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It is generally accepted that the activities of the autonomic nervous system

(ANS), which consists of the sympathetic (SNS) and parasympathetic nervous

systems (PNS), are reflected in the low- (LF) and high-frequency (HF) bands in

heart rate variability (HRV)—while, not without some controversy, the ratio of the powers

in those frequency bands, the so called LF-HF ratio (LF/HF), has been used to quantify

the degree of sympathovagal balance. Indeed, recent studies demonstrate that, in

general: (i) sympathovagal balance cannot be accurately measured via the ratio of

the LF- and HF- power bands; and (ii) the correspondence between the LF/HF ratio

and the psychological and physiological state of a person is not unique. Since the

standard LF/HF ratio provides only a single degree of freedom for the analysis of this

2D phenomenon, we propose a joint treatment of the LF and HF powers in HRV within

a two-dimensional representation framework, thus providing the required degrees of

freedom. By virtue of the proposed 2D representation, the restrictive assumption of

the linear dependence between the activity of the autonomic nervous system (ANS)

and the LF-HF frequency band powers is demonstrated to become unnecessary. The

proposed analysis framework also opens up completely new possibilities for a more

comprehensive and rigorous examination of HRV in relation to physical and mental states

of an individual, and makes possible the categorization of different stress states based

on HRV. In addition, based on instantaneous amplitudes of Hilbert-transformed LF- and

HF-bands, a novel approach to estimate the markers of stress in HRV is proposed

and is shown to improve the robustness to artifacts and irregularities, critical issues

in real-world recordings. The proposed approach for resolving the ambiguities in the

standard LF/HF-ratio analyses is verified over a number of real-world stress-invoking

scenarios.
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1. INTRODUCTION

The analysis of heart rate variability (HRV) has become a
standard in the estimation of the state of body and mind
in humans, with multiple indices derived from HRV being
routinely used in the analysis. The HRV is a time series of
the variation of the heart rate over time and is obtained by
identifying the QRS-complexes, the most pronounced feature in
the cardiac-cycle, and calculating the difference in time between
two consecutive occurrences of QRS-complexes, the so called
normal-to-normal interval (NNI). The NNI time series yields
a much more informative basis for further stress analysis than
the raw electrocardiogram (ECG). The heart contains pacemaker
cells which spontaneously depolarize when their membrane
potential reaches a certain threshold (Reisner et al., 2006).
The influx speed of ions which depolarize the cells is partially
driven by the autonomic nervous system (ANS), whereby the
sympathetic nervous system (SNS) increases the conductivity of
the cell membrane, leading to shorter intervals between two heart
beats and hence a higher heart rate, while the parasympathetic
nervous system (PNS) has the opposite effect, leading to a lower
heart rate (Shaffer et al., 2014). Therefore, the HRV provides an
insight into both the two nervous systems (SNS and PNS) and
their interaction, the so called sympathovagal balance.

The features of the NNI time series relevant for stress
assessment are typically obtained in the time and frequency
domains, and more recently through parameters which reflect
structural complexity of the NNI time series (complexity science)
(Williamon et al., 2013). These measurements, methods, and
nomenclature for ECG and HRV have been standardized by a
task force within The European Society for Cardiology and the
North American Society of Pacing and Electrophysiology (Malik
et al., 1996), and their recommendations have been generally
accepted in both research and clinical practice.

Algorithms for the calculation of HRV-parameters are
typically applied to sliding time windows (or epochs) of the
NNI time series. The time domain characteristics include
(among others): (i) standard deviation of NN-intervals (SDNN),
(ii) square root of the mean of the sum of the squares
of differences between successive NN-intervals (RMSSD), and
(iii) proportion of the number of NN-interval differences of
successive NN-intervals which are greater than 50ms, divided
by the total number of NN-intervals (pNN50) (Malik et al.,
1996). However, importantly, these measures do not necessarily
indicate whether a change in HRV had been caused by the SNS or
the PNS. The same issue affects complexity science measures—
the structural complexity of the NNI time series can decrease
because of a clear dominance of a deterministic component in
either nervous system. Frequency domain analyses are better
equipped to discriminate between the contributions of the SNS
and PNS, as they manifest themselves in two non-overlapping
frequency bands. Empirical evidence suggests that the activity
of the SNS influences the low frequency band (LF) of the HRV,
from 0.04 to 0.15 Hz, while the PNS is predominantly reflected
in the high frequency band (HF), from 0.15 to 0.4 Hz, and also
possibly in a proportion of LF (Malik et al., 1996). To differentiate
between the frequency bands in HRV and the total signal powers

contained in these bands, we have adopted a notation whereby
a subscript “p” designates the power in a frequency band of
interest. Having in mind that an increased power in the low
frequency band (LFp) implies a more dominant activity of the
SNS while an increased power in the high frequency band
(HFp) indicates a stronger influence of the PNS, Pagani et al.
(1986) proposed to combine LFp and HFp into the low-to-
high frequency ratio (LF/HF) as an index for the sympathovagal
balance between the two nervous systems. The authors also
studied the correlation between sympathetic nerve activity in
muscles and the information in the frequency bands of HRV in
humans (Pagani et al., 1997). The LFp, HFp, and LF/HF have been
subsequently adopted as markers of stress in a number of studies
(Malliani et al., 1991, 1997; Montano et al., 1994). More recently,
it was realized that the LF/HF is in general not a reliable metric;
for example, a result contrary to that theory was described by
Arai et al. (1989) for physical stress, where the LFp decreased for
increasing exercise levels.

