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Chronic peritoneal dialysis (PD) therapy is equally efficient as hemodialysis while providing

greater patient comfort and mobility. Therefore, PD is the treatment of choice for several

types of renal patients. During PD, a high-glucose hyperosmotic (HGH) solution is

administered into the peritoneal cavity to generate an osmotic gradient that promotes

water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately,

PD has been associated with a loss of peritoneal viability and function through the

generation of a severe inflammatory state that induces human peritoneal mesothelial

cell (HPMC) death. Despite this deleterious effect, the precise molecular mechanism of

HPMC death as induced by HGH solutions is far from being understood. Therefore,

the aim of this study was to explore the pathways involved in HGH solution-induced

HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and

Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing

agents. In line with this, HPMC death was induced solely by increased oxidative stress.

In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also

participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in

agreement with previously shown in rat PMC apoptosis. These findings contribute toward

fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial

cell death induced by high-glucose solutions during peritoneal dialysis.
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INTRODUCTION

Peritoneal dialysis (PD) is a renal replacement therapy used
to treat patients undergoing end-stage kidney disease. This
extrarenal procedure for the depuration of toxins and solutes is
based on the underlying physiology of peritoneal tissue, which
is formed by a monolayer of mesothelial cells, submesothelial
connective tissue, and mesothelial capillaries. Using diffusive
and convective mechanisms, this tissue acts as a semipermeable
membrane that allows the movement of water and solutes
from peritoneal blood to the dialysis solution (Mortier et al.,
2004; Goffin, 2008; González-Mateo et al., 2009; García-López
et al., 2012). During PD treatment, a high-glucose hyperosmotic
(HGH) solution is repeatedly administered into the peritoneal
cavity to create an osmotic gradient favorable to the transport
of water and solutes. Three types of HGH solutions are used to
perform PD: 1.5% (345 mOsM), 2.5% (395 mOsM), and 4.25%
(485mOsM) dextrose. Of these, 4.25% dextrose is frequently used
in cases of overload volume and in patients with chronic impaired
ultrafiltration.

Several studies confirm that PD therapy is comparable to
hemodialysis in terms of survival, blood depuration, and body
fluid balance (Teixeira et al., 2015). However, PD is associated
with functional and morphological changes in the peritoneal
tissue that impair efficiency (Davies et al., 2001; Williams et al.,
2002; Kim, 2009). Indeed, an elevated glucose concentration has
devastating consequences on peritoneal tissue, inducing severe
inflammation during early treatment and peritoneal mesothelial
cell death and tissue fibrosis during later treatment (Krediet,
1999; Davies et al., 2001; Książek et al., 2007b; Kim, 2009; Yokoi
et al., 2013).

Several studies support a PD-induced loss of mesothelial
cells. For example, after 12 months of PD, 7% of patients
exhibit a partial or total denudation of mesothelial cells from
the mesothelial monolayer (Ishibashi et al., 2002; Tarng, 2002;
Krediet and Struijk, 2013). Additionally, human peritoneal
biopsies in patients that underwent PD for 14 months showed a
total loss of mesothelial cells in 40% of cases and partial deficiency
in 34% of cases (Van Biesen et al., 2006; Goffin, 2008; González-
Mateo et al., 2009). The main feature of PD-induced peritoneal
damage is decreased ultrafiltration capacity in association
with neoangiogenesis and a submesothelial accumulation of
extracellular matrix proteins (Davies et al., 2001; Williams et al.,
2002; Mortier et al., 2004; Goffin, 2008). Furthermore, some
research suggests that the HGH solutions used in PD may
induce mesothelial cell death (Ishibashi et al., 2002; Tarng, 2002;
Boulanger et al., 2004; Krediet and Struijk, 2013; Hung et al.,
2014). However, the underlying molecular mechanismmediating
peritoneal mesothelial cell death as induced by an HGH solution
during PD is not well-studied.

Cell death is mediated by several factors, including
intracellular calcium ([Ca2+]i) and sodium ([Na+]i)
concentration changes, reactive oxygen species (ROS)-induced
oxidative stress, kinase activities, and ion channel activations
(Henriquez et al., 2008; González-Mateo et al., 2009; Becerra
et al., 2011; Nuñez-Villena et al., 2011). Under aerobic conditions
or in response to extracellular inducers, living organisms

generate ROS through metabolic pathways. The generation of
ROS frequently involves the production of the superoxide anion
(O•−

2 ), hydrogen peroxide (H2O2), and the hydroxyl radical,
resulting in increased intracellular oxidative stress. To maintain
homeostasis, reducing agents such as catalase, glutathione S-
transferase, and antioxidant molecules are produced to decrease
oxidative stress (Dröge, 2002). It is well-accepted that patients
subjected to PD using HGH solutions exhibit increased oxidative
stress as a combined consequence of enhanced ROS generation
and decreased antioxidant mechanisms (Taylor et al., 1992; Ha
and Lee, 2000; Tarng, 2002).

It is currently accepted that the main source of ROS in
non-phagocytic cells is the enzymatic complex nicotinamide
adenine dinucleotide phosphate-oxidase (NAD(P)H oxidase)
type 2 (NOX2; Li, 2003; Lee et al., 2004). The mechanism for
inducing NAD(P)H oxidase activity is triggered by activation
of the phospholipase C (PLC)/PKC and PI3K/Akt pathways.
These pathways phosphorylate serine residues in several subunits
of NAD(P)H oxidase (el Benna et al., 1994; Park and Babior,
1997; Dang et al., 1999; Lopes et al., 1999; Babior, 2002, 2004;
Simon and Stutzin, 2008). Additionally, it has been reported
in rat peritoneal mesothelial cell (RPMC) the participation
of the PI3K/Akt pathway in RPMC death induced by high
glucose (Kaifu et al., 2009), suggesting that a similar mechanism
was implicated in human cells. However, it is unknown if
these signaling pathways are involved in HGH solution-induced
human peritoneal mesothelial cell (HPMC) death.

Therefore, the aim of this study was to determine the
underlying mechanism mediating HGH solution-induced
HPMC death. Our findings indicate that when exposed
to a HGH solution, HMPC exhibits extensive cell death
involving Ca2+ and Na+ ions and oxidative stress with the
participation of the PLC/PKC/NOX2 and PI3K/Akt pathways.
Taken together, these results provide novel information
for more fully understanding the underlying molecular
mechanism mediating peritoneal mesothelial cell death
induced by a high-glucose solution during PD. The results
of this report may be useful for improving current dialysis
therapies.

