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Crosstalk between Photoreceptor
and Sugar Signaling Modulates Floral
Signal Transduction
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Over the past decade, integrated genetic, cellular, proteomic and genomic approaches

have begun to unravel the surprisingly crosstalk between photoreceptors and sugar

signaling in regulation of floral signal transduction. Although a number of physiological

factors in the pathway have been identified, the molecular genetic interactions of

some components are less well understood. The further elucidation of the crosstalk

mechanisms between photoreceptors and sugar signaling will certainly contribute

to our better understanding of the developmental circuitry that controls floral signal

transduction. This article summarizes our current knowledge of this crosstalk, which has

not received much attention, and suggests possible directions for future research.

Keywords: cryptochromes, developmental phase transitions, floral signal transduction, florigen, juvenile-to-adult
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INTRODUCTION: LIGHT, SUGARS AND FLORAL SIGNAL
TRANSDUCTION

Post-embryonic development progresses through distinct developmental phase transitions. It
has been proposed (Matsoukas, 2014a) that the prolonged juvenile-to-adult and vegetative-
to-reproductive phase transitions might be due to several antiflorigenic signals, which affect
the transcription levels of florigen FLOWERING LOCUS T (FT; Corbesier et al., 2007), and
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL; Shikata et al., 2009) genes.

Juvenility can be defined as the early period of development during which the abundance of
antiflorigenic signals such as miR156/miR157 (Lauter et al., 2005; Martin et al., 2009; Lee et al.,
2010; Varkonyi-Gasic et al., 2010) is sufficiently high to suppress the expression of FT and SPLs
(Shikata et al., 2009, 2012; Wang et al., 2009; Jung et al., 2011). On the other hand, expression of
miR172 in leaves activates FT (Aukerman and Sakai, 2003; Jung et al., 2007), through repression of
AP2-like transcripts SCHLAFMÜTZE (SMZ), SCHNARCHZAPFEN (SNZ) and TARGET OF EAT
1–3 (TOE1-3; Jung et al., 2007; Mathieu et al., 2009), whereas the increase in SPLs at the shoot
apical meristem (SAM), leads to the activation of floral meristem identity genes (Wang et al., 2009;
Yamaguchi et al., 2009), which result in vegetative-to-reproductive phase transition.

Light is a key regulator of the juvenile-to-adult and vegetative-to-reproductive phase transitions
(Turck et al., 2008; Matsoukas et al., 2012; Lifschitz et al., 2014; Matsoukas, 2015). It constitutes
a critical environmental growth indicator, which is estimated by the duration, quality, direction
and intensity, as well as the essential energy source for the synthesis of carbohydrates by the
photosynthetic apparatus. Light perception is mediated through the action of photoreceptors,
namely PHYTOCHROMES (PHYs; derives from Greek phyto- “relating to plants” and khrōma
“color”; Chen and Chory, 2011), CRYPTOCHROMES (CRYs; derives fromGreek kruptós “hidden”
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and khrōma “color”; Chaves et al., 2011), the ultraviolet
B photoreceptor ULTRA VIOLET RESISTANCE LOCUS 8
(Jenkins, 2014), phototropins (Christie, 2007) and the ZEITLUPE
(ZTL) family members ZTL, FLAVIN-BINDING, KELCH-
REPEAT F-BOX (FKF1), and LOV KELCH PROTEIN 2 (LKP2;
Kim et al., 2007; Suetsugu and Wada, 2013). Members of each
of these photoreceptor families have direct interactions with
circadian clock genes and proteins.

Several molecular mechanisms that mediate sugar responses
have been identified in plants (reviewed in Rolland et al.,
2006; Smeekens et al., 2010; Dobrenel et al., 2013; Lastdrager
et al., 2014; Smeekens and Hellmann, 2014; Van den Ende,
2014; Li and Sheen, 2016). Sugar signals can be generated
either by carbohydrate concentration and relative ratios to
other metabolites, such as hormones and carbon-nitrogen ratio,
or by flux through sugar-specific transporters and/or sensors
(Matsoukas, 2014b). Glucose, sucrose and trehalose-6-phosphate
(T6P) have been recognized as pivotal integrating regulatory
molecules that control the expression of genes involved in floral
signal transduction (reviewed in Ponnu et al., 2011; Bolouri
Moghaddam and Van den Ende, 2013; Matsoukas, 2014b).