The LF/HF has also received some criticism as a measure
of cognitive and physical aspects of stress. Eckberg (1997)
scrutinized the relationship between SNS and LFp and between
PNS and HFp and found remarkable inconsistencies, a
finding which has itself received much counter-criticism. In a
comprehensive study by Billman (2013b), it was conclusively
shown that sympathovagal balance cannot be quantified by a
single number, the LF/HF, which assumes a simplistic linear
relationship between the activity of the nervous systems and the
frequency bands.

In this study, we deviate from the traditional interpretation
of the sympathovagal balance via the LF/HF and propose a
joint two-dimensional representation of the information in the
low- and high-frequency HRV bands. The so obtained additional
degree of freedom enables a rigorous categorization of stress,
without resorting to a restrictive linear relationship between the
underlying stress level and the LFp and HFp, or a reciprocal
relationship between LFp and HFp. This also allows for more
rigor in the examination of HRV and reduces ambiguities
in stress categorization, as demonstrated over a quantitative
comparison of the effect of standardized mental and physical
stress on the HRV of 10 subjects, and for a range of scenarios.
Finally, for enhanced robustness to ectopic beats and other
abrupt disturbances to the NNI time series, a new metric for
the estimation of the activity in the LF and HF is proposed,
which benefits from the enhanced resolution of instantaneous
amplitudes of the LF and HF time series obtained through the
Hilbert transform.

2. METHODS

2.1. Standard Stress Analysis
In all experiments, NNI time series were created through the
extraction of the timings of R-waves from one or multiple ECG-
channels using our state-of-the-art software for the detection
of QRS complexes (Chanwimalueang et al., 2015). For reliable
estimation, the algorithms for the calculation of stress parameters
are usually applied to time windows with a length of at least
5min. This ensures that sufficiently many oscillations of the
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lowest frequency of interest, which corresponds to the lower cut-
off of LF (0.04Hz =̂ 25 s), are present in every time window
under consideration; in our case, this was 12 cycles for 300 s time
windows and 10 cycles for 250 s time windows. The standard
analyses treat the data either as a whole epoch of interest or
segment the data into overlapping sliding time windows of 5min
in duration and with a 10 s sliding increment. Subsequently,
various features in the time or frequency domains are analyzed
in response to different stress events in a recording. Three
popular characterization parameters in the frequency domain are
the previously mentioned LFp and HFp which—in a simplified
view—are respectively thought to roughly indicate the activity of
the SNS and PNS, and their ratio (LFp/HFp). A large LFp/HFp
value assigns a high stress level to a time window under
consideration, and indicates a strong influence of the SNS, a
weak influence of the PNS, or both. We should reiterate that this
simplified approach has been scrutinized in recent years.

2.2. Two-Dimensional Assessment of
Stress Parameters
Mathematically, the exploitation of the full available information
in SNS and PNS requires two degrees of freedom, yet current
metrics, such as the LF/HF ratio, are one-dimensional and
therefore cannot fully address the impact of the SNS and PNS
on the HRV. For example, a high SDNN can be caused by
an increased activity of either the SNS, the PNS, or both. The
rationale for the ratio of LFp and HFp as a universal stress metric
is that a high LFp indicates high stress (an increase in the activity
of the SNS) while a high HFp indicates low stress (increased
activity of the PNS). To further support the finding that the
LF/HF is neither a unique or optimal univariate metric, we next
introduce a class of arbitrary (univariate) LFp-HFp relationships
which fulfil the requirements for a stress metric, that is: (i) to
increase with an increase in LFp and a decrease in HFp, and
(ii) to decrease with a decrease in LFp and an increase in HFp.
Four such alternative metrics (Pi, i = 2, 3, 4, 5) to quantify
the sympathovagal balance are given below Equations (1b–1e),
against the existing reference LFp/HFp relationship in P1:

a) P1 =
LFp

HFp

b) P2 = b1 ·
LF2p

HFp
+ b2

c) P3 = c1 · LFp − c2 ·HFp + c3

d) P4 = d1 · LF
2
p − d2 ·HFp + d3

e) P5 = e1 ·
LFp

HF2p
+ e2

(1)

The parameters b, c, d, and e in Equation (1) are user-
defined constants. According to the standard LF-HF theory
(Equation 1a), the balance between the SNS and PNS is reflected
in a fixed LFp/HFp ratio, independent of the absolute values
of LFp and HFp. However, according to the requirements in
(i) and (ii) above, Equations (1b–1e) are also valid metrics for
the sympathovagal balance, yet these each yield different results