MATERIALS AND METHODS

Primary Human Peritoneal Mesothelial Cell
Culture
Primary human peritoneal mesothelial cells (HPMC) were
obtained from an overnight (8 h) peritoneal lavage of seven
patients admitted to the Hospital Clínico Universidad de
Chile. The patients were under 50 years of age, presented
neither systemic inflammatory diseases nor peritonitis and
hemoperitoneum episodes, and were non-diabetic. HPMC were
obtained from patients that had initiated PD within the first
month prior to sampling. The peritoneal lavage bags were stored
at 4◦C for 1 h, and then 200mL were extracted from the bottom
of each bag. Cells were pelleted by centrifugation at 3000 rpm
for 5min and then cultured with Earle’s M199 medium with 10%
FBS, 2% Biogro-2, 50 UI penicillin, and 50µg/mL streptomycin
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in a 5%:95% CO2:air atmosphere at 37◦C. Every 48 h, the culture
medium was changed. After 10 days of culturing, a mesothelial
cells monolayer was obtained for experimental use.

The cultures were rich in HPMC that contained no detectable
levels of cell contaminants, such as leukocytes and fibroblasts.
The initial culture confluences were 80–90%, and cultures were
used up to five consecutive passages. Each culture was grown
from individual effluents. Each experiment was performed using
an individual culture, and the obtained results were included in
respective graphs.

This study and respective protocol were approved by and
carried out in accordance with recommendations from the
Bioethics Commission of the Universidad de Chile, with written
informed consent from all subjects. All subjects were required
to provide written informed consent for study inclusion, in
accordance with the Declaration of Helsinki.

Experimental Isotonic and High-Glucose
Hypertonic Solutions
HPMC monolayers were exposed to an isosmotic 300 mOsM
solution (composed of 5.5mM glucose and 1% BSA in a culture
medium) and the following hyperosmotic solutions: 345 mOsM
solution (composed of 45 mM glucose and 1% BSA in a culture
medium), 395 mOsM solution (composed of 95mM glucose
and 1% BSA in a culture medium), and 485 mOsM solution
(composed of 185mMglucose and 1%BSA in a culturemedium).
Osmolarity was measured with a micro-osmometer (Advanced
Instruments, Norwood, MA, USA).

Cell Death Determinations
Lactate dehydrogenase release: Cell death was determined by
measuring lactate dehydrogenase activity released into the
culture medium. After cells were incubated with the solutions
described above for 24 h, lactate dehydrogenase activity in cell
supernatants was determined by a colorimetric end-point kit
according to the manufacturer’s instructions (Roche, USA).
Lactate dehydrogenase activity was measured at 590 nm. A
calibration curve was produced to ensure linearity in the
range studied. Various independent experiments were performed
in triplicate. The background was subtracted, and data were
expressed as the fraction of maximum release measured in the
presence of 1% Triton X-100 (Sigma, USA).

Propidium iodide (PI)/Annexin V-FITC double labeling: Cells
were harvested by centrifugation at 800 × g for 10min, and
the pellet was suspended in 100µL PBS. Next, cells were
incubated with PI (10µg/mL, Sigma) and Annexin V-FITC (BD
Pharmingen, San Diego, CA) according to the manufacturer’s
protocol for 20min at room temperature in the dark. The
cells were then washed and analyzed immediately by flow
cytometry (FACSCanto, BD Biosciences, San Jose, CA) The
PI and Annexin V excitation/emission wavelengths used were
488/>610 nm and 488/515–545 nm, respectively. A minimum
of 30,000 cells/sample were analyzed. PI intensity analysis was
performed using the FACSDiva software version 4.1.1 (BD
Biosciences).

PI staining: Cells were harvested by centrifugation at 800 × g
for 5min, and the pellet was suspended in 200µL PBS.

Afterwards, cells were stained with PI (10µg/mL, Sigma) for
20min at room temperature in the dark. Then, cells were
washed, and DNA content was analyzed with a flow cytometry
system (FACSCanto, BD Biosciences, San Jose, CA). The
PI excitation/emission wavelength used was 488/>610 nm. A
minimum of 10,000 cells/sample were analyzed. PI intensity
analysis was performed using the FACSDiva software version
4.1.1 (BD Biosciences; Simon and Fernández, 2009; Simon et al.,
2010).

All solutions used in the flow cytometry experiments (i.e.,
washing and testing) were acquired from BD Biosciences and
used according to the manufacturer’s instructions.

Detection of Intracellular Ca2+, Na+,
Potential Membrane, and ROS
HPMC were treated with the HGH solution and then loaded
with different fluorescent dyes. For Ca2+ determinations:
Either 5µM Fluo-3 or 15µM Fura-Red were used. Both of
these dyes are Ca2+ specific and increase (Fluo-3) or decrease
(Fura-Red) in fluorescent emission intensity upon binding
Ca2+ (Nuñez-Villena et al., 2011). The Fluo-3 and Fura-
Red excitation/emission wavelengths used were 488/533 and
488/>640 nm, respectively. For Na+ determinations: Dying
procedures used 5µM CoroNa Green-AM, a specific Na+

dye that increases in fluorescent emission intensity upon
binding Na+ (Becerra et al., 2011). The CoroNa Green-AM
excitation/emission wavelength used was 488/515–560 nm. For
membrane-potential measurements cells: The cell-membrane
depolarization indicator bis-(1,3-dibutylbarbituric acid)
trimethine oxonol [DiBAC4(3); (Becerra et al., 2011)] was
used. A region of interest used to measure membrane
potential was identified in the live cell subpopulation, in
accordance with previous descriptions (Becerra et al., 2011).
The DiBAC4(3) excitation/emission wavelength used was
488/510 nm. For ROS measurements: Either 5µM DCF (2′,7′-
dichlorodihydrofluorescein diacetate [H2DCFDA]) or 10µM
DHE (dihydroethidium) were used. These two florescent
indicators exhibit increased fluorescent emission intensity
upon binding ROS. The DCF and DHE excitation/emission
wavelengths used were 488/520 and 488/>580 nm, respectively.
All dyes were obtained from Invitrogen.

Dyes were added for 15–30min at room temperature in the
dark and then washed three times before measuring [except
DiBAC4(3); (Becerra et al., 2011)]. The labeled cells were
then analyzed immediately by flow cytometry (FACSCanto, BD
Biosciences, San José, CA). A minimum of 10,000 cells/sample
were analyzed. Live cells were counted. Cellular dye intensity
analysis was performed using the FACSDiva software v4.1.1
(BD Biosciences). All solutions used in the flow cytometry
experiments (i.e., washing and testing) were acquired from
BD Biosciences and used according to the manufacturer’s
instructions.

Small Interfering RNA Transfection
SiGENOME siRNA against NOX2 (siNOX2) and non-targeting
siRNA (siCTRL) were used as control sequences (Dharmacon,
Lafayette, CO). Transfections were performed using the
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DharmaFECT 4 transfection reagent (Dharmacon) according to
manufacturer protocols.