Glucose-mediated signal transduction is largely dependent
on HEXOKINASE1 (HXK1)-dependent pathway, HXK1-
independent pathway, and glycolysis-dependent pathway,
which utilizes the SUCROSE NONFERMENTING RELATED
KINASE1 (SnRK1)/TARGET OF RAPAMYCIN (TOR) pathway
(Moore et al., 2003; Baena-Gonzalez et al., 2007; Ren et al.,
2012). SnRK1 has a role when sugars are in extremely limited
supply, whereas HXK and Tre6P play a role in the presence of
excess sugar. Sucrose plays an essential role in the regulation of
important metabolic processes (reviewed in Tognetti et al., 2013).
Its concentration tends to be directly related to light intensity
(LI), and inversely related to temperature. It has been shown that
sucrose, together with T6P act as proxies for the carbohydrate
status in plant tissues (Lunn et al., 2006; Wahl et al., 2013; Xing
et al., 2015). It is notable that T6P inhibits the activity of the
SnRK1 in sugar metabolic control of floral signal transduction
(Zhang et al., 2009). In particular, mutations in SNRK1 confer
early flowering, whereas SnRK1 overexpression delays flowering
(Baena-Gonzalez et al., 2007; Tsai and Gazzarrini, 2012). Several
lines of evidence suggest that Tre6P inhibits SnRK1 when sucrose
is above a threshold level (Polge and Thomas, 2007; Zhang et al.,
2009). When the sucrose concentration decreases, with Tre6P
decreasing as well, SnRK1 is released from repression, promoting
the expression of genes involved in photosynthesis-related
events, so that more carbon is made available (Delatte et al.,
2011). Mutations in T6P signaling pathway confer late flowering.
This late flowering phenotype was found to be due to reduced
expression levels of FT, the elevated levels of miR156, and
reduced levels of at least three miR156-regulated transcripts:
SPL3, 4, 5 (Wahl et al., 2013). However, T6P not only signals
sucrose availability (Lunn et al., 2006), but it also negatively
regulates sucrose levels by restricting sucrose synthesis and/or
promoting sucrose catabolism (Yadav et al., 2014). Interestingly,
the regulatory effects of T6P on growth and development would
be an effective means for manipulating carbon partitioning and
plant yield (Smeekens, 2015).

The identification of downstream components of
photoreceptor signaling that involved in floral signal
transduction has revealed a crosstalk between pathways of
different light qualities as well as with other seemingly unrelated
signaling pathways. One such crosstalk that has not received
much attention and involves carbohydrates, forms the focus of
this article.