FIGURE 1 | Illustration of the ambiguity in the LF-HF ratio through a class of

possible relationships between the low- (LF) and high-frequency bands (HF) in

heart rate variability (HRV), given in Equation (1). The metrics P1 to P5
represent possible sympathovagal balance relationships and are designed so

that every metric Pi increases with the activity of the sympathetic nervous

system (SNS), and decreases with an increase in the activity of the

parasympathetic nervous system (PNS). However, observe that for a constant

LFp/HFp ratio, which is believed to indicate a constant sympathovagal

balance, the curves for various Pi , i = 1, 2, ..., 5 in Equation (1) behave quite

differently, which demonstrates the inadequacy of any 1D metrics for the

assessment of stress.

and have different interpretations. This is further demonstrated
in Figure 1, which shows the metrics P1 to P5, generated
for a varying LFp and an arbitrary but realistic LFp/HFp
value of 1.25. Notice that while the assumptions (i) and (ii)
regarding LFp and HFp and their effects on the metrics Pi
are fulfilled for all the curves, for a constant LFp/HFp =

1.25 ⇔HFp = 0.8 · LFp, the curves P2 to P5 behave differently—
from monotonically increasing (P2, P3, P4) to monotonically
decreasing (P5). This further exemplifies the ambiguities inherent
to the one-dimensional class of stress metrics in Equation (1),
and their limitations in the analysis of the multifaceted stress
phenomenon.

Therefore, the use of the traditional LF/HF—or any other
formula in Equation (1)—to unify all LF-HF pairs which
exhibit a certain relationship (e.g., the same LF-HF-quotient
or LF-HF-difference) into a single value induces a loss of
one degree of freedom. This motivates us to propose a new
metric, in the form of a 2D scatter plot of LF vs. HF, which
maintains both existing degrees of freedom and thus utilizes all
available information in LF and HF. In addition, this analysis
framework allows for different psychological and physiological
scenarios to be considered within the same 2D diagram,
therefore making possible both their joint analysis and enhanced
discrimination. (Alternatively, the proposed framework also
enables the consideration of 3D scatter plots, e.g., with HF on
the x-axis, LF on the y-axis, and the time on the z-axis, in
order to examine the evolution of stress levels in time.) Another
important advantage of the proposed LF-HF scatter diagram is
the inherent uncoupling of the LF/HF quotient into its LF andHF
components, which enables the discrimination between LF/HF
pairs with identical ratios, a critical problemwith current metrics,
which do not posses this additional degree of freedom.

The proposed 2D analysis framework is also amenable to
a subsequent use of machine learning; for example, in the
LF-HF scatter plots, the characteristic levels of psychological and
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physiological arousal now occupy their own distinctive areas.
Two such representative areas, when both high LFp and low HFp
activities indicate high stress, and vice versa for low stress, are
shown in Figure 2.

2.3. Instantaneous Amplitude as a Stress
Metric
Real-world recordings pose additional challenges and induce
artifacts in the NNI time series, such as random and sudden

FIGURE 2 | Stress categorization in the proposed 2D LF-HF diagram:

interpretation of characteristic areas in the two-dimensional scatter plot of the

low- (LF) and high-frequency (HF) power or amplitude of heart rate variability

(HRV).

jumps or abrupt changes in heart rate, which cannot be removed
by standard bandpass filtering. Such events may therefore cause
incorrect estimates of the LFp and HFp in the affected data
segments. Furthermore, artifacts with a large amplitude, for
example those produced by a deep breath, are reflected in
approximately rectangular patterns (with a width corresponding
to the length of the applied time window) in the plots for the
LFp, HFp, and LFp/HFp stress metrics over time, as indicated
in Figure 3 in the segment Rest 3. The blue dashed lines in
the panels for LFp, HFp, and LFp/HFp denote the results using
the raw NNI time series and the solid orange lines denote the
results obtained after the removal of sharp peaks (see below).
In order to mitigate the misleading influence of such events,
while maintaining the full use of the information in the LF and
HF frequency bands, we propose a new approach (outlined in
Algorithm 1), whereby after bandpass filtering the HRV signal
into the low- and high-frequency bands, the Hilbert transform
is applied to both resulting time series in order to generate
the corresponding complex analytic signals which exhibit time-
varying amplitudes (Mandic et al., 2013; Looney et al., 2014;
Hemakom et al., 2016), the so called instantaneous Amplitude
(iA) concept (Looney et al., 2008). The so obtained signals are
processed using the same time windows as those used for the
other stress metrics, typically 5min long sliding windows with
a 10 s sliding increment (that is a 4min 50 s overlap). The 20%
largest and smallest signal values in every time window under
consideration are removed and the mean amplitude value is
calculated. This removes the outliers, while at the same time
the essential information is retained: the average amplitude of a
large proportion of the time window for both frequency bands,
the instantaneous amplitude of the low frequency band (LFiA)
and the instantaneous amplitude of the high frequency band

FIGURE 3 | Instantaneous amplitude (iA) as a stress parameter. Observe its advantage over the low- (LF) and high-frequency (HF) power parameters, especially in the

presence of artifacts of short duration and large amplitude, such as in the segment Rest 3: LFiA and HFiA are not affected by them. The results based on the raw NNI

are designated in blue, and the results based on a preprocessed NNI time series, where sharp features have been removed, in orange.