Western Blotting for NOX2
Cells transfected with siNOX2 or siCTRL were lysed, and
proteins were extracted. Whole cell extracts were subjected
to 10% SDS-PAGE. Resolved proteins were transferred to a
nitrocellulose membrane, blocked, and then incubated overnight
with the anti-NOX2 antibody (Abcam). Tubulin was used as
a loading control (Sigma). Protein content was determined by
densitometric scanning of immunoreactive bands, and intensity
values were obtained through the densitometry of individual
bands as compared with tubulin and normalized against siCTRL.

Reagents and Solutions
The following were purchased from Calbiochem (USA): non-
selective calcium channel blocker 2-aminoethoxydiphenyl borate
(2-APB, 10µM), L-type Ca2+ channel blocker nifedipine (1µM),
non-selective sodium channel blocker (Ambroxol, 1µM), Na+

channel blocker amiloride (1µM), cell-permeable calcium
chelator BAPTA-AM (5µM, pulse for 4 h), Catalase (10µM),
dipheniliodonium (10µM), apocynin (1mM), Rotenone
(1µM), Allopurinol (10µM), 2-[1-(3-dimethylaminopropyl)-
1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide (BIM, 50µM), Gö
6976 (1µM), N-acetylcysteine (NAC, 5mM), U73122 (10µM),
and gluthathione (GSH and GSSG, 10mM). The following
were purchased from Tocris (USA): L-NG-arginine methyl
ester hydrochloride (L-NAME, 10µM), the NO scavenger
2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO,
10µM), 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
hydrochloride (Ly294002, 20µM), 1,5-Dihydro-5-methyl-
1-β-D-ribofuranosyl-1,4,5,6,8-pentaazaacenaphthylen-3-
amine (API-2 10µM), G–protein inhibitor (SCH 202676
hydrobromide, 10µM), and tyrosine-kinase receptor inhibitor
(AG 18, 50µM). All reagents were added 1 h before HGH
solution exposure and were maintained during the experiments.
All inhibitors and blockers were tested to ensure efficiency before
use.

Experiments were performed in Earle’s M199 medium
solution with 1% FBS, 2% Biogro-2, 50 UI penicillin, and
50µg/mL streptomycin containing the following (in mM): NaCl
130, KCl 2.7, Na2HPO4 10, KH2PO4 1.8, CaCl2 2.5, MgCl2 1,
HEPES 5. Experiments were performed at a pH 7.4, as adjusted
with HCl/NaOH in a 5%:95% CO2:air atmosphere at 37◦C. For
the Ca2+-free solution, CaCl2 was not added and was replaced
with MgCl2. For the Na

+-free solution, NaCl was replaced with
NMDG-Cl.

Statistical Analysis
All results are presented as the means± SD. Statistical differences
were assessed by a student’s t-test (Mann–Whitney), one-way
analysis of variance (ANOVA; or the non-parametric Kruskal–
Wallis method) followed by Dunn’s post-hoc test, or two-
way ANOVA followed by Tukey’s post-hoc test, as respectively
indicated in the figure legends. Differences were considered
significant at p < 0.05.

RESULTS

High-Glucose Hypertonic Solution Induces
Human Peritoneal Mesothelial Cell Death
The HPMC had a round, short-spindle morphology with a
cobblestone appearance and formed a confluent monolayer
(Figure 1A). In accordance with previous descriptions for
wild-type mesothelial cells, the HPMC expressed the proteins
pancitokeratin and GLUT-1 (Figure 1B). Furthermore, HPMC
monolayer viability was preliminarily evaluated through
incorporation of the vital dye calcein (not shown).

Following this, the total HPMC death induced by HGH
exposure was determined. The HPMC monolayer was exposed
to either an isosmotic solution (300 mOsM), as a control,
or to HGH solutions of 345, 395, and 485 mOsM for 24
h, after which lactate dehydrogenase release was measured.
HPMC incubated with the 485 mOsm HGH solution exhibited
significant cell death, measured as lactate dehydrogenase release,
whereas incubation with the 345 and 395 mOsM HGH solutions
showed no differences compared to the control isosmotic
solution (Figure 1C). Additionally, experiments were performed
that challenged HPMC to either isosmotic or HGH solutions
while simultaneously evaluating PI and annexin V-FITC staining.
Cells exposed to HGH incorporated PI and bound annexin
V-FITC, indicating that the HGH solution induced extensive
HPMC death (Figures 1D,E). Similar results were obtained
when measuring HGH-induced cell death via the DNA content
detected by PI incorporation. HPMC exposed to HGH showed
strongly increased PI incorporation in the death population,
along with decreased PI incorporation in the viable HPMC region
(Figures 1F,G). These results suggest that at 485 mOsm, the
hyperosmotic solution efficiently generates extensive HPMC cell
death.

To test the relevance of glucose in the hypertonic solution,
experiments using sorbitol as the hypertonic compound
were performed in the absence of any glucose. The results
demonstrated that the high-sorbitol hypertonic solution did
not induce HPMC death, suggesting that HGH-induced HPMC
death is dependent on glucose (Figure 1H).

High-Glucose Hypertonic Solution-Induced
Human Peritoneal Mesothelial Death Is
Dependent on Ca2+ and Na+ Ion Channels
Considering that intracellular ion levels can modulate cell death
in almost all cell types, focus was placed on determining if HGH-
induced mesothelial cell death was mediated by external ions.
Calcium levels were independently determined with two different
calcium-sensitive fluorescent dyes, one that increases (Fluo-3)
and another that decreases (Fura-Red) in fluorescence upon
calcium binding. Additionally, intracellular sodium changes
were measured using the Na+-sensitive fluorescence probe
CoroNa. HPMC exposed to the 485 mOsm HGH solution
exhibited a significant Fluo-3 fluorescence increase and Fura-
Red decrease, whereas at 345 and 395 mOsM HGH, no
differences were observed as compared to the control isosmotic
solution, indicating the occurrence of an intracellular Ca2+
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FIGURE 1 | HGH solution induces HPMC death. Primary HPMC were obtained from patients in their first month of PD. (A) Representative phase-contrast microscopy

image of second-pass HPMC monolayer depicting cobblestone morphology. (B) Representative second-pass HPMC image subjected to immunofluorescence,

detecting pancitokeratin (red), and GLUT-1 (green, arrow). Nuclei were stained using DAPI. (C) HPMC were exposed to 300, 345, 395, or 485 mOsM HGH solutions

for 24 h, and cell death was determined by means of LDH release. Statistical differences were assessed by one-way ANOVA (or the non-parametric Kruskal–Wallis

(Continued)
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FIGURE 1 | Continued

method) followed by Dunn’s post-hoc test. ***P < 0.001 against control (Ctrl) condition. NS: non-significant. Graph bars show the mean ± SD (N = 5 independent

cultures). (D) Representative PI and Annexin V-FITC double staining dot-plot of HPMC in control (300 mOsM) condition or exposed to 485 mOsM HGH solution for

24 h. Viable (no staining, lower-left quadrant) and dead (Annexin V-FITC staining only, lower-right quadrant and PI and Annexin V-FITC double staining, upper-right

quadrant) cells are shown. (E) Viable and dead HPMC in control (open bars) condition or exposed to 485 mOsM HGH solution (gray bars) recorded from experiments

as depicted in (D). Statistical differences were assessed by two-way ANOVA followed by Tukey’s post-hoc test. **P < 0.01 and ***P < 0.001 against control condition.

