
pressure, surface tension, and bending energy are comparable,
i.e. 1p R3m ≈ 6R2m ≈ κ(1 − C0Rm)

2. A similar condition
applies for the spontaneous curvature, which is restricted to the
interval −1 ≤ C0Rm ≤ 1. We have derived the expressions of
the characteristic length, the total energy, the membrane area,
and the volume enclosed in both zones. These expressions are
given in terms of the spontaneous curvature C0, the surface
tension 6, the osmotic pressure 1p, and the maximum radius
Rm. In the constriction zone these expressions also depend on
the constriction parameter s (recall that the polar caps remain
constant independently of s). Finally, we have obtained the
constriction force from the variations in the total energy during
the constriction stage.

Polar Caps Zone

Introducing the expression of Lp (Equation 15) in Equation (13)
and this, in turn, in Equation (7), we can integrate the resulting
kernel between the limits xi = Lm and xf = Lm + Lp (see
Figure 3A) and obtain an approximate analytical expression for
the total energy of the right polar cap. As the left and the right
polar caps are identical (due to the central symmetry assumed)
it is enough to consider one of them and then multiply the
expression by a factor 2. Up to second order of perturbation in
ε, the total energy of the caps is:

ET, polar caps = Esph +
4πκ

3
(3 − 1)ε

+
2πκ

15
(Ŵ + 29)ε2 + . . . , (27)

where

Esph = 2πκ/3(23 + Ŵ + 7− 4C0Rm) (28)

= πκ
[
8 + 2R2mC

2
0 − 8C0Rm + 4R2m6̃ + 4/3R3m1p̃

]
,

Our analytical approximation is valid for small departure from
the spherical shape of the polar caps, i.e., as long as |ε| ≪ 1.
This implies that the quantities calculated in the polar caps zone
are a slight modification of those corresponding to a sphere of
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radius Rm. After integration, the total energy of the polar caps
is minimized with respect to Lp (Equation 12a), obtaining the
analytical expression for the optimal polar distance Lp of the caps.
This length defines the shape of minimal energy and determines
if the initial vesicle was an oblate spheroid (ε < 0), a prolate
spheroid (ε > 0), or a sphere (ε = 0). The optimal value of Lp
resulting from the minimization is determined by the Equation
(15) with:

ε = −
5(3 − 1)

Ŵ + 29
, (29)

which states the linear dependence between the function ε that
defines the changes in the shape of the polar caps and the shape
parameter 3, which is determined by the initial shape of the
vesicle. For the case of an initially spherical vesicle 3 = 1,
Equation (29) establishes that the caps remain spherical under
an arbitrary small deformation, this is ε = 0 (see Figure 4).

Note that Ŵ is greater than −29 when 6̃R2m > −28 −

(2− C0Rm)2. This means that a wide range of values of the
dilatation invariant products C0Rm and 6̃R2m give a positive
denominator in the Equation (29) and, in this case, the shape of
the polar caps will be determined by the value of3 (see Figure 4):
3 = 1 (or equivalently 1p̃R3m = 2C0Rm − C2

0R
2
m − 26̃R2m)

would correspond to invariably spherical polar caps, but 3 < 1
(or equivalently 1p̃R3m < 2C0Rm − C2

0R
2
m − 26̃R2m) would

correspond to prolate polar caps, and 3 > 1 (or equivalently
1p̃R3m > 2C0Rm − C2

0R
2
m − 26̃R2m) would correspond to oblate

polar caps. If Ŵ is less than −29, which corresponds to strongly
negative surface tension 26̃R2m < −28 − (2− C0Rm)2, then
the denominator of Equation (29) takes negative values, and the
correlation between the sign of 3 − 1 and the shape of the polar
caps is inverted. If Ŵ= −29, the perturbative approach is not
valid since gives ε = −∞.

Substituting the perturbative parameter ε (Equation 29) in
Equations (27), (16), and (17) we obtain the approximate
analytical expressions for the energy of the polar caps, their
membrane area, and the volume enclosed on them, respectively.
For any combination of values of C0Rm, 6̃R2m, and 1p̃R3m giving
|ε| ≪ 1 (Equation 29), the errors between the numerical and the
analytical calculations for the polar caps are lower than 5% in all
the properties determined. These errors are lower in the cases
in which the ratio Lp/Rm is closer than 1, since in these cases
the perturbative parameter ε becomes smaller in modulus (see
Figures 5F, 6F).

Constriction Zone

Integrating Equation (21) between the limits xi = −Lm
and xf = Lm (see Figure 3A), we obtain an approximate
analytical expression for the total energy of the constriction zone.
Minimizing this energy with respect to Lm (Equation 12b) allows
deriving the perturbative expansion for the optimal value of the
constriction length:

Lm(s)/Rm ≈
π

2

(
6

3

)1/4

s1/2
{
1 +

1

2883

[
72(3 − Ŵ)

+ (Ŵ − 4)63/231/2 − 2561/233/2
]
s + . . .

}
.(30)

This formula determines the aspect ratio of the shape of
minimal energy for each constriction stage, characterized by the
constriction parameter s, up to fourth-order in the perturbative
expansion (see Section 2 of SM for a higher-order formula).

Substituting the optimal constriction length in the equation
for the total energy (Equation 6), we obtain the approximate
analytical expression for the increase in the total energy due to
constriction:

1ET(s)/κ = ET, cz(s)/κ ≈
4

3
π261/433/4s1/2

{
1−

3

5763

[
561/233/2 + 1683

− (Ŵ − 4)63/231/272Ŵ
]
s + . . .

}
. (31)

This expression is written up to fourth order in the perturbative
expansion and a higher-order formula is shown in Section 2
of SM.

Once we have calculated the dimensionless ratio Lm/Rm
(Equation 30), we can determine the membrane area of the
constriction zone and the volume enclosed on it. Integrating
the Equation (22) between the constriction zone limits xi =

−Lm and xf = Lm (see Figure 3A) with Lm given by the
Equation (30), we obtain the increase of area during constriction:

1A(s)/R2m = Acz(s)/R
2
m ≈ 2π2

(
6

3

)1/4

s1/2

{
1 +

1

5763

[
(Ŵ − 4)63/231/2 − 72Ŵ

− 2163 − 61/233/2
]
s + . . .