Frontiers in Physiology | www.frontiersin.org 4 June 2017 | Volume 8 | Article 360

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


von Rosenberg et al. LF-HF Scatter Plots for Stress Categorization

(HFiA). For example, the segment Rest 3 in Figure 3 (HR, top
left) contains a short occurrence of anomalously low heart rates
in the middle of the segment. This impedes the correct power
estimation in the LFp and HFp frequency bands (lower middle
and right panels) and yields a curve with a rectangular shape
in the LF-power and HF-power panels (dashed blue line on the
lower middle and right panels). The pre-conditioning of the NNI
by removing sharp peaks from the NNI time series successfully
removed the effect of this peak on the HFp but not on the LFp (the
results after the peak removal are displayed using solid orange
lines in all panels). Removing more components from the NNI
in order to smoothen the LFp would yield a larger difference
between the blue and orange lines for LFp and HFp, and would
cause a loss of even more information in those stress metrics.
For the LFiA and HFiA, such pre-processing is not necessary, as
exemplified by the absence of artifacts in the plots in Figure 3

(top middle and top right panels).

Algorithm 1 A procedure for using the instantaneous amplitude
as a stress metric
1: Bandpass-filter the NNI into two bands, the LF and the HF
2: Apply the Hilbert transform to LF and HF to generate

analytical signals
3: From the complex-valued analytic signals, obtain the

amplitude at every point in time, the iA
4: Divide signals into time windows, typically sliding windows

with a length of 5min and a 10 s increment
5: In every time window, exclude the 20% largest and smallest

values, to remove outliers
6: Calculate the mean for every time window

2.4. Normalization of the Power Bands
Standard one-dimensional analyses of LFp and HFp suggest
that it is useful to investigate relative contributions of the
individual bands to the total power [normalized LFp (LFn) and
normalized HFp (HFn)] instead of, or in addition to, examining
their absolute power values (Pagani et al., 1986). In theory, this
would incorporate the state of the opposing nervous system
into the analysis and would enable cross-subject comparisons
by removing the influence of their individual baseline values.
As a rule of thumb for a reliable estimation of the power
in oscillatory data, the length of time windows should be at
least ten times the period of the lowest frequency of interest.
Therefore, for 5min = 300 s time windows, reliable power
estimation is only possible for oscillations with periods shorter
than 300 s/10 = 30 s (or equivalently frequencies higher than
0.03Hz). In addition, the timing of heart beats effectively defines
the sampling rate of the original non-interpolated NNI time
series, which in effect restricts the maximum frequency that can
be estimated. Therefore, the Nyquist frequency corresponds to
the half of the heart rate, meaning that for heart rates ≥60 bpm,
the reliably quantifiable frequency range for 5min time windows
occupies the frequencies from 0.03Hz (lowest frequency with
10 oscillations in 5min) to 0.5Hz (half of a heart rate of 60 bpm)

(Heathers, 2014). For this frequency range, most of the total
power (TP) of the NNI time series is observed in the LF and HF
bands, and thus:

LFp +HFp ≈ TP (2)

LFn =
LFp

TP
≈

LFp

LFp +HFp
(3)

HFn =
HFp

TP
≈

HFp

LFp +HFp
(4)

⇒ LFn +HFn ≈
LFp

LFp +HFp
+

HFp

LFp +HFp

⇔ LFn +HFn ≈
LFp +HFp

LFp +HFp
= 1 (5)

⇔ HFn ≈ 1− LFn (6)

Observe from Equation (6) that the power normalization
corresponds to projecting all combinations of LFp- and HFp-
values onto a straight line in a 2D scatter plot, given by
HFn ≈ 1 − LFn. In this way, again one degree of freedom is
lost, while Equation (6) indicates that the use of LFn is almost
equivalent to using either HFn or LFn/HFn alone (Heathers,
2014), as these are linearly related. Therefore, in the subsequent
analysis we shall employ mainly absolute powers, while for
reference the normalized powers are shown in tables in the
Results section.

2.5. Categorization of Stress States and
Statistical Tools
The difference in HRV parameters in various practical scenarios
is typically assessed through a statistical comparison of the
distributions of stress parameters; when their means differ with
a high probability, the corresponding change in the event is
considered to have a significant impact on the HRV. As our goal
is to determine the state of a person based on HRV metrics,
being able to differentiate between different scenarios is here
defined as being able to categorize a given scenario based on
HRV-parameters. This is because, even when it is possible to
show that the distributions of stress values for any two scenarios
are different, an observed statistical difference between two
scenarios (e.g., via aWilcoxon rank sum tests) is not sufficient for
successful categorization. For example, two normal distributions
with slightly different means are statistically different, but—
due to the overlap of the two distributions—when only a small
number of data points is available, it is not possible to assign
these points to either distribution with high certainty. In a
graphical representation, when 1D or 2D HRV values in various
scenarios are visually separable, a reliable categorization is
guaranteed.