Graph bars show the mean ± SD (N = 5–6 independent cultures). (F) Representative DNA content histograms of HPMC in control (300 mOsM) condition or exposed

to 485 mOsM HGH solution for 24 h. Viable and dead HPMC were determined as PI binds to DNA, and PI fluorescence is proportional to DNA content. Viable cells

present a low basal PI fluorescence, whereas dead cells bind higher levels of PI. (G) Viable and dead HPMC in control (open bars) condition or exposed to 485 mOsM

HGH solution (gray bars) recorded from experiments as depicted in (F). Statistical differences were assessed by two-way ANOVA followed by Tukey’s post-hoc test.

*P < 0.05 and **P < 0.01 against control condition. Graph bars show the mean ± SD (N = 6 independent cultures). (H) Viable and dead HPMC in control (open bars)

condition or exposed to 485 mOsM HSH solution (gray bars) recorded from experiments similar to those shown in (F). NS, non-significant. Graph bars show the mean

± SD (N = 6 independent cultures).

increase (Figures 2A,B). Similarly, HGH-treated HPMC showed
an increase in CoroNa fluorescence, indicating an increase in
intracellular sodium (Figure 2C).

To test if intracellular Ca2+ and Na+ influxes were facilitated
by an ion channel-mediated influx, experiments were performed
using calcium and sodium channels blockers.

A non-selective Ca2+ channel blocker, 2-APB, effectively
inhibited the fluorescence change of Fluo-3 and Fura-
Red (Figures 2D,E, gray bars). Similar results were
obtained using the L-type Ca2+ channel blocker nifedipine
(Figures 2D,E, filled bars). Likewise, the sodium channel
blockers, ambroxol and amiloride, abolished the CoroNa
fluorescence increase (Figure 2F, gray and filled bars,
respectively).

Interestingly, the reduction of either external Ca2+ or Na+

effectively prevented HGH-induced HPMC death. An initial
4 h pulse of extracellular Ca2+ absence effectively decreased
HPMC death as induced by the HGH solution (Figure 2G).
Similarly, a 4 h pulse of intracellular Ca2+ chelating was
also able to reduce HGH-induced HPMC death (Figure 2H).
Furthermore, a culture medium depleted of Na+ was prepared,
thus keeping osmolarity and tonicity constant, with Na+

replaced with the non-permeant cation NMDG+. HPMC
cultured in a Na+-free medium were resistant to HGH-
induced HPMC death (Figure 2I). Considering that Na+ influx-
dependent cell death is often induced by plasma membrane
depolarization, assessments were also performed to determine
if the HGH solution modified HPMC membrane potential.
The HGH solution increased the fluorescence of the membrane
potential fluorescent indicator DIBAC4(3), suggesting that
the HGH solution induced HPMC membrane depolarization
(Figure 2J).

Next, tests were performed to evaluate if HGH solution-
induced HPMC death was dependent on ion channel activity.
For this, HPMC were exposed to either Ca2+ or Na+

channel blockers. Preincubation with 2-APB, a non-specific
calcium channel blocker, prevented HPMC death as induced by
HGH exposure (Figure 2K, open bars). Furthermore, HPMC
incubated in the presence of nifedipine, an L-type Ca2+

channel blocker, and exposed to HGH solution did not
exhibit significant cell death (Figure 2K, full bars). Besides
this, cells incubated with a non-specific sodium channel
blocker, ambroxol, effectively resisted HGH solution-induced

HPMC death (Figure 2L, open bars). In addition to this,
cells pre-incubated with a more specific Na+ channel blocker,
amiloride, were also resistant to the HGH solution challenge
(Figure 2L, full bars).

High-Glucose Hypertonic Solution-Induced
Human Peritoneal Mesothelial Cell Death
Is Dependent on the Generation of
Intracellular Oxidative Stress
Taking into consideration that ROS family members are
involved in several processes of cell death, the involvement
of these reactive molecules in HGH-induced HPMC death
was analyzed. HPMC exposed to 485 mOsM HGH showed
a strong increase in oxidative stress, which was measured
through the fluorescence of two ROS-sensitive fluorescent
probes, DCF, which is selective to H2O2, and DHE, which
is more selective to O•−

2 . In turn, HPMC treated with the
300 mOsM solution and with the 345 and 395 mOsM HGH
solutions did not exhibit any changes in DCF or DHE
fluorescence (Figures 3A,B, respectively). Interestingly, HGH
solution-induced ROS generation was significantly decreased
when cells were treated with Ca2+ or Na+ channel blockers
(Figure 3).

To test the participation of ROS in HPMC death induced by
HGH exposure, dose-response studies were performed. HPMC
exposed to H2O2 alone resulted in cell death comparable to that
detected using the HGH solution (Figure 3C). Interestingly,
the oxidized form of the endogenous molecule glutathione
(GSSG) generated HPMC death that was similar to that
produced using the HGH solution (Figure 3D). Following
these results, tests were carried out to assess if inhibiting
the ROS burst produced by the HGH solution challenge
would decrease HGH-induced HPMC death. For this,
HGH-treated HPMC were pre-incubated with a catalase
enzyme to reduce H2O2 contents, and then cell death was
measured (Dröge, 2002; Varela et al., 2004). The catalase
pre-treatment significantly decreased HGH solution-induced
HPMC death, suggesting the participation of H2O2 in this
process (Figure 3E). Similar results were observed using both
the antioxidant agent NAC (Figure 3F) and the reduced form
of the endogenous reducing molecule glutathione (GSH;
Figure 3G).
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FIGURE 2 | Potential participation of Ca2+ and Na+ ions in HGH solution-induced HPMC death. HPMC were exposed to a control (300 mOsM) condition or exposed

to 345, 395, or 485 mOsM HGH solutions for 24 h. Then, both intracellular Ca2+ (A,B) and Na+ (C) levels were determined by means of the Ca2+ sensitive dye

Fluo-3 (5µM) (A) and Fura-Red (15µM) (B) and the Na+-sensitive dye CoroNa Green-AM (5µM) (C). Statistical differences were assessed by one-way ANOVA

(Continued)
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FIGURE 2 | Continued