}
. (32)

As for other quantities, this is a fourth-order perturbation
expression but a higher-order formula can be found in Section
2 of SM. At the initial stages of constriction (when s → 0) the
increase of area is given by the leading term of the Equation (32),

i.e., 2π2R2m(6/3)
1/4

s1/2, which is equal to πRm × 2Lm with Lm
given by the leading term of the Equation (30). Since 2πRm×2Lm
corresponds to the increase of area of a cylinder of length 2Lm
and polar radius Rm, this means that that a near-cylindrical neck
with length 2Lm is formed at the initial stages of constriction (see
Figure 4).

Similarly, integrating the Equation (23) between the
constriction zone limits xi = −Lm and xf = Lm (see
Figure 3A) with Lm given by the Equation (30), we obtain the
approximate analytical expression for the increase of volume
during constriction up to fourth-order in the perturbative
expansion of the energy integrand (see Section 2 of SM for
higher-order expression):

1V/R3m = Vcz/R
3
m ≈ π2

(
6

3

)1/4

s1/2
{
1 +

1

5763
[
(Ŵ − 4)63/231/2 − 72Ŵ − 5043

−2561/233/2
]
s+ . . .

}
. (33)

Analogously to variations of area, we find that the increase of
volume at the beginning of constriction (s → 0) is given by
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FIGURE 5 | More relevant properties of a constricted vesicle with zero spontaneous curvature C0 = 0 at all stages of constriction for different values

of the dilatation invariant products 6̃R2
m and 1p̃R3

m, which are associated with surface tension and pressure, respectively. Total energy ET in units of

8πκ (A), constriction force Fc in units of Rm/κ (B), total area A in units of 4πR2m (C), total volume V in units of 4/3πR3m (D), constriction length Lm in units of Rm (E)

and polar distance Lp in units of Rm (F). Comparison between the exact numerical results (points) with the approximate analytical expressions obtained up to sixth

order of perturbation (lines).

the leading term of the Equation (33), i.e., π2R3m(6/3)
1/4

s1/2,
which is equal to 2πR2m × 2Lm with Lm given by the leading term
of the Equation (30). This product corresponds to the increase
of volume of a cylinder of length 2Lm and polar radius Rm,
which again corresponds with having a near-cylindrical neck with
length 2Lm at the initial stages of constriction (see Figure 4).
Once we have calculated the properties for the polar caps and
constriction zone, we sum both contributions to obtain the total
values.

Finally, we determine the constriction force from the
derivative of the total energy with respect to constriction radius:

Fc ≡ −
dET

dRc
= −

dET

ds

ds

dRc
=

1

Rm

dET

ds
, (34)

which gives

Fc(s)Rm/κ ≈
2π261/4 33/4

3s1/2

{
1 −

1

1923

[
561/233/2 + 1683

− (Ŵ − 4)63/231/2−72Ŵ
]
s + . . .

}
. (35)

The constriction force scales inversely proportional to Rm,
i.e., the smaller is the vesicle, the greater is the constriction
force required. In other words, smaller cells are harder to
constrict. In contrast, the force required to constriction scales
proportional to the bending modulus κ . This implies stronger
constriction forces for less flexible membranes. In the general
case, in which the parameters C0, 6, and 1p are non-zero, the
analytical expressions obtained are divided by powers of 31/4

(see Equations 30–33, and 35), which implies a divergence in the
results when 3 → 0. Therefore, our analytical approach is valid
as far as the values of the dilatation invariant products C0Rm,
6̃R2m and 1p̃R3m do not give a 3 close to zero (Equation 24), and
the deformation functions used in the perturbative expansion
(ε for polar caps and u for constriction zone) are much lower
than 1 in modulus. Conditions giving 3 < 0 (Equation 24) (or
equivalently 1p̃R3m < 2C0Rm − C2

0R
2
m − 26̃R2m − 1) provide

complex analytical results. This means that the analytical method
cannot be applied under conditions with 3 ≤ 0.

There is a good agreement between the exact results and
the approximate analytical expressions for low and intermediate
constriction regimes, (approximately up to s ≈ 0.65), (see

Frontiers in Physiology | www.frontiersin.org 11 May 2017 | Volume 8 | Article 312

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Beltrán-Heredia et al. Mechanics of Cell Division

FIGURE 6 | More relevant properties of a constricted vesicle at all stages of constriction for 6 = 1p = 0 and three values of the product C0Rm,

corresponding to have negative, zero, and positive spontaneous curvature. Total energy ET in units of 8πκ (A), constriction force Fc in units of Rm/κ (B), total

area A in units of 4πR2m (C), total volume V in units of 4/3πR3m (D), constriction length Lm in units of Rm (E) and polar distance Lp in units of Rm (F). Comparison

between the exact numerical results (points) with the approximate analytical expressions obtained up to sixth order of perturbation (lines).

Figures 5, 6). This indicates that the ansatz used to parameterize
the constriction zone (Equation 19) is extremely efficient in
describing the exact result in these stages (as it was in Almendro-
Vedia et al., 2013, 2015, for a more particular case). For
higher constrictions, the errors are bigger, as a consequence
of the zeroth-order function family assumed for the ansatz
(Equations 18 and 19). Results that were more accurate would
require a constriction profile more precise than Equation (19),
including more terms of the family of solutions in order to
better accounts for the strong changes of curvature occurring
in the constriction zone. The analytical result for the case with
6̃R2m = −0.3 and C0 = 1p = 0 (empty blue triangles of
Figure 5) differs from the exact numerical values more than the
other cases. The reason is that this combination of parameters
gives the closer-to-zero value of 3 and the analytical formulas
diverge as 3 goes to zero.