With this in mind, we shall use the categorization accuracy
(CA) as a metric for a quantitative comparison of performance
between standard 1D parameters and the proposed 2D scatter
plots, i.e., based on the proportions of data points correctly or
incorrectly assigned to the state of the participant. As a classifier,
we employed a support vector machine (SVM) with a polynomial
kernel with two inputs (features in low and high frequency
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bands). In the case of 1D parameters, the second input is set to
a constant value in order to provide categorization in a single
dimension. An SVM is an algorithm to discriminate between data
sets that belong to different categories. When applied to the two-
dimensional data in this study, this approach constructs regions
with data points from various scenarios, whereby the margins
between the boundaries of the so identified different regions and
the data points closest to those boundaries are maximized. In this
way, data points in a given area are—according to this model—
most likely to arise from circumstances similar to the scenarios
that were used to train the SVM. For a more detailed description
of an SVM we refer to the Appendix in Supplementary Material.
With a kernel SVM, all values in the 2D-space were able to be
associated to a stress category.

The p-values of statistical differences between the scenarios
in Part 1 are provided in the Results section. For each
stress metric, Wilcoxon rank sum tests were employed on
one average value per subject and scenario. Moreover, using
Wilcoxon rank sum tests, the categorization accuracies of
standard one-dimensional metrics are compared with the
categorization accuracies of the proposed two-dimensional
metrics.

2.6. Experimental Setup
For a comprehensive verification of the proposed 2D analysis,
two sets of recordings were performed. In the first scenario,
ten subjects performed exactly the same task under the same
circumstances, in order to compare traditional (normalized and
non-normalized) power-related stress indices to the proposed
approach which utilizes the instantaneous amplitude of the
two frequency bands. Furthermore, this data set, enabled a
quantitative comparison between the performances of the
classifiers based on both one-dimensional HRV metrics and
the suggested method in two dimensions. After quantitatively
showing the advantages of the proposed methods on this
larger data set, a range of different experiments were
performed to conclusively demonstrate the possibility
of categorizing the many types of stress, or in other
words, to enrich Figure 2 with enhanced discriminative
ability.

2.6.1. Part 1: Standardized Protocol for Mental and

Physical Stress
While the interpretation of the two areas in Figure 2 (resting
and moderately stressed) in the two-dimensional LF-HF
representation is well understood, the association of a variety
of possible physiological states to the full available span of LF-
HF ranges remains a challenge, for example, when the LF and
HF values are close to zero. To shed more light on the mapping
of the whole spectrum of physical and mental states onto our
2D representation, especially when examining the difference
between light physical and light mental stress, we designed an
experiment which includes segments of mental and physical
activities, together with resting periods for determining the
baseline and recovery periods before, in between, and after the
activities.

The protocol was as follows:

• 15min: sitting, eyes closed
• 1min: sitting, explanation of the next part
• 15min: sitting, mental math
• 15min: sitting, eyes closed
• 1min: standing up, explanation of the next part
• 15min: exercise on a stepper at a fixed rate
• 10 s: returning to the chairs
• 15min: sitting, eyes closed

A total of five pairs of participants undertook the experiment,
whereby in the mental math section the two participants in
each pair competed against one another; one point was awarded
for every correct response and one subtracted for every wrong
answer. All trials were performed according to video instructions
which dictated the duration of the intervals and the stepping
frequency of the physical exercise (1 step per second), thus
ensuring a uniform procedure across recording sessions and
subjects. Furthermore, all trials started at the same time in the
afternoon (between 14:05 and 14:20) within an 8-day period, the
participants were instructed not to eat in the hour before the
start of the experiment, and the temperature of the room was
kept constant at 22◦C. During the experiment, talking was only
permitted during transition periods and to answer the mental
math questions. The participants were male, between 23 and 38
years of age (mean: 28.6 years) and did not have any known health
complaints. All participants were physically active, 9 participants
had a body mass index (BMI) between 18.5 and 25 (=̂ healthy
weight) and 1 participant had a BMI between 25 and 30
(=̂ overweight).

2.6.2. Part 2: Further Applications
To further explore the benefits of the proposed analysis
framework over established methods, in Part 2, the aim was to
evaluate the proposed 2D analysis framework over a wide range
of human activities, which included:

1. Meditation: The ECG of one participant during two sessions
of Samatha meditation was recorded. The three stages were
Pre Meditation, Sitting Meditation, and Post Meditation.

2. Conference: A subject was recorded while giving an oral
presentation at a conference. The talk lasted for 20min
and further 30min were recorded before and after the talk
(Chanwimalueang et al., 2016).

3. Pain: A patient was recorded immediately before and during
a varicose vein surgery that consisted of two parts, one
comparably pain-free (Ablation) and the other more painful
(Avulsion).

4. Mental stress: A subject underwent a protocol loosely based
on the TSST, comprising different psychologically stressful
events and resting periods (Kirschbaum et al., 1993), such as
preparing for a presentation (10min), giving a presentation
(7min), an arithmetic test (5min), and a resting period
(16min).

5. Emergency: The heart rate of a cardiologist was recorded
before, during and after the simulation of an emergency in a
cardiology department.
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FIGURE 4 | The standard univariate and the proposed bivariate stress parameters for 300 s sliding time windows, for the participants 1–3 in the experiments in Part 1.