(or the non-parametric Kruskal–Wallis method) followed by Dunn’s post-hoc test. *P < 0.05 and **P < 0.01 against control condition (300 mOsM). Graph bars show

the mean ± SD (N = 5 independent cultures). HPMC were cultured in the absence (control solution, open bars) or presence of 10µM 2-APB (gray bars, D,E), 1µM

nidefipine (filled bars, D,E), 1µM ambroxol (gray bars, F), and 1µM amiloride (filled bars, F), and then exposed to the control (300 mOsM) condition or to the 485

mOsM HGH solution for 24 h. Then, both intracellular Ca2+ (D,E) and Na+ (F) levels were determined by means of the Ca2+ sensitive dye 5µM Fluo-3 (D) and

15µM Fura-Red (E) and the Na+-sensitive dye 5µM CoroNa Green-AM (F). Statistical differences were assessed by two-way ANOVA followed by Tukey’s post-hoc

test. *P < 0.05 against control condition (300 mOsM). Graph bars show the mean ± SD (N = 7 independent cultures). HPMC death was determined in cells cultured

in the absence (unfilled bars) or presence (filled bars) of a Ca2+-free solution (4 h pulse) (G), BAPTA-AM solution (5µM, 4 h pulse) (H), and a Na+-free solution (I), and

exposed to the control (300 mOsM) condition or the 485 mOsM HGH solution for 24 h. Statistical differences were assessed by two-way ANOVA followed by Tukey’s

post-hoc test. **P < 0.01 against control condition (300 mOsM). Graph bars show the mean ± SD (N = 7 independent cultures). Cell membrane depolarization was

measured by the indicator DiBAC4(3) in cells exposed to the control (300 mOsM) condition or the 485 mOsM HGH solution (J). Statistical differences were assessed

by the student’s t-test (Mann-Whitney). **P < 0.01 against control condition (300 mOsM). Graph bars show the mean ± SD (N = 8 independent cultures). HPMC

death was determined in cells cultured in the absence (control solution, unfilled bars) or presence of 10µM 2-APB (gray bars, K), 1µM nidefipine (filled bars, K), 1µM

ambroxol (gray bars, L), and 1µM amiloride (filled bars, L), and then exposed to the control (300 mOsM) condition or the 485 mOsM HGH solution for 24 h. Statistical

differences were assessed by two-way ANOVA followed by Tukey’s post-hoc test. *P < 0.05 against control condition (300 mOsM). Graph bars show the mean ± SD

(N = 6 independent cultures). All reagents were added 1 h before HGH solution exposure and were maintained during the experiments.

High-Glucose Hypertonic Solution-Induced
Human Peritoneal Mesothelial Cell Death
Is Mediated through NOX2 Activity and
Nitric Oxide
Since it is well-accepted that cell death is often induced
by an imbalance in the sources of intracellular oxidative
stress, experiments were performed to investigate if the ROS
generating enzyme NOX was involved in HGH-induced
HPMC death. HPMC were pre-incubated with the non-
selective NOX inhibitor dipheniliodonium (DPI), and cells
were challenged with HGH. The DPI treatment abolished
HGH-induced HPMC death (Figure 4A). Likewise, the
NOX inhibitor, apocynin, also decreased HPMC death
as induced by the HGH solution (Figure 4B), suggesting
the participation of NOX in HGH-induced HPMC
death.

It has been reported that NO production is stimulated by
exposure to high glucose concentrations (Liao et al., 2010; Hua
et al., 2012; Zhai et al., 2013). Additionally, NO is involved in
necrosis and apoptosis for a number of cell types, likely due to
the contributions of NO to ROS formation (Azuara et al., 2003;
Borutaite and Brown, 2003; Marriott et al., 2004). Therefore,
assessments were carried out to determine if NO generation
participated in the HPMC death induced by HGH conditions.
HPMC were pre-incubated with L-NAME, an inhibitor of NOS,
and cells were then exposed to the HGH solution to determine
cell death. L-NAME-treated HPMC were resistant to HGH-
induced HPMC death (Figure 4C). Similarly, the use of a NO
scavenger (PTIO) also evidenced protective effects to the HGH
challenge (Figure 4D), indicating that HGH-induced HPMC
death is dependent on the NO generated from NOS activity.

Considering that other intracellular sources of ROS, such
as mitochondria and xanthine oxidase, are involved in cell
death (Dröge, 2002), experiments were performed using a
mitochondrial uncoupler, rotenone, and a xanthine oxidase
inhibitor, allopurinol. Rotenone treatment was modestly effective
in inhibiting cell death induced by the HGH solution challenge
(Figure 4E). Furthermore, incubation with allopurinol had no
effect on inhibitingHPMCdeath as induced by theHGH solution
(Figure 4F).

Several isoforms of NOX have been reported, such as
NOX1 to NOX5. The NOX2 isoform is primarily linked to
pathological processes. Although the results obtained using DPI
and apocynin suggested the potential contribution of NOX2
in HGH-induced HPMC death, this result was far from being
conclusive. Therefore, to more fully test the participation of
NOX2, HPMC was transfected with a specific siRNA against
NOX2 expression (siNOX2). NOX2 expression was severely
decreased by siNOX2 transfection, demonstrating the efficiency
of this siRNA (Figures 4G,H). Importantly, non-targeting siRNA
(siCTRL) and a non-related siRNA (siRNA against NOX5)
induced no changes in NOX2 expression (Figures 4G,H). Of
note, HGH-induced HPMC death decreased when siNOX2 was
transfected, indicating that this NOX isoform is crucial for ROS-
mediated HGH-induced HPMC death (Figure 4I).

High-Glucose Hypertonic Solution-Induced
Human Peritoneal Mesothelial Cell Death
Is Mediated through the
G-Protein/PLC/cPKC and Tyrosine-Kinase
Receptor/PI3K/Akt Pathways
NOX activity is triggered by several phosphorylations in serine
residues, as mediated by PKC (el Benna et al., 1994; Park and
Babior, 1997; Dang et al., 1999; Lopes et al., 1999; Babior,
2002, 2004; Simon and Stutzin, 2008). Therefore, tests were
performed to determine if PKC activity participated in HGH-
induced HPMC death. For this, HPMC were pre-incubated with
a non-selective PKC inhibitor, BIM, and cells were then exposed
to the HGH solution. BIM treatment decreased the HPMC death
generated by HGH exposure (Figure 5A). Conventional PKC
(cPKC), composed of PKCα, PKCβ, and PKCγ, is a PKC isoform
that phosphorylates NOX (el Benna et al., 1994; Park and Babior,
1997; Lopes et al., 1999; Babior, 2002, 2004; Simon and Stutzin,
2008). Considering this, Gö 6976 was used to selectively inhibit
cPKC, thus allowing for determinations of if this PKC isoform is
involved in HGH-induced HPMC death. In accordance with the
results observed using BIM, Gö 6976-treated cells were resistant
to the HPMC death induced by HGH exposure (Figure 5B).
cPKC are activated by DAG and Ca2+, and HGH exposure
increased intracellular Ca2+ content (Figures 2A,B). On the
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FIGURE 3 | HGH solution-induced HPMC death is dependent on the generation of intracellular oxidative stress. HPMC intracellular ROS was determined by means of

the ROS-sensitive dye DCF (5µM) (A) and DHE (10µM) (B) in HPMC exposed to the control (300 mOsM) condition or to 345, 395, or 485 mOsM HGH solutions for