Osmotic Pressure and Surface Tension
Effects with No Spontaneous Curvature
In this subsection, we analyze the effects of osmotic pressure
1p and surface tension 6 in the more relevant properties of a
membrane vesicle with zero spontaneous curvature. The lower

values of surface tension and the osmotic pressure difference,
the lower the energies of the vesicle and the smaller constriction
forces required (see Figures 5A,B, respectively). This means
that membranes with small or negative tension (6 ≤ 0) and
immersed in a hypertonic medium (1p < 0) have less energy
and constrict more easily than tensioned membranes (6 > 0),
immersed in an isotonic or hypotonic medium (1p ≥ 0). As
we noted in Almendro-Vedia et al. (2013, 2015), a kick-off force
is required to initiate constriction from the initial configuration.
However, once the symmetry is initially broken, smaller forces are
sufficient to advance cell constriction. At the high constriction
regime, the constriction force increases in order to overcome
the curvature barrier involved in the pre-fissioned state (see
Figure 5B). The total energy of the system (see Figure 5A)
increases along the constriction pathway up to double at maximal
constriction (when s → 1). In the final two-spheres fission state
we have to consider the additional Gaussian curvature energy
contribution of 4πκG ≈ −100kBT, since κG ≈ −0.8κ (Siegel
and Kozlov, 2004; Marsh, 2006), in order to account for the
topological change occurred. Inflated vesicles immersed in a
hypotonic medium (1p > 0) have more volume than vesicles
immersed in an isotonic medium (1p = 0), and these last
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have more volume than shrunk vesicles immersed in hypertonic
medium (1p < 0), (see Figure 5D). This inflation-shrinking
process is explained by the osmotic turgor of the living cells.
When vesicles (or cells) are placed in a hypotonic medium, water
rushes into the membrane increasing the volume of the vesicle.
In contrast, when vesicles are placed in a hypertonic solution,
water flows out of the vesicle into the surrounding solution,
decreasing its volume. When the surface tension is positive, the
increase in membrane area is lower under constriction, and vice
versa (see Figure 5C). This is explained since positive surface
tension implies a tensioned status of themembrane vesicle, which
describes biological situations of positive cortical tension with
high energetic cost for membrane area extension (Lecuit and
Lenne, 2007). Conversely, negative surface tension implies a
floppy status, which describes biological situations with a low
energetic cost for membrane area extension (Masters et al., 2013).
Negative surface tension is equivalent to a net production of
membrane, which actually request a negative mechanical work
for membrane dilation (Solon et al., 2006). Finally, the lower
values of 6 and 1p, the larger the reduced constriction length
Lm/Rm (see Figure 5E). Moreover, when 1p and 6 are positive,
Lp/Rm < 1, and the polar caps are oblate (see Figure 5F), which
corresponds to an inflated vesicle with a tensioned membrane.
In contrast, when 1p and 6 are negative, Lp/Rm > 1, and the
polar caps are prolate, which corresponds to a deflated vesicle
with a tensionless membrane. If 6 = 1p = 0, Lp/Rm = 1,
then 3 = 1, and the polar caps are spherical. This result let
us relate the shape of the polar caps with the properties of the
system. Vesicles with oblate polar caps require more constriction
force and contain more energy, less membrane area, and less
volume enclosed than vesicles with prolate polar caps. The values
6̃R2m = ±0.3 and 1p̃R3m = ± 0.3 used in Figure 5 correspond
to 6 = ± 1.2 × 10−8 N/m and 1p = ±1.2 × 10−2 N/m2,
respectively, a realistic set of values reasonably compatible with
a cell-sized artificial vesicle (Rm ≈ 1µm) (Claessensa et al.,
2008; Ogleçka et al., 2012) with a relatively flexible lipid bilayer
membrane (κ ≈ 10− 20 kBT) (Marsh, 2006; Rodríguez-García
et al., 2009; Boal, 2012; Nagle, 2013) (Equation 26). Specifically,
giant unilamellar vesicles with sizes ranging a few microns,
subjected to osmotic stresses of the order of 10 mOsM as much
(1p < 0.01Pa), normally exhibit a lateral tension of the order of

10−9 − 10
−8

N/m (Käs and Sackmann, 1991; Rodríguez-García
et al., 2009).

Spontaneous Curvature Effects
In this subsection, we present the results for the constriction
process of a membrane vesicle with negligible surface tension
(6 = 0) and no osmotic pressure difference (1p = 0) for
two values of the product C0Rm, corresponding a positive and
a negative spontaneous curvature, respectively. In this way, we
can analyze the effects of having a convex (C0 > 0) or a concave
(C0 < 0) membrane with respect to the flat configuration
(C0 = 0), see Figure 2. Although here we are considering
constant spontaneous curvature, recall that, in general, C0 is not
uniform over the membrane of a real cell (Emoto et al., 2005;
Renner and Weibel, 2011). The spontaneous curvature has an
important effect on the constriction force (see Figure 6B), and a

concerted inhomogeneous distribution may play a crucial role in
coordinating the contractile rearrangement with the membrane
remodeling during cytokinesis (see Discussion). We see that
membranes with global positive spontaneous curvatures are
more easily constricted (require smaller constriction forces) than
flat membranes. In contrast, membranes with global negative
spontaneous curvature need higher constriction forces. As in
Section Osmotic Pressure and Surface Tension Effects with No
Spontaneous Curvature, we can relate the constriction force
required with the shape of the polar caps (see Figure 6F).
Vesicles with oblate polar caps (when Lp/Rm < 1) require
more constriction forces than vesicles with prolate polar caps
(when Lp/Rm > 1). The total energy of the vesicle increases
as a function of the stage of constriction up to near double
its value at the final stage (see Figure 6A). The energy of the
vesicles whose membranes have global negative spontaneous
curvature is greater than the energy in the flat configuration,
while for membranes with global positive spontaneous curvature
the energy is lower. As 6 = 1p = 0, the total energy of
the vesicle in Figure 6A is exclusively the bending energy. As in
Section Osmotic Pressure and Surface Tension Effects with No
Spontaneous Curvature, in the final fissioned state we have to
consider the additional Gaussian curvature energy contribution
of 4πκG ≈ −100kBT (Siegel and Kozlov, 2004; Marsh, 2006),
in order to account for the topological change. The increase of
the membrane area, vesicle’s enclosed volume and constriction
length along the constriction pathway is shown in Figures 6C–E,
respectively. Vesicles with C0 < 0, which have oblate polar caps
(see Figure 6F), have less area, less volume, and less constriction
length than vesicles with C0 > 0, which have prolate caps.
The values C0Rm = ±0.3 used in Figure 6 correspond to
C0 = ± 0.3µm−1 for a cell-sized vesicle (Rm ≈ 1µm).