Upper: Stress parameters in 1D, that is, heart rate (HR), power in the low (LFp) and high frequency band (HFp), their ratio (LFp/HFp), the instantaneous amplitude in LF

(LFiA ), and the instantaneous amplitude in HF (HFiA ). Lower: Proposed 2D stress parameters: LFiA-HFiA scatter diagrams for the instantaneous amplitude (iA) of LF

and HF, where the background color designates the partitioning into stress categories, achieved through the SVM classifiers. While it is not possible to distinguish

between the stress scenarios using 1D parameters (upper), the separation using 2D representations (upper) was perfect.

3. RESULTS

3.1. Part 1: Standardized Protocol for
Mental and Physical Stress
In this experimental setup, the time windows were 300 s in
duration, while in order to remove possible residuals from

adjacent periods, buffer segments of 120 s were added at the start
and the end of each scenario. The analysis was performed both
qualitatively (visual inspection, see Figure 4) and quantitatively,
with the results summarized in Table 1. As mentioned in
Section 2.5, the goal of Part 1 was to establish the suitability of the
proposed 2D analysis of HRV parameters to categorize different
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stress scenarios. The upper part of Figure 4 shows the evolution
of 1D stress parameters over time, while the lower part displays
the iA of the low and high frequency bands in a 2D scatter
plot. The color-coded points indicate the observed states in the
experiments and corresponding regions are color-coded in a
similar shade.

We should mention that for some subjects, it was possible to
distinguish between different stress states based on conventional
1D stress parameters, however, in most scenarios, the analysis
based on 1D stress parameters did not even outperform the

TABLE 1 | Categorization accuracy and statistical analysis for the scenarios

Rest 1, Math, and Exercise across all ten subjects in Part 1.

Metric M1 M2 M3

CA (%) pR−M pR−E pM−E CA (%) CA (%)

LFp 58.4 0.52 0.24 0.12 46.8 80.4

HFp 52.1 0.47 <0.01 0.06 59.5 88.6

LFp/HFp 48.8 0.16 0.16 1.00 52.1 79.9

2Dp 76.7 nA nA nA 75.7 98.3

LFn 44.7 0.31 0.24 0.68 55.5 75.7

HFn 50.7 0.09 0.09 0.91 57.5 80.3

LFn/HFn 48.4 0.16 0.16 1.00 52.1 79.9

2Dn 61.7 nA nA nA 71.2 92.0

LFiA 40.9 0.16 0.08 0.04 57.8 78.3

HFiA 57.7 0.14 <0.01 0.12 65.3 94.0

LFiA/HFiA 54.7 0.03 0.02 0.31 56.7 83.2

2DiA 75.1 nA nA nA 85.9 99.6

Categorization based on the raw, absolute, stress parameters is given in columnM1, while

panel M2 shows the values after standardizing (for each subject separately) by subtracting

the median values of the “baseline” segment Rest 1 from the whole recording (this

improved cross-subject comparisons), and column M3 shows the values produced with

the categorization performed for all subjects individually. The statistical differences were

calculated for one-dimensional parameters and denoted as follows: pR−M: Rest 1 and

Math, pR−E : Rest 1 and Exercise, pM−E : Math and Exercise, while the two-dimensional

parameters are denoted with 2Dj , j ∈ {p, n, iA}. The values in bold are the categorisation

accuracies for the proposed 2D analysis.

raw heart rate, when used as an indicator. The difficulty with
using only the heart rate (or any other 1D index) is the inability
to distinguish between two stressful events which arise from
very different circumstances but lead to similar heart rates (or
respective stress values). For instance, the heart rates for Subjects
1 and 3 (Figure 4, upper) were almost identical during Math
and Exercise, and thus indistinguishable by standard 1D analyses,
however, the respective scatter plots (Figure 4, lower) permit a
clear discrimination between the two states.

Next, we performed a statistical assessment of the
discrimination ability of the considered stress features over
the experimental scenarios through Wilcoxon rank sum tests
of the distributions of values of all participants in Rest 1, Math,
and Exercise (see Table 1, M2). For almost all comparisons,
the p-values were smaller when considering the iA than when
considering the power of the low- and high-frequency bands.
Since the p-values are not designed to be a categorization
parameter, as outlined in Section 2.5, the following analysis will
focus on the categorization accuracy rather than on p-values.

Compared to their corresponding resting segments, all
subjects exhibited a lower HFiA and almost all a lower LFiA in
the Exercise segment, but their absolute values varied between
the participants. In order to address this problem and to be
able to compare the reaction of different subjects to the same
circumstances, the median value of stress parameters during
the first resting period of each subject was subtracted from the
respective values in the other segments. Figure 5 summarizes
the responses of the subjects to different scenarios. Overall, a
comparison of Exercise and Rest 1 reveals a decrease in HFiA
for almost all subjects while LFiA remained either at a similar
level or decreased. The stress response to the Math segment
was more varied across participants; in most cases, the LFiA
increased and the HFiA decreased, compared to the initial resting
period. This may be caused by different physiologies or different
degrees of engagement/competitiveness. Similarly, the state of the
participants in the resting period after Math can depend on the
self-evaluation of their performance in the test. Those potential
psychological variabilities did not exist for Exercise, though the