24 h. Statistical differences were assessed by one-way ANOVA (or the non-parametric Kruskal–Wallis method) followed by Dunn’s post-hoc test. **P < 0.01 against

control condition (300 mOsM). Graph bars show the mean ± SD (N = 9 independent cultures). (C) HPMC intracellular ROS was determined by the ROS-sensitive dye

DCF (5µM) in the absence (control solution, unfilled bars) or presence of 10µM 2-APB, 1µM nidefipine, 1µM ambroxol, and 1µM amiloride, and then exposed to

the control (300 mOsM) condition or to the 485 mOsM HGH solution for 24 h. Statistical differences were assessed by two-way ANOVA followed by Tukey’s post-hoc

test. *P < 0.05 against control condition (300 mOsM). Graph bars show the mean ± SD (N = 6 independent cultures). All reagents were added 1 h before HGH

solution exposure and were maintained during the experiments. HPMC death was determined in cells cultured in the presence 10 mM–1 nM H2O2 (D) and 10 mM–1

nM GSSG (E), and then exposed to the control (300 mOsM) condition for 24 h. Statistical differences were assessed by one-way ANOVA (or the non-parametric

Kruskal–Wallis method) followed by Dunn’s post-hoc test. *P < 0.05 and **P < 0.01 against control condition (300 mOsM). Graph bars show the mean ± SD (N = 4

independent cultures). HPMC death was determined in cells cultured in the absence (unfilled bars) or presence (gray bars) of either Catalase (10µM) (F),

N-acetylcysteine (NAC, 5mM) (G) or GSH (10 mM) (H), and then exposed to the control (300 mOsM) condition or the 485 mOsM HGH solution for 24 h. Statistical

differences were assessed by two-way ANOVA followed by Tukey’s post-hoc test. *P < 0.05 and **P < 0.01 against control condition (300 mOsM). Graph bars show

the mean ± SD (N = 4 independent cultures).
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FIGURE 4 | HGH solution-induced HPMC death is mediated through NOX2 activity and nitric oxide. HPMC death was determined in cells cultured in the absence

(open bars) or presence (gray bars) of either DPI (10µM) (A), apocynin (1mM), (B), L-NAME (1µM) (C), NO scavenger (1µM) (D), rotenone (1µM) (E), and allopurinol

(1µM) (F), and then exposed to the control (300 mOsM) condition or the 485 mOsM HGH solution for 24 h. Statistical differences were assessed by two-way ANOVA

followed by Tukey’s post-hoc test. *P < 0.05 and **P < 0.01 against control condition (300 mOsM). Graph bars show the mean ± SD (N = 4 independent cultures).

(G) Representative image from western blot experiments performed for NOX2 expression downregulation by siRNA. Endothelial cells were transfected with a specific

siRNA against the NOX2 isoform (siRNA-NOX2) or a non-targeting siRNA (siRNA-CTRL). A non-related siRNA against NOX5 (siRNA-NOX5) was used as a control. (H)

Densitometric analyses from several experiments, as shown in (G). Protein levels were normalized against tubulin, and the data are expressed relative to the control

(CTRL) condition. Statistical differences were assessed by one-way ANOVA (or the non-parametric Kruskal–Wallis method) followed by Dunn’s post-hoc test. ***P <

0.001 against control condition (non-transfected). Graph bars show the mean ± SD (N = 4 independent cultures). (I) HPMC death was determined in cells transfected

with siRNA-CTRL, siRNA-NOX2, and siRNA-NOX5, and then exposed to the control (300 mOsM) condition or the 485 mOsM HGH solution for 24 h. Statistical

differences were assessed by one-way ANOVA (or the non-parametric Kruskal–Wallis method) followed by Dunn’s post-hoc test. **P < 0.01 against control condition

(300 mOsM, non-transfected). Graph bars show the mean ± SD (N = 5 independent cultures).
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other hand, DAG is generated by the actions of PLC. Therefore,
the PLC inhibitor U73122 was used to assess the involvement
of PLC activity. U73122 inhibited HGH-induced HPMC death
(Figure 5C). Generally, PLC is activated by G-protein actions.
HPMC incubated with a non-selective G-protein inhibitor were
resistant to death as induced by the HGH solution (Figure 5D).
These results suggest that the G-protein/PLC/cPKC pathway
participates in the HPMC death induced by the HGH condition.

Previous studies have demonstrated that hyperglycemia
induces PI3-K/Akt pathway activation to mediate several
cellular processes (Hao et al., 2011; Zhao et al., 2012).
Additionally, the PI3-K/Akt pathway promotes cell death in
numerous cell types, often through mechanisms mediated by
ROS overproduction (Zhang and Yang, 2013). Considering
this information, assessments were carried out to determine if
the PI3-K/Akt pathway participates in HGH-induced HPMC
death. For this, HPMC were pre-incubated with a non-selective
PI3-K inhibitor, Ly294002, and cells were then subjected to
the HGH condition. The Ly294002-treated mesothelial cells
showed decreased HGH-induced HPMC death (Figure 5E).
Additionally, mesothelial cells were incubated with a selective
inhibitor of Akt, API-2, and the effect of HGH exposure was
evaluated. The results showed that Akt inhibition provoked a
partial, but significant, inhibition of HPMC death induced by
the HGH condition (Figure 5F). These results are in agreement
with previously showed in apoptotic rat PMC (Kaifu et al.,
2009). PI3-K/Akt signaling is triggered by the activation of
the tyrosine-kinase receptor, and HPMC cultured with a non-
selective inhibitor of the tyrosine-kinase receptor were resistant
to cell death induced by the HGH solution (Figure 5G). These
findings suggest that the tyrosine-kinase receptor/PI3-K/Akt
pathway is involved in HGH-induced HPMC death.

DISCUSSION

High-glucose hypertonic solutions are used in chronic PD as a
replacement therapy during terminal renal failure. Considering
that this clinical strategy is as effective as hemodialysis, in
addition to providing more comfort and mobility to patients,
PD is the treatment of choice for several types of renal
patients (Teixeira et al., 2015). Unfortunately, PD that uses
HGH solutions has, in several patient cases, resulted in
severe peritoneal damage associated with mesothelial cell death
(Teixeira et al., 2015). However, the specific underlyingmolecular
mechanism involved in HGH solution-induced HPMC death is
unknown.