Finally, we address the analysis of the constriction force when
C0Rm, 6̃R2m, and 1p̃R3m are different from zero simultaneously.
Figure 7 shows three plots with the different regimes of
spontaneous curvature: 7A with C0Rm = −0.3, 7B with C0Rm =

0, and 7C with C0Rm = 0.3, varying 6̃R2m between -0.6 and
0.6 (y-axis) and 1p̃R3m between −0.3 and 0.3 (x-axis). We have
calculated the constriction force at the beginning of constriction
(s = 0.2) and compare it with the reference constriction force
Fc, 0, defined as the constriction force at this stage in the case
of C0 = 6 = 1p = 0. For given values of 6 and
1p, the larger the positive spontaneous curvature, the smaller
is the constriction force required (see Figure 7B). This means
that prolate-shaped elongated shapes whose membranes have an
uniform C0 > 0 are more easily constricted, i.e., those cells
tend globally to build up in a convex configuration. Membranes
with positive spontaneous curvature tend to form vesicles of
smaller radius 2/C0, which favors the formation of two separated
vesicles. Thus, introducing a positive spontaneous curvature
extends the region of negative constriction force, i.e., the region
where constrictions is an energetically favorable process (see
Figure 7).

When the product C0Rm is greater than 1 (this is, when
membranes tend to form vesicles with radius smaller than 2Rm,
or cylinder sections with radius smaller than Rm), it is possible to
get spontaneous constriction for a certain range of the products
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FIGURE 7 | Constriction force Fc compared with the reference constriction force Fc,0 (defined as the constriction force in the case with

C0 = 6 = 1p = 0), both forces are computed at the beginning of constriction (s = 0.2). ( Fc > Fc,0, Fc < Fc,0, Fc imaginary: impossible

constriction). Constriction force is shown as a function of 6̃R2m (y-axis) and 1p̃R3m (x-axis) with C0Rm = −0.3 (A), C0Rm = 0 (B), and C0Rm = 0.3 (C). Regions

shaded in blue (red) correspond to conditions giving constriction forces lower (larger) than Fc, 0 and regions shaded in black correspond to conditions under which

constriction is impossible (imaginary analytical results and no numerical solution).

6̃R2m and 1p̃R3m (see Figure 8B, shaded in orange). This means
that spontaneous constriction can be induced with appropriate
low values of surface tension and osmotic pressure. If the product
C0Rm is smaller than 1 (this is, if membranes tend to form
vesicles with radius bigger than 2Rm, or cylinder sections with
radius larger than Rm), there is no combination of surface tension
and osmotic pressure leading to spontaneous constriction (see
Figure 8A).

Constant Area and Constant Volume
Conditions
Instead of considering the polar radius Rm constant, other
conditions as constant area or constant volume could be
additionally addressed. In these cases, a re-dimensioning strategy
can be used, as described in the previous works (Almendro-
Vedia et al., 2013, 2015) defining a rescaling parameter λ with
the following scaling transformations κ → κ , ET → ET ,
C0 → C0/λ, C1 → C1/λ, C2 → C2/λ, A → λ2A, V → λ3V ,
6 → 6/λ2, and 1p → 1p/λ3. This parameter corresponds to:

λ(constant A) =

√
A(s = 0)

A(s)
, (36)

for constant area condition and to:

λ(constant V) =
3

√
V(s = 0)

V(s)
, (37)

for constant volume condition. A(s = 0) and V(s = 0) are,
respectively, the membrane area and the volume enclosed by the
initial spheroid.

DISCUSSION

Lipid Bilayer Membrane Vesicles
Lipid molecules dispersed in water have the property to
self-assemble spontaneously into a bilayer membrane. The
lipid bilayer constitutes the main structural ingredient of cell
membranes, which endows them with a functional mechanics
chiefly determined by its intrinsic elasticity and the curvature
properties encoded in the topology of the molecular components
(Bretscher, 1973). The resistance of bilayers to area compression
and area expansion is much larger than their resistance to
bending deformations, while, in the fluid state, there is no
resistance to shear deformations. The bending rigidities of usual
lipid bilayers in the fluid state take values about 10 − 20 kBT
(Marsh, 2006; Rodríguez-García et al., 2009; Boal, 2012; Nagle,
2013). The combination of the minimization concepts discussed
in this paper has allowed the systematic exploration of vesicle
energetics under constriction geometry. From our analysis of
equatorial constriction (Figure 5B), micron-sized vesicles with
a flexible lipid bilayer and a zero spontaneous curvature have
constriction forces in the range FcRm/κ ≈ 15 − 20. This
corresponds to effective forces of the order of pico-newtons, or
even lower, as for κ ≈ 10 kBT and Rm ≥ 1µm, one has Fc ≤

1pN. Inclusion of non-zero values of spontaneous curvature,
osmotic pressure and lateral tension leads to significant changes
in the specific quantitative conditions necessary for equatorial
constriction (see Figures 6–8). However, no essential change is
imposed by these constraints in the qualitative picture, which is
almost governed by a monotonic increase of the total energies
upon increasing constriction, as in the reference case of no
constraints (6 = 1p = C0 = 0).