FIGURE 5 | Standardized stress parameters in a 2D LFiA-HFiA scatter diagram for all 10 participants in the experiments in Part 1, with 300 s time windows. The values

for the instantaneous amplitude (iA) of the low (LFiA ) and high frequency band (HFiA ) of individual participants were standardized by subtracting the median values of

Rest 1.
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FIGURE 6 | The standard univariate and the proposed bivariate stress parameters for 250 s sliding time windows, for experiments in Part 2. Upper: Stress parameters

in 1D, that is, heart rate (HR), power in the low- (LFp) and high-frequency band (HFp), and their ratio (LFp/HFp). Lower: Proposed 2D stress parameters. The

LFiA-HFiA scatter diagrams of the instantaneous Amplitude (iA) in LF and HF, where the background color designates the partitioning into stress categories, achieved

through the SVM classifiers. The scatter diagrams in the lower part are more suitable to differentiate between different scenarios than the 1D graphs in the upper part.

last resting period may depend on the ability of the participants
to recover from physical exercise.

After the standardization of the HRV values, the
categorization accuracy improved, as displayed in Table 1 from
panels M1 toM2 (85.9%). The accuracy for all 2D parameters was
substantially higher than for their respective 1D counterparts.
Furthermore, the best results were achieved using the proposed
iA and, as expected, the performance of the normalized
powers was the lowest among the three (absolute and
normal powers and instantaneous amplitudes) in the 2D
representation.

3.2. Part 2: Further Applications
Figure 6 (upper) shows 1D stress parameters over time,
calculated for the five experiments with different scenarios
and subjects, while Figure 6 (lower) displays the corresponding
color-coded 2D scatter plots. The results of the quantitative
analysis are shown in Table 2 and for the analysis and figures
in this section, 250 s time windows were used, as some scenarios
lasted for less than 5min.

For the Conference scenario, the value of LFp during the
Presenting stage differed considerably from the Pre period, but
was similar between the Presenting and Post segments. The

values of HFp enabled a discrimination between Presenting
and Pre and between Presenting and most of Post. When
combining LFp and HFp into LFp/HFp, the beginning and end
of Presenting exhibited a high LFp/HFp value and the middle
part had a similar amplitude to some peaks in the Pre and
Post stages. Although no clear difference could be seen between
Pre and Post, the proposed 2D scatter plots in Figure 6 (lower)
were able to clearly distinguish between Presenting and the
segments before and after. As a consequence, categorization
accuracies based on the 2D parameters were considerably higher
(CA(2DiA)= 100%) than the best accuracy for the 1D parameters
(CA(HFp) = 89.1%). Overall, Post had lower LFp and higher
HFp values, with the values with lower HFp representing the time
closest to finishing the presentation. This is not unexpected, since
anxiety is likely to reduce after the presentation.

The participant in Meditation exhibited large differences
between the Meditation stage and the periods before and after,
for all stress parameters. The categorization accuracies were low
since the stages Pre and Post are essentially the same. Based on
this experiment, a state of very low physical exercise (sitting)
and high relaxation (meditating) can be assigned to the upper
left corner of the two-dimensional LF-HF scatter diagram in
Figure 7.
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TABLE 2 | Categorization accuracy (CA) for the stress scenarios in the

experiments in Part 2.

Metric Categorization accuracy (CA)(%)

Conference Meditation Pain Mental stress Emergency

LFp 77.9 75.6 37.1 75.6 89.5

HFp 89.1 80.5 81.7 64.1 93.8

LFp/HFp 81.2 84.6 64.9 81.7 64.2

2Dp 98.5 82.9 86.1 99.2 98.8

LFn 80.0 75.6 64.6 82.4 64.8

HFn 81.2 82.9 64.4 80.2 64.2

LFn/HFn 81.2 84.6 64.9 81.7 64.2

2Dn 88.2 84.6 66.3 93.1 82.1

LFiA 77.9 75.6 50.7 84.0 89.5

HFiA 80.6 75.6 80.2 63.4 100.0

LFiA/HFiA 81.2 81.3 59.9 80.9 61.7

2DiA 100.0 81.7 86.9 100.0 100.0

The values for Meditation are low because Pre and Post are practically the same states

(see Figure 6). Otherwise, the accuracy for Meditation is 100.0% for all metrics. The

values in bold are the categorisation accuracies for the proposed 2D analysis.

FIGURE 7 | Stress categorization within the proposed two-dimensional LF-HF

representation for various types of stress.

In Pain, only the scatter plot of iA could distinguish, without
ambiguity, between the painful part of the surgery (Avulsion)
and the other stages. Furthermore, the overlap between Ablation
and Pre was small in the scatter plot, while just one standard
1D feature, HFp, differed between these two scenarios.

Of all one-dimensional parameters in Mental Stress (see
Experimental setup, Part 2, topic 4), only HFp indicated an
increase in the stress level (i.e., a reduced activity in HFp)
until Arithmetic, and a decrease afterwards. The LFp/HFp did
not enable a differentiation between Pre and Presentation or
Arithmetic and Post. However, when viewed in 2D, as desired,
the overlaps between various scenarios were small, a crucial
feature which is not possible to achieve with 1Dmetrics shown in

Figure 6 (upper). Accordingly, the categorization accuracies for
2Dp and 2DiA were at least 16% higher than the best performance
for the respective 1D parameter (see Table 2).