LIGHT PERCEPTION AND CIRCADIAN
CLOCK

The circadian [derived from the Latin roots “circa” (around)
and “diem” (day)] system is a complex regulatory network. It
is consists of a set of proteins that forms an interconnected
feedback network with multiple loops. This system provides
temporal information to organisms to coordinate developmental
and metabolic responses in coincidence with the environmental
conditions. One of the main functions of light in regulation
of floral signal transduction is in the initiation of cues that
interact with the circadian oscillator and entrain the circadian
rhythm. Several reviews have been published on the circadian
clock system recently (Romanowski and Yanovsky, 2015; Endo,
2016; Sanchez and Kay, 2016), so the circadian clock will
not be described in great detail here. The circadian clock
system has three primary components. First is the central
oscillator/pacemaker that generates the 24 h oscillators. A model
for the Arabidopsis circadian oscillator described a series of
multiple interlocked transcriptional–translational feedback loops
referred to as the morning, core, and evening loops (Huang
et al., 2012; Pokhilko et al., 2012). The “morning complex”
comprises the genes encoding the proteins CIRCADIANCLOCK
ASSOCIATED 1 (CCA1; Wang and Tobin, 1998) and LATE
ELONGATED HYPOCOTYL (LHY). Both genes increase their
expression prior to dawn (Schaffer et al., 1998). The “morning
complex” genes encoding PSEUDO-RESPONSE REGULATOR
(PRR) 5, 7, and 9 increase their expression after dawn
(Matsushika et al., 2000; Farre et al., 2005). The “evening loop”
comprises genes encoding GI (Fowler et al., 1999; Park et al.,
1999) and TIME OF CAB EXPRESSION 1 (TOC1; Strayer
et al., 2000) as well as the evening complex genes encoding
EARLY FLOWERING (ELF) 3, 4 (Herrero et al., 2012), and LUX
ARRHYTHMO (LUX; Hazen et al., 2005; Nusinow et al., 2011).
The “evening complex” genes increase their expression prior to,
and after dusk. The “morning” and “evening” complex proteins
regulate each other through a series of promoter cis-acting
elements (Harmer et al., 2000; Alabadi et al., 2001; Covington
et al., 2008), and protein–protein interactions (Kim et al., 2007;
Nusinow et al., 2011; Chow and Kay, 2013). These type of
interactions create a robust and tunable oscillator that modulate
gene expression in a coordinated 24 h rhythm.

The second component is the input pathway that synchronizes
or entrains the oscillator with environmental cues. The best-
characterized signal is light (reviewed in Kami et al., 2010). In
Arabidopsis, red/far-red light perception is mediated by PHYs.
Blue light perception is mediated by CRYs and the blue-light
sensing proteins ZTL, FKF1, and LKP2. The third component is
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the output pathway that links the oscillator to processes under
circadian rhythm such as photoperiodic induction and floral
signal transduction.

The plant circadian oscillator is also entrained by daily
temperature rhythms (Wenden et al., 2011) and sugars (Blasing
et al., 2005; Dodd et al., 2005; Knight et al., 2008; Dalchau
et al., 2011; Haydon et al., 2013). However, the perception
and transduction of such signals are not fully understood.
Considering that photosynthates can contribute to the fine-
tuning of the circadian clock (reviewed in Sanchez and Kay,
2016) and that floral signal transduction in LDs is also controlled
by the circadian clock (Matsoukas et al., 2012; Song et al.,
2013), it has been hypothesized that photosynthates might have a
role in modulating the photoperiodic timing mechanism, which
includes the PHYs and CRYs (Dodd et al., 2015).

PRRs have been identified as components of the circadian
clock (Nakamichi et al., 2007; Ito et al., 2008). Generally,
it has been proposed that PRRs contribute to photoperiod
measurement through regulation of the time-keeping
mechanism associated with CO transcription (Strayer et al.,
2000; Yanovsky and Kay, 2002; Nakamichi et al., 2007, 2010).
Recently, it was shown that PRRs form a light-signaling
mechanism dedicated to photoperiodic flowering through
their accumulation during the day, transferring information
on light exposure to CO protein (Hayama et al., 2017), which
acts upstream of FT and TSF. Interestingly, PRR7 expression
is coordinately modulated not only by light but also by
photosynthesis, permitting PRR7 to act as a transcriptional
repressor in circadian sugar signaling (Haydon et al., 2013).
Therefore, specific circadian-clock components not only
transfer temporal information to a photoperiodic time-keeping
mechanism but also convey qualitative and quantitative
information on light exposure to the time-keeping mechanism,
establishing measurement of day length.