Global Spontaneous Curvature
Among the more important biophysical consequences of lipid
asymmetries, the subsequent spontaneous curvature of the whole
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FIGURE 8 | Constriction force at the beginning of constriction (s = 0.2) as a function of 6̃R2
m(y-axis) and 1p̃R3

m (x-axis) with C0Rm = 0.8 (A) and with

C0Rm = 1.5 (B). ( Fc > 0: Non-spontaneous constriction, Fc < 0: Spontaneous constriction, Fc imaginary: impossible constriction). The regions shaded in

green correspond to the cases in which an external force is required for constriction. The region shaded in orange corresponds to conditions leading to spontaneous

constriction (negative constriction forces). Finally, the regions shaded in black correspond to conditions under which constriction is impossible (imaginary analytical

results and no numerical solution. If C0Rm > 1, it is possible to get spontaneous constriction for a certain range of the products 6̃R2m and 1p̃R3m, but if C0Rm < 1

there is no combination of surface tension and osmotic pressure leading to spontaneous constriction.

membrane has a crucial impact on the shape transformations
of artificial lipid bilayer vesicles (Boal, 2012), which exhibit an
extreme sensitivity to induced changes in bilayer asymmetry
(Berndl et al., 1990). The simplest description incorporating
asymmetry between the two monolayers is given by a non-zero
spontaneous curvature C0, in which case the bending energy
becomes dependent of size scale C−1

0 , thus being minimal for
initially curved configurations. As a result, the bending energy
loses size invariance and becomes depending on vesicle shape
and vesicle size. As a consequence, different axisymmetric shapes
of minimal bending energy can be obtained by breaking various
symmetries of the sphere. Allowing for asymmetry as well as
reflection symmetry, one can obtain prolate and oblate ellipsoids,
which are defined by rotating an ellipse about its major and
its minor axes, respectively. Negative spontaneous curvature
(C0 < 0) determines polar caps with a predominant oblate shape
(3 > 1); conversely, positive spontaneous curvature (C0 >

0) determines prolate shapes elongated along the x axis (3 <

1). Because of the lower energy changes of the prolate shape
when subjected to equatorial constriction (see Figures 5B, 6B),
the radial forces needed to constrict are significantly smaller
in the case of prolate shapes (3 < 1) than in oblates (3 >

1). According to Equation (2), the energies of vesicle shapes
depend on the value of the spontaneous curvature in addition
to membrane tension and osmotic pressure difference, thus, we
need to expand our parameter space to three dimensions. The
results of minimal energy calculations performed on the basis
of Equation (2) subjected to the three parameters (C0,1p,6)
are summarized in Figures 5, 6. Total energies increase with
increasing constriction from a value compatible with a single
vesicle to a 2-fold value compatible with vesicle fission. The
sharper energy changes under initial constriction (s < 0.2) are
observed for inflated oblates (1p ≥ 0, 6 ≥ 0,C0 < 0 thus

3 > 1), which demand on higher positive constriction forces
than in the reference case of a floppy spherical vesicle (3 = 1).
For prolates shapes (3 < 1), the required constriction forces are,
in general, smaller than for oblates. Obviously, prolates shapes are
easier contractible and stretchable than oblates, which explains
the calculated decrease of the constriction force with increasingly
positive spontaneous curvature. At large constriction (s → 1),
however, total energies vary almost linearly in all cases, which
implies a very similar constriction force range FcRm/κ ≈ 20,
in the whole space of parameters. For a vesicle (or cell) of
micrometer size with a flexible membrane with κ ≈ 10−20 kBT
(Marsh, 2006; Rodríguez-García et al., 2009; Boal, 2012; Nagle,
2013), in case of favoring constriction under positive global
curvature preferring convex prolates shapes, the constriction
forces fall in the range of piconewton, below the value expected
for zero spontaneous curvature (see Figure 7B).

Lipid Asymmetry and Local Spontaneous
Curvature
A non-zero local spontaneous curvature arises primarily from
asymmetry factors in the membrane, particularly differences in
the shape and aspect of the component lipids between the two
sides of the bilayer. Figure 2 depicts the geometry exhibited by
some lipid molecules as the driving force that causes spontaneous
membrane curvature (Israelachvilli, 1992; Ritacco et al., 2010;
Boal, 2012). Most frequent membrane-formers are cylinder-
shaped lipid molecules, which are prone to self-assemble as flat
bilayers with a zero spontaneous curvature. Lipids with a polar
head group area larger than the cross-sectional area measured
at the level of the acyl chains show an inverted-cone shape and
tend to curve the membrane positively; in other words, they
exhibit positive spontaneous curvature and make the membrane
prone to convexity. Prototypical of positive-curvature are
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lyso-phospholipids, which are intermediates in phospholipidic
metabolism, resulted from partial hydrolysis and removing one
of the acyl chains of the phospholipids. Due to their inverted-
cone molecular aspect, these lyso-phospholipids cannot self-
assemble as planar bilayers but form inverse hexagonal phase.
When incorporated into bilayers, such non-bilayer forming lipids
introduce packing stresses, which, in turn, can affect membrane
integrity. Although found only in small amounts in biological cell
membranes, lyso-phospholipids have a functional role usually
related to cell activation and apoptosis (Munder et al., 1979).
Conversely, cone-shaped lipids with a small head cross-section
as compared to hydrophobic tails, such as polyunsaturated
lipids, diacyl glycerol (DAG), phosphatidylethanolamines (PE)
and cardiolipin (CL) exhibit a negative spontaneous curvature
(Martens and McMahon, 2008), which make the membrane
prone to concavity. During cell division, the process of
membrane constriction ends up with a separation of the lipid
bilayer of the two daughter cells followed by a fusion of
the opposite membranes in a region of high concavity that
requires dynamic changes of the lateral distribution and the local
composition of membrane lipids. Accumulated experimental
evidence points out to the possible mechanical role of negative-
curvature lipids during late constriction (Emoto et al., 2005;
Litvak et al., 2005; van Meer et al., 2008; Donaldson, 2009;
Heberle and Feigenson, 2011; Renner and Weibel, 2011). Those
findings demonstrate that the localized production of negative-
curvature lipids is required for the proper completion of
membrane dynamical process in highly negative-curvature sites,
where the local accretion of asymmetric lipids may play a
crucial role. Therefore, any extended theoretical model of cell
division might consider local negative curvature concentrated
in the constriction site of the cell membrane. Localized non-
zero spontaneous curvature makes the membrane to be locally
prone to a specific curvature, convex (C0 > 0) or concave
(C0 < 0), depending of the sign of the spontaneous curvature
(see Figure 2). Since the constriction site is saddle-shaped, local
negative values of the spontaneous curvature may contribute
to minimize the local bending energy of the membrane, thus
making more realistic further models of cell division, specifically,
those accounting for the local accretion of negative curvature
lipids in the constriction region.