The results of this study demonstrate that HPMC exposed to
the HGH solution exhibit extensive cell death. HGH solution
challenges induced increased intracellular Ca2+ and Na+ levels
via ion influxes possibly mediated by ion channels. Interestingly,
HGH-induced HPMC death was dependent on intracellular
Ca2+ and Na+ increases and was inhibited by both Ca2+ and
Na+ channels blockers. Furthermore, HGH exposure generated
increased intracellular ROS levels. In fact, HPMC death was
induced by oxidative stress in a dose-dependent manner. In
accordance with these results, HGH-induced HPMC death

was inhibited by antioxidant or reducing agents, suggesting
that the HPMC death as induced by the HGH solution is
dependent on the generation of oxidative stress. Related to
this, NOX2 was identified as a probable main intracellular
source for the ROS that mediated HGH-induced HPMC death.
Additionally, HGH-inducedHPMC death was also dependent on
NO generated by NOS activity. Besides this, the obtained results
demonstrated that the G-protein/PLC/cPKC and tyrosine-
kinase receptor/PI3K/Akt intracellular signaling pathways were
crucial for mediating the HPMC death induced by the HGH
solution.

In particular, the 485 mOsM HGH solution, which is
comparable to a commercial solution of 4.25% dextrose, induced
significant HPMC death. In contrast, the 345 and 395 mOsM
HGH solutions did result in any deleterious effects. These
data indicate that only the highest HGH solution generates
HPMCdeath. However, considering that the presently performed
experiments only considered a 24 h period, it is plausible to
postulate that over a prolonged time-course treatment, the 345
and 395 mOsM HGH solutions might also generate HPMC
death. Further experiments must be performed to test if this is
the case. Interestingly, experiments that used sorbitol instead of
glucose, which were performed to maintain hypertonicity in the
absence of glucose participation, revealed that sorbitol-treated
HPMC did not exhibit cell death. These results indicate that a
high glucose concentration, but not hypertonicity, is a crucial
and obligatory factor for causing HPMC death. Related to this,
new PD solutions are under assessment that do not contain
glucose-osmotic agents, instead using icodextrin or amino acids,
a neutral pH, and low levels of glucose degradation products
(GDP) to prevent detrimental effects to HPMC (Ha et al., 2000;
Chan et al., 2003; Mortier et al., 2004; García-López et al.,
2012). Additionally, solutions with high glucose concentrations
generate GDP. Often, GDP are generated as a consequence of
heat sterilizing peritoneal dialysis (PD) fluids. GDP triggers the
formation of advanced glycation end-products in the peritoneal
cavity, as well as producing extensive cytotoxicity and cell
transformation by means of a poorly understood mechanism
(Witowski and Jörres, 2000; Schwenger, 2005; Oh et al., 2010;
Pischetsrieder and Gensberger, 2012).

The expression and activities of the Na+-glucose
cotransporters 1 and 2 (SGLT1 and SGLT2) regulate glucose
transport (Vallon, 2010; Hummel et al., 2011). At the same time,
glucose transport is involved in several important pathologies
(Koepsell, 2017). Current evidence shows that SGLT1, GLUT1,
and GLUT3 are expressed in differentiated mesothelial cells
(Schröppel et al., 1998) and are directly involved in high
glucose dialysate-induced peritoneal fibrosis (Hong et al.,
2016). Of note, intracellular hypertonicity is responsible for
water movement in association with Na+-glucose cotransport
(Charron et al., 2006). Considering this, it is possible that the
Na+ influx mediated by SGLT due to the increased glucose
gradient generates HPMC membrane depolarization with
the subsequent activation of sodium and calcium channels.
Alternatively, the glucose influx through SGLT or GLUT
proteins could shift the ATP/ADP equilibrium promoting
the activation of nucleotide-dependent sodium and calcium
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FIGURE 5 | High-glucose hypertonic solution-induced human peritoneal mesothelial cell death is mediated through the G-protein/PLC/cPKC and tyrosine-kinase

receptor/PI3K/Akt pathways. HPMC death was determined in cells cultured in the absence (unfilled bars) or presence (gray bars) of either BIM (50µM) (A), Gö (1µM)

(B), U73122 (10µM) (C), G-protein inhibitor SCH 202676 (10µM) (D), Ly 294002 (20µM) (E), Akt inhibitor API-2 (10µM) (F), or tyrosine kinase receptor inhibitor

AG18 (50µM) (G), and then exposed to the control (300 mOsM) condition or the 485 mOsM HGH solution for 24 h. Statistical differences were assessed by two-way

ANOVA followed by Tukey’s post-hoc test. **P < 0.01 against control condition (300 mOsM). Graph bars show the mean ± SD (N = 5 independent cultures).

channels (Gafar et al., 2016). Further experiments must be
performed using SGLT and/or GLUT inhibitors to evaluate these
considerations.

Epithelial-to-mesenchymal transition (EMT) occurs in a
significant portion of samples from patients treated with PD
using HGH solutions (Kalluri and Neilson, 2003; Yáñez-Mó
et al., 2003; Kalluri and Zeisberg, 2006; Aroeira et al., 2007;
Del Peso et al., 2008; Goffin, 2008), and this conversion could
contribute to a total failure of the peritoneal capacity for
ultrafiltration. Consequently, the EMT process is the most

studied feature involved in peritoneal loss-of-function (Aroeira
et al., 2007; Del Peso et al., 2008; Goffin, 2008). Mesothelial
cells exposed to TGF-ß1 undergo EMT-mediated fibrosis, thereby
becoming a possible source of myofibroblasts in peritoneal
fibrosis (Szeto et al., 2006; Aroeira et al., 2007; Lv et al., 2011;
García-López et al., 2012; Krediet and Struijk, 2013; Kokoroishi
et al., 2015). Hyperglycemic conditions can generate increased
expressions of TGF-β1 and pro-inflammatory cytokines in
peritoneal mesothelial cells (Shanmugam et al., 2003; Luo et al.,
2012; Kumar et al., 2014; Kang et al., 2015; Kokoroishi et al., 2015;
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FIGURE 6 | Proposed model for the HGH solution-induced HPMC death. HGH solution increases of Ca2+ (1) and Na+ (2) levels are potentially dependent on ion

channel activities. A sodium influx could generate membrane depolarization (3), which can induce voltage-activated calcium channel opening (4) and cell death (5).