INTERPLAY BETWEEN SUGAR AND
PHYTOCHROME SIGNALING MODULATES
FLORAL SIGNAL TRANSDUCTION

In Arabidopsis, the PHY family consists of PHYA, PHYB,
PHYD, and PHYE (Table 1; Clack et al., 1994). PHYA is
predominately involved in physiological responses to continuous
far-red light, whereas PHYB is involved in responses to red
light. The phyA mutant flowers significantly later than wild
type (WT) in long days (LDs), which indicates that PHYA acts
to promote flowering (Johnson et al., 1994). In antithesis, the
early flowering phenotype of phyB mutant under short day (SD)
and LD conditions demonstrates the repressive role of PHYB
in floral signal transduction (Guo et al., 1998). Interestingly,
the identification of downstream components of photoreceptor-
signaling that involved in floral induction has revealed a crosstalk
between pathways of different light qualities as well as with
other seemingly unrelated pathways such as phytohormones
(Matsoukas, 2014b) and carbohydrate metabolism-related events
(Dijkwel et al., 1997; Short, 1999; Kozuka et al., 2005; Ghassemian
et al., 2006).

Carbohydrates modulate development through PHY-
mediated responses (Tsukaya et al., 1991; Barnes et al., 1996;
Dijkwel et al., 1997; Short, 1999). PHYA is involved in activation
of several photosynthetic genes, such as RIBULOSE 1,5-
BISPHOSPHATE CARBOXYLASE/OXYGENASE (RBCS),
CHLOROPHYLL A/B-BINDING PROTEIN (CAB), and
PLASTOCYANIN (PC). CAB, RBCS, and PC are repressed
by sucrose or glucose (Dijkwel et al., 1997; Takano et al., 2009;
Cottage and Gray, 2011). Exogenous sucrose application or
high light intensity (LI) reverses the late-flowering phenotype
of the Arabidopsis phyA mutant. It has been proposed that
the late-flowering phenotype of phyA might be due to a
reduced photosynthetic input to FT (King et al., 2008).
This is supported by the fact that high LI reverses its late
flowering phenotype, the mutant has half the WT leaf area
and, in addition, a reduced photosynthetic pigment content
(Walters et al., 1999; Bagnall and King, 2001; King et al.,
2008).

Overexpression of PHYs in Nicotiana tabacum (Sharkey et al.,
1991) and Solanum tuberosum (Sharkey et al., 1991; Yanovsky
et al., 1998) increase the transcription of SUCROSE-PHOSPHATE
SYNTHASE (SPS). Interestingly, ectopic expression of SPS has
been shown to promote flowering in several plant species
(Micallef et al., 1995; Baxter et al., 2003). On the other
hand, loss of PHYs in Oryza sativa phyA phyB phyC triple
mutant affect sugar metabolism, carbon partitioning and sugar
transport (Jumtee et al., 2009). In Arabidopsis, the circadian
regulated sugar-induced β-AMYLASE3 (BAM3) gene is induced
by PHYA transcription (reviewed in Kaplan et al., 2006). BAM3
is essential for maltose production (Niittyla et al., 2004), whereas
it regulates the juvenile-to-adult and vegetative-to-reproductive
phase transitions via starch catabolism-related events (Matsoukas
et al., 2013).

The SUCROSE UNCOUPLED6 (SUN6) gene of Arabidopsis
is involved in hexose kinase-mediated sugar sensing (Huijser
et al., 2000). Gene expression analysis in the sugar insensitive
sun6 mutant has shown that PHYA signaling is not repressed
by sugars (Dijkwel et al., 1997). SUN6 was shown to be allelic
to ABA INSENSITIVE 4 (ABI4). Functional analysis of the abi4
mutant has shown that it is defective in ABA metabolism or
response (Dijkwel et al., 1997; Huijser et al., 2000). Therefore, the
early flowering phenotype of sun6, at least in LDs, demonstrates
a tight interplay between light quality, sugar and phytohormone
pathways in regulation of floral induction in Arabidopsis.

Further evidence on interaction between carbohydrate-
metabolism repression and light signaling is provided by the
inhibitory activity of PHYB in the control of hypocotyl elongation
by PHYA, in presence of exogenous sucrose or glucose (Short,
1999). Down-regulation or over-expression of SUT4 in Solanum
tuberosum delays or promotes floral induction, respectively
(Chincinska et al., 2008). Besides floral induction, in the same
work evidence was provided on SUT4 involvement in the
shade avoidance response. This suggest that PHY-dependent
and photoperiod-dependent developmental responses, such as
floral signal transduction and shade avoidance share a common
downstream mechanism in which sucrose accumulation levels
are actively involved.
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TABLE 1 | List of genes that are discussed in this mini review.