Budding and Spontaneous Fission
Binary fission and budding are two scission mechanisms
exploited by cells in asexual reproduction pathways. Major
difference between binary fission and budding is that in budding
there is an asymmetric outgrowth from the parent individual
vesicle, or cell, producing a bud, but in binary fission the
parent symmetrically splits into two more or less identical
offspring. In biological cells, budding is a rather frequent event,
because it represents the first step in the production of transport
vesicles which shuttle between different compartments of the
cell. The simplest approach to understand budding involves
a consideration of the lateral and transverse organization of
lipids within a membrane, which induces spontaneous curvature
followed by morphological change. In an early hypothesis to bud
formation, Sheetz and Singer suggested that a local change in

the surface area of the two monolayers could lead to negative
membrane curvature, inducing the formation of a membrane
neck (Sheetz and Singer, 1974). However, advanced models
for bud formation in biological cells emphasize a chief role
for membrane coating proteins (Schekman and Orci, 1996).
In biological constriction processes, the membrane undergoes
large mechanical deformations. Although lipids may serve
to define the site of bud emergence (Lipowsky, 1992), or
determine the onset of divisional constriction (Emoto et al.,
2005; Renner and Weibel, 2011), there is almost certainly
through the direct action of force exerting proteins (Cao and
Wang, 1990; Bi and Lutkenhaus, 1991), or curvature-inducing
protein coats (Schekman and Orci, 1996; Bashkirov et al.,
2008; Boucrot et al., 2012), that the membrane is able to
undergo the large mechanical deformations involved. However,
in model vesicles, weak external perturbations suffice to lift the
equilibrium constraints of constant area and volume, rendering
lipid membranes susceptible of spontaneous budding and fission
(Lipowsky, 1991; Miao et al., 1991). For instance, vesicles made of
lipids with a weakly negative spontaneous curvature are known
to undergo the budding transition at increasing temperature
(Berndl et al., 1990; Käs and Sackmann, 1991; Dobereiner
et al., 1993), which is equivalent to expanding membrane
area. In this budding transition an initially spherical vesicle
transforms, via prolate- and pear-shaped intermediates, into two
asymmetric spheres, one with a daughter bud, which remains
connected to the reduced mother vesicle by a narrow neck
(Berndl et al., 1990; Käs and Sackmann, 1991; Dobereiner et al.,
1993). In general, osmotic gradients are known to induce bio-
reminiscent morphological transformations in giant unillamelar
vesicles (Ogleçka et al., 2012; and refs. therein). In particular,
to realize budding in protein-free vesicles made of (zero-
curvature) single lipids requires large excess area in a flaccid
configuration (i.e., hypertonic conditions and/or negative surface
tension), which induces a spontaneous constriction process that
initiates with the formation of a neck and terminates in the
scission of the bud. From our calculation, budding and fission
are events that could occur spontaneously under sufficiently
low (or negative) surface tension (see Figure 8). Obviously,
initially prolates shapes and hypertonic conditions decrease the
onset for negative constriction force, thus favoring spontaneous
constriction in a homogenous vesicle. In experiments with giant
vesicles asymmetric budding is observed largely more frequent
than much rarer events of symmetric fission (Berndl et al.,
1990; Käs and Sackmann, 1991; Dobereiner et al., 1993), a
reasonable fact since symmetry breaking tends to minimize
the bending energy of the constricted vesicle (Almendro-Vedia
et al., 2015). A further complexity that makes lipid vesicles
prone to budding involves the consideration of the lateral
and transverse organization of mixtures of lipids within the
membrane. Changes in the amount of membrane surface giving
rise to excess area, or spontaneous curvature, could occur by
transbilayer flip-flop movement of phospholipids, or by lipid
phase separation leading to a change in the lipid packing density
(the case of heterogeneous membranes will be addressed in the
next subsection). Asymmetric budding and symmetric fission
in vesicles made by a mixture of lipids has already attracted
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much theoretical interest (Seifert, 1993; Kohyama et al., 2003;
Sens, 2004). The models are all based on the minimization of
the bilayer energy, but also vary depending on the interactions
among the lipids in multicomponent systems, which make them
to separate into phases or not. For monophasic, homogeneous
vesicles, the membrane neck involved in the budding transition
is produced by the lipid molecules whose local negative
curvature is different from the main lipids of the membrane.
If the molecules prefer a negatively curved bilayer, they will
favor the formation of a bud. For biphasic, heterogeneous
vesicles, a line tension exists between the two phases, trying to
reduce the interface length, and favoring asymmetric budding
and symmetric constriction, eventually leading to spontaneous
fission (Lipowsky, 1992). This heterogeneous scenario will be
further discussed the next subsection. Our results point out
the easy practical availability of the onset of spontaneity for
the budding/fission transition. Indeed, negative constriction
forces are required for relatively low values of membrane
tension, even for inflated vesicles under moderately positive
osmotic pressure (see Figure 8). Obviously, the possibility for
spontaneous budding/fission enhances in prolates shapes defined
by high positive values of the global spontaneous curvature
(see Figures 7, 8), a fact already recognized in the early studies
of the morphological transitions of membrane vesicles (Berndl
et al., 1990; Lipowsky, 1991; Seifert and Lipowsky, 1995). The
current study allows for quantitatively determining the specific
conditions for spontaneous budding/fission from very accurate
analytic formulas, which provide an interesting predictive
framework for the design of smart vesicle microsystems
endowing the division functionality (Osawa et al., 2008).