During the simulation of a cardiac Emergency, LFp and
HFp were different between the actual simulation and the
stages before and after. Observe that the LFp/HFp did not
enable a differentiation between Simulation and Post based on
1D parameters, mainly because of an increase in LFp during Post.
In the 2D scatter plots, Simulation and Post could be clearly
differentiated, with a categorization accuracy of 100.0%.

4. DISCUSSION

Figures 4–6 and the results of the quantitative analyses in the
respective tables (Tables 1, 2) indicate that:

1. In most cases the categorization based on the proposed iA
performed similarly or better than based on the respective LF
and HF powers, and

2. 2D scatter plots were superior to 1D analyses at distinguishing
between different stress scenarios.

While in some cases a 1D stress metric achieved an accuracy
similar to that of the 2D representation, the best performing
1D parameter varied across different experiments, so that the
“universal” one could not be known in advance. In all cases,
the most reliable and accurate results were obtained within the
2D analysis framework based on the instantaneous amplitude.

Overall, the results indicate that for more accurate
characterizations of stress it is necessary to personalize the
categorization of stress scenarios according to the participating
individuals and their individual baselines. This makes it possible
to assign different states of body and mind to the whole span of
areas in the 2D scatter plots (see Figure 7). We would also like to
highlight that for a more rigorous categorization of stress states
it is necessary to consider non-overlapping test and training data
sets. This, however, requires a specifically designed large-scale
study, and is thus out of the scope of the current proof-of-concept
study. It is reasonable to assume that a superior categorization
on a training data set, as demonstrated here, will also lead to an
enhanced categorization on the test data set, relative to the 1D
counterpart metrics. While the latter statement does not hold in
general, it is the case here, as it is mathematically not possible
for the SVM to reduce its performance when considering two
parameters instead of one. In case one of the inputs does not
contain any meaningful important information, the SVM would
categorize the data points without it by creating vertical or
horizontal decision boundaries, or in case the ratio was the
optimal parameter, the SVMwould categorize along the diagonal
in the 2D scatter diagrams. This all indicates the usefulness of
the proposed 2D HRV parameters for stress categorization; our
future work will aim to create personalized 2D stress metric for a
larger cohort of participants.

Generally, it is assumed that the HFp is low for mentally or
physically stressful events and high for periods with low stress,
and vice versa for the LFp. For the HFp, this was proven correct in
all the considered experiments. However, the LFp did not follow
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the expected behavior. In some very stressful situations (and
in very painful ones—the participant in Pain gave the surgery
a pain score of 7/10), such as Presenting, Avulsion, Arithmetic,
and Simulation, the LFp had the lowest values in the respective
experiments.

In addition to the reported influence of the heart rate on
HRV, as described in Billman (2013a) and Sacha (2014), in an
attempt to explain the low LFp values during physical exercise
(confirming a similar result obtained by Arai et al., 1989) we focus
on the ANS activity and its influence on the HRV. Recall that,
instead of the total mean level of the activity of PNS and SNS, the
HRV only reflects its variation, that is the fluctuation around its
mean level (Malik et al., 1996), and not the absolute activity level.
Our conjecture is that during instances of high sympathetic tone,
the concentration of stress messengers (neurotransmitters and
hormones) might be close to saturation, leading to a reduction in
the LF and HF band magnitudes, a subject of a future study. This
finding further highlights the importance of considering LF and
HF jointly (e.g., within a scatter diagram) rather than through
univariate LF/HF measures, as a low LFp/HFp due to a low LFp
has a completely different meaning from a low LFp/HFp due to
a high HFp, i.e., physical exercise vs. a state of relaxation (see
Meditation).

CONCLUSION

This study has demonstrated that a simultaneous consideration
of the activity of the low frequency band (LF) and high frequency
band (HF) in heart rate variability (HRV) through 2D scatter
diagrams, instead of standard univariate metrics such as the
LF/HF ratio, significantly improves the discrimination ability
in the analysis of physical and mental stress. The additional
degree of freedom, obtained through 2D scatter diagrams, has not
only made it possible to accurately discriminate between stress
states, but also to make unnecessary the restrictive assumption
of a linear relationships between the activity of the nervous
systems and the power of the frequency bands, or a reciprocal
interaction between the power in the low frequency band (LFp)
and power in the high frequency band (HFp). Comprehensive
analyses over a range of real-world scenarios have demonstrated
that the proposed framework provides statistically significant
discrimination across all subjects, and over various stress
scenarios and resting periods. Future work will consider the

personalization of the 2D diagrams in order to more accurately
categorize the stress of an individual.

The proposed 2D analysis framework, together with the
considered real-world and lab-based scenarios, has allowed us
to enhance the discrimination ability in the stress categorization
diagram. Note that the considered experiments did not include a
case where the same subject undergoes high mental stress (e.g., a
conference presentation) and low physical stress; this will be
examined in a follow-up study.
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