Intracellular calcium may activate enzymes, including PKC (6), PLC (7), and NOS (8). Increased ROS level could trigger HGH-induced HPMC death (9), and

NOS-dependent NO generation would be relevant in inducing HPMC death (9–10). HGH-induced HPMC death could be carried out through the PLC/PKC/NOX/ROS

signaling pathway (12–15). In line with this, NOX2 might be involved in both HGH-induced ROS production (14) and HPMC death (9). Furthermore, PKC activation

may occur as a consequence of PLC-mediated G-protein activation (16–17). The PI3K/Akt pathway could also involved in the HPMC death induced by HGH

exposure (18–19), and would be mainly activated through the activation of tyrosine-kinase receptors (20–21). HGH, high-glucose hypertonic; NOS, nitric oxide

synthase; NO, nitric oxide; H2O2, hydrogen peroxide; HPMC, human peritoneal mesothelial cells; PKC, protein kinase C; NOX, nicotinamide adenine dinucleotide

phosphate-oxidase; PI3-K, phosphatidylinositol 3-kinase; Akt, protein kinase B. Solid arrow: direct activation. Discontinuous arrow: indirect/unknown activation

mechanism or potential effect.

Li et al., 2016). Interestingly, a number of cytokines are induced
by high glucose levels (Shanmugam et al., 2003; Kumar et al.,
2014). TGF-β1, ROS, and pro-inflammatory cytokines are potent
inducers of the extracellular matrix protein overexpression that
overwhelms degradation capacities, and the peritoneal damage
induced by PD is associated with a submesothelial increase
of extracellular matrix proteins (Davies et al., 2001; Williams
et al., 2002; Mortier et al., 2004; Goffin, 2008). Supporting this,
PD patient biopsies have reported that peritoneal membrane
thickness is increased by 54% (Yáñez-Mó et al., 2003; Aroeira
et al., 2007; Del Peso et al., 2008; Goffin, 2008).

The elevated intracellular Ca2+ and Na+ levels, as induced
by the HGH solution, are possibly dependent on ion channel
activities (Figure 6, No. 1 and 2). In fact, an imbalance in
intracellular ions is a hallmark of cell death (Henriquez et al.,
2008; González-Mateo et al., 2009; Becerra et al., 2011; Nuñez-
Villena et al., 2011). It is generally accepted that a sodium
influx generates cell death-mediated membrane depolarization
(Figure 6, No. 3). This membrane depolarization can induce
voltage-activated calcium channel opening, resulting in an influx
of Ca2+ (Figure 6, No. 4). Use of calcium channel blockers in the
conducted analyses suggests the participation of TRP channels,
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P2X-type purinergic channels, and connexin. However, further
experiments are needed to establish the participation of one
or several types of channels. Additionally, severe membrane
depolarization can induce cell death by enhancing swelling
(Figure 6, No. 5). On the other hand, intracellular calcium may
activate several cytoplasmic enzymes, including PKC, PLC, and
NOS (Figure 6, No. 6–8; Lecca et al., 2012; Figueroa et al., 2013;
Echeverría et al., 2014a,b; Retamal et al., 2015; García et al., 2016).

Hyperglycemia damages many tissues through several
mechanisms, with elevated glucose concentrations increasing
the ROS levels in peritoneal HPMC (Taylor et al., 1992; Ha
and Lee, 2000; Tarng, 2002). Indeed, ROS production by NOX2
can be stimulated by hyperglycemia in cardiomyocytes through
SGLT1 (Balteau et al., 2011) and ROS may amplify intracellular
signaling when glucose is elevated (Taylor et al., 1992; Ha and
Lee, 2000; Tarng, 2002; Zuo et al., 2011). Furthermore, ROS
generation frequently involves the production of O•−

2 , which is
rapidly converted into H2O2 through the actions of superoxide
dismutase. Subsequently, H2O2 could be either reduced
to a hydroxyl radical, generating a consequent increase in
intracellular oxidative stress, or converted into H2O by catalase,
thereby decreasing oxidative stress (Dröge, 2002). Accordingly,
EMT, as well as endothelial-mesenchymal transition, are both
stimulated by ROS (Montorfano et al., 2014; Mahalingaiah et al.,
2015; Pérez et al., 2016). Increased oxidative stress creates a
suitable environment for triggering mesenchymal conversion
into epithelial and endothelial cells, and the induction of
EMT in patients treated with PD is associated with high
glucose concentrations through a mechanism mediated by ROS
generation (Davies et al., 2001; Lee et al., 2004; Rhyu et al., 2005;
Książek et al., 2007a,b). Therefore, elevated intracellular ROS
levels appear crucial for eliciting HGH-induced HPMC death
(Figure 6, No. 9). This finding is in accordance with previously
reported results in several cell types, including in endothelial,
neuronal, and epithelial cells (Kumaran and Shivakumar, 2002;
Hecquet and Malik, 2009; Coombes et al., 2011). Additionally,
NOS activity appeared crucial for eliciting HGH-induced HPMC
death, suggesting that NOS-dependent NO generation is relevant
in inducing HPMC death (Figure 6, No. 9 and 10). This finding
is reasonable as NO can react with ROS to generate the highly
reactive radical NO•− (Dröge, 2002).

The presently obtained results indicate that HGH-induced
HPMC death is potentially carried out through the signaling
pathway PLC/PKC/NOX/ROS (Figure 6, No. 12–14). On the
other hand, alternative pathways could elicit ROS generation
upon PKC activation (Figure 6, No. 15). Previous studies
report that high glucose levels induce ROS generation through
the activation of PKC, NAD(P)H oxidase, and mitochondrial
metabolism-promoting fibronectin expression (Ha and Lee,

2000; Lee et al., 2004). Although the present results found cPKC
to be the kinase that activates NOX-generated ROS, additional
PKC isoforms, such as novel and atypical subfamilies, could also
activate NAD(P)H oxidase. Using siRNA-based technology, the
NOX2 isoform was found involved in both HGH-induced ROS
production and HPMC death (Figure 6, No. 9 and 14). Similarly,
in endothelial cells and macrophages, NOX2 is the preponderant
subunit in producing oxidative stress (Babior, 2002; Simon and

Fernández, 2009). The current results additionally suggest that
PKC activation may occur as a consequence of PLC-mediated
G-protein activation (Figure 6, No. 16 and 17). However, the
specific identity of the activated G-protein remains to be clarified.

The PI3K/Akt pathway is also involved in the HPMC death
induced by HGH exposure (Figure 6, No. 18 and 19). Akt can
phosphorylate NOX in the absence of PKC, thereby inducing
activation (Chen et al., 2003; Hoyal et al., 2003; Figure 6, No.
19). Human lung epithelial cells exposed to high glucose exhibit
cell invasion and metastasis via the participation of ROS and the
TGF-β1/PI3K/Akt signaling pathway (Kang et al., 2015). In turn,
the PI3K/Akt pathway involved in the HGH solution-induced
HPMC death was mainly activated through the activation of
tyrosine-kinase receptors (Figure 6, No. 20 and 21). However,
the precise mechanism involved in this process is not yet well-
understood.

The currently reported results represent a relevant
advancement toward fully understanding the initial steps
of the mechanism underlying mesothelial cell failure. This
information should be considered in the development of a
more efficient strategy for treating PD patients undergoing renal
failure.
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