Biological Membranes
Any cellular membrane, even in the simplest organisms like
bacteria, actually consists of a complex mixture of structural
lipids, proteins, and a small amount of functional glycolipids and
glycoproteins involved in membrane signaling and trafficking. In
the simplest mechanical depiction, a realistic cellular membrane
might be modeled as a composite shell (Sackmann et al.,
2002), composed by a heterogeneous lipid bilayer and adjoined
cortical protein, or glycoprotein structures, such as the inner
cell cortex in eukaryotes, or the outer peptidoglycan cell wall
in bacteria. Such cortical structures can be described as a
rigid cover somewhat connected to the fluid bilayer. From
the mechanical standpoint, those rigid structures not only
strengthen the lipid bilayer against the bending deformation
but also bears in-plane shear, which is not supported by the
fluid lipids. If the membrane skeleton, or the bacterial wall, are
roughly considered to be structurally continuous, the composite
cellular shell can still be regarded as a 2D continuum medium,
mechanically described by the current material constitutive
modeling, eventually accounting for lateral heterogeneity, plus an
additional elasticity modulus describing in-plane shear rigidity.
In addition, subcellular localization of the cytokinetic apparatus
and related proteins is a universal feature of any prokaryote or
eukaryote cell. However, although some targeting anchors are
known in some organisms, the origin of polar and division-site
localization remains mysterious for a large fraction of cytokinetic

proteins. Ultimately, the molecular components responsible for
such symmetry breaking must employ a high degree of self-
organization, which could contribute with additional ingredients
to the mechanics of division. For instance, curvature-induced
stabilization mechanisms, based on the spontaneous curvature of
localizedmembrane components, have been proposed to account
for spontaneous lipid targeting to the poles and division site of
rod-shaped bacterial cells (Huang et al., 2006). In that model, if
one of the membrane components has a large intrinsic curvature,
the geometrical constraint of the inner lipid membrane by the
more rigid bacterial cell wall naturally leads to lipid phase
separation, and the resulting clusters of high-curvature lipids are
large enough to spontaneously localize at cell poles and division
site (Huang et al., 2006), in agreement with the experimental
evidence of localization of the phospholipid cardiolipin to the
negatively curved regions of E coli membranes (Renner and
Weibel, 2011), and polar targeting of some cytokinetic proteins
during bacterial division (Huang et al., 2006). In general,
aggregates of lipids, proteins, or lipid-protein complexes may
localize in response to cell geometry, introducing additional
ingredients of membrane mechanics that might be accounted
for. Although all this complexity might be included on an
extended, more realistic, model of cell division, the physical
problem exceeds the limits of the present work, which can
be however considered as a good starting point to obtain
approximate solutions that offer a general depiction of the
minimal energy mechanical pathway of divisional constriction in
different organisms under different geometrical and constitutive
conditions of their cellular membranes.

Toward an Integrated Mechanical Model of
Cell Division
The big question, which remains still to be addressed in a
comprehensive way, is to know how much of the division of
real cells can be understood in terms of a simplified physical
model integrating the passive mechanics of the membrane with
the active actuation of a cytokinetic engine. In a minimalistic
perspective, the division machinery should have evolved to
fulfill, at least, the work requirements of reorganizing the
cellular plasma membrane along the cell cycle, especially during
cytokinesis. Certainly, the membrane deformations involved
along the constriction stage of cell division in biological cells
request of an expenditure of mechanical work exerted by a
cytokinetic engine, which could however be working under
conditions of minimal energy consumption, or perhaps nearing
the onset for spontaneous constriction.

Evidence of cell division without the action of a cytokinetic
machinery is already accepted to exist in complete kingdoms
of archea, and in some species of bacteria including Chlamydia
and Planctomycetes among others (Erickson and Osawa, 2010).
The bacterial cytokinetic protein FtsZ is not present in all those
organisms, usually calledDftsz (devoid FtsZ), which cells are able
however to undergo membrane constriction and develop two
daughters till mature division without FtsZ. Although Dftsz cells
spend longer times in division, the constriction slowing-down
does not affect their overall growth rate (Erickson and Osawa,
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2010). All Dftsz bacteria that divide without FtsZ apparently use
their motile apparatus to pull the two daughters apart. Under
division the constriction neck appears very elongated, with the
pair of daughters connected by a thin extension, similarly to
the predictions of our current model at low internal pressures
1p < 0, implying 3< 1 (Equation 24) (see Figure 4, first
column). Longitudinal traction-mediated cytofission appears to
be a competent mechanism for cell division in bacterial cells
lacking FtsZ. In those cases, the mechanics of the bending
deformations coupled with the osmotic conditions should be
essential for the correct understanding of this minimal work-
demanding divisional mechanism. Spontaneous constriction via
excess membrane area (see Sections Spontaneous Curvature
Effects and Budding and Spontaneous Fission) seems to be
a mechanism for nearly-spontaneous binary fission in some
mutant strains of B. subtilis, especially L-forms that grow without
a cell wall and divides without FtsZ (Leaver et al., 2009).
Detailed observation of the division process of L-forms of E.
coli, Listeria, and B. subtilis reveals a two-step mechanism that
exploits the large excess area of those Dftsz cells, initiating
the process by a membrane extrusion phase that leads to a
long protrusion, which resolves by cleaving into smaller round
progenies (Leaver et al., 2009; Erickson and Osawa, 2010). A
similar nearly-spontaneous division mechanism was discovered
in the eukaryote Dictyostelium when its myosin II gen was
knocked out (De Lozanne and Spudich, 1987; Knecht and
Loomis, 1987). When those myosin lacking cells (thus no
cytokinetic motor is working out) are allowed to adhere to
a substrate, adhesion forces restore many features of normal
furrow constriction and the cells become able to undergo
“illegitimate division” by following the same mechanism of
traction-mediated cytofission observed in Dftsz bacteria.

Constant maximum radius condition may give a simplified
description of cytokinesis of rod-shaped cells, like E. coli and
Bacillus subtilis, in which the constant maximum radius is
maintained by an external tension (due to a peptidoglycan wall)
and represented in our model by the line tension sm. Under this
condition, our model predicts unchanged poles during all the
constriction process, which is consistent with the approximately
constant shape of the poles in the rod-shaped cells (Field
et al., 1999; Cabeen and Jacobs-Wagner, 2005; Reshes et al.,
2008).

In addition, our model can be extended to other cases,
as constant volume and constant area conditions (see Section
Constant area and Constant Volume Conditions). Constriction
at constant volume requires a nearly 30% increase in area
(Almendro-Vedia et al., 2013), and may describe divided cells
with intense membrane trafficking (Morré, 1975; Nohturfft and
Zhang, 2009), which is known to play an important role in
cytokinesis, (Albertson et al., 2005; Boucrot and Kirchhausen,
2007). On the other hand, if constriction takes place at constant
area, the volume must be reduced in approximately 30%
(Almendro-Vedia et al., 2013), which may describe divided cells
with low or inhibited membrane trafficking. Thus, in constant
area constriction, a greater initial area is required to have the
same final volume. Heat shock has been shown to increase the
area before division (Kutalik et al., 2005; Niven et al., 2008) and to

affect membrane trafficking molecules genes expression, but also
other genes as those of signaling molecules (Kim et al., 2011).

Normal cell division in evolved cells involves a mature
cytokinetic engine able to exert the constriction forces that cleave
the cell in the division site. This is an up-hill process that requires
the expenditure of an important amount of mechanical work by
a constriction machinery. However, other concomitant, perhaps
redundant, constriction mechanisms could be working to favor
the membrane constriction phase of cell division. Redundant
systems are often exploited indeed by living cells (Edelman
and Gally, 2001). As refers the constriction process during
cell division, local creation of negative spontaneous curvature

(C0< 0) might contribute to favor constriction; both, hypertonic
stresses (1p< 0) and biogenic processes of membrane creation
(6< 0) mediated by lipid trafficking also favor constriction.
In addition, biological cells undergoing divisional constriction
there used to be subjected to area and volume restrictions
during the cytokinetic phase of the cell cycle. Despite of his
inherent simplicity, all these ingredients are already accounted
for by our physical model, which could be used to determine
the energy landscape for whole configurational space of
geometrical characteristics and constitutive properties captured
for different classes of cells, from bacteria to eukaryotes. The
optimal pathways for the mainstream mechanism of membrane
constriction can be identified on this mechanical landscape,
and predictions about changing external field parameters
(osmotic stress, membrane tension, etc.) could be realized and
checked in view of the experimental observations. Further
complexities arising from heterogeneousmembrane composition
and additional shear rigidity introduced by skeletal structures
might contribute to complete the picture.

CONCLUSIONS

We have derived general formulas for the more relevant
properties involved in the constriction process of a vesicle in
terms of the spontaneous curvature of the membrane, the surface
tension and the osmotic pressure difference between internal
and external environments. These approximate solutions to the
constricted shape are valid in the limit where bending, pressure
and tension works are comparable, i.e., in the regime where
1pR3m ≈ 6R2m ≈ κ(1− C0Rm)2. Combining a perturbative
expansion for small deformations with a variational approach,
analytical expressions are obtained and compared with the
exact results from numerical computations, getting a good
agreement for all the properties calculated in a broad range of
constriction stages. The spontaneous curvature of the membrane
allows describing vesicles (or simplified cells) with compositional
inhomogeneities in its two monolayers, which result in a convex
(as C0 > 0), concave (as C0 < 0), or flat (as C0 = 0)
membrane in the minimal energy configuration. The surface
tension allows describing cellular membranes whose membrane
trafficking is present without (as 6 ≤ 0) or with (as 6 > 0)
energetic cost (Lecuit and Lenne, 2007; Masters et al., 2013),
whereas the osmotic pressure difference represents conditions
for an external milieu considered hypotonic (1p < 0), isotonic
(1p = 0), or hypertonic (1p > 0) with respect to cytoplasm,
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which allows describing different turgor states (Campbell et al.,
2008). In order to analyze the effects of these parameters (C0,
6, and 1p), we have computed the properties of the constricted
vesicle for different combinations of values in the regime where
these effects and bending energy are comparable. The more
interesting results are those corresponding to the force required
for constriction, since they show under which conditions vesicles
(or cells) constrict more easily (with smaller constriction forces).
This analysis is very useful either to understand the physical paths
of divisional constriction in living cells or to guide the design of
artificial divisomes in self-actuated microsystems. In all cases, if
the vesicles (or cells) are of micro size with a flexible membrane
with κ ≈ 10−20 kBT (Marsh, 2006; Rodríguez-García et al., 2009;
Boal, 2012; Nagle, 2013), the constriction forces obtained are in
the range of picoNewton. This is the range of forces practicable
not only by natural divisomes, based on FtsZ rings in bacteria
and in actomyosin furrows in eukaryotes, but also by other
biomolecular motors. As expected, stronger constriction forces
are required for higher values of surface tension and osmotic
imbalance, conditions usually present in tensioned membranes
of turgid cells, or vesicles. Contrarily, cells, or vesicles, with
negative membrane tension, constrict more easily than tensioned
membranes with lipid trafficking inhibited. Similarly, shrunk
cells, or deflated vesicles, immersed in a hypertonic medium
constrict easier than vesicles inflated by an isotonic or hypotonic
medium. Furthermore, our analysis demonstrates that C0 has
an important effect on the force required for constriction and
vesicles whose membranes have C0 > 0 (i.e., whose membranes
tend to build up in a convex prolate configuration, e.g., cylinder-
like bacteria) are the most easily constricted. However, negative
values of the local spontaneous curvature, due for instance
to local concentrations of lipids with a negatively curvature,
make the membranes prone to bend in a neck-like shape
with a saddle curvature, so favoring spontaneous budding and
symmetric fission. This result gives an idea about the mechanical
constraints of the evolution pathway of the biological cell
division mechanisms. The method can serve to get insight on
other biological processes involving membrane bending, such as
exocytosis and endocytosis, and opens a new avenue of material
design in the field of bioinspired microsystems with the potential
capability to perform the constriction performances intrinsic to
the divisional event necessary for self-replication. The proposed
method is sufficiently general, and powerful, to accommodate
easily further complexities accounting for different membrane

asymmetries/heterogeneities present in real cells. This is being
the object of ongoing work.
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