Gene name Abbreviation Allelic Gene identifier Description References

ABA INSENSITIVE4 ABI4 ATABI4; GIN6; ISI3;
SALOBRENO 5; SAN5;
SIS5; SUN6; T7M7.16

AT2G40220 ABI4 involved in ABA signal

transduction, ABA-mediated glucose

response, and HXK-dependent sugar

responses.

Finkelstein et al., 1998;

Arenas-Huertero et al., 2000

CHLOROPHYLL
A/B-BINDING PROTEIN

CAB AB165; F1N18.4; F1N18_4;
LHCB1.1

AT1G29920 Encodes lhcb1.1, a component of the

LHCIIb light harvesting complex

associated with photosystem II.

Friso et al., 2004; Cottage

and Gray, 2011

CHLOROPLASTIC
β-AMYLASE3

BAM3 AtBAM3; BAM3;
BETA-AMYLASE 3; BMY8;
DL4575C; FCAALL.5

AT4G17090 BAM3 encodes a β-amylase targeted

to the chloroplast.

Lao et al., 1999; Mccallum

et al., 2000; Kaplan and

Guy, 2005

CRYPTOCHROME-
INTERACTING
BASIC-HELIX-LOOP-
HELIX 1

CIB1 T4L20.110; T4L20_110 AT4G34530 CIB1 acts together with additional

CIB1-related proteins to promote

CRY2-dependent floral signal
transduction. CIB1 promotes florigen

expression.

Liu et al., 2008

CONSTANS CO B-BOX DOMAIN PROTEIN
1; BBX1; F14F8.220;
F14F8_220; FG

AT5G15840 CO promotes floral signal transduction

in response to LDs, is modulated by the

circadian clock and day length.

Wenkel et al., 2006

CRYPTOCHROME1 CRY1 ATCRY1; BLU1; HY4;
OOP2; OUT OF PHASE 2;
T3H13.14; T3H13_14

AT4G08920 CRY1 functions in perception of blue /

green ratio of light.

Valverde et al., 2004

CRYPTOCHROME2 CRY2 AT-PHH1; ATCRY2;
F19P19.14; F19P19_14;
FHA; PHH1

AT1G04400 Blue light receptor. It is a positive

regulator of floral signal transduction via

CO.

Ahmad et al., 1995

FLAVIN-BINDING, KELCH
REPEAT, F BOX 1

FKF1 ADO3; F BOX 1; T23K23.10 AT1G68050 FKF1 forms a complex with GI on the

CO promoter to regulate the expression

of CO.

Nelson et al., 2000

FLOWERING LOCUS T FT F5I14.3; F5I14_3;
REDUCED STEM
BRANCHING 8; RSB8

AT1G65480 FT protein is the long-sought florigen,

or at least, part of it.

Kardailsky et al., 1999;

Kobayashi et al., 1999;

Corbesier et al., 2007

GIGANTEA GI FB; T22J18.6; T22J18_6 AT1G22770 GI promotes floral signal transduction

under LDs, in a circadian

clock-controlled floral induction

pathway. Starch excess mutant.

Eimert et al., 1995; Tseng

et al., 2004; Penfield and

Hall, 2009

ELONGATED HYPOCOTYL
5

HY5 F2I11.150; F2I11_150; TED
5

AT5G11260 HY5 is a central mediator of CRY and

PHY responses.

Lee et al., 2007

LOV KELCH PROTEIN 2 LKP2 ADAGIO 2; ADO2 AT2G18915 Overexpression of LKP2 results in

arrhythmic phenotypes, and a loss of

photoperiodic control of floral signal

transduction.

Schultz et al., 2001

microRNA156a miR156a Ath-MIR156a; gene family:

MIPF0000008; Accession:
MI0000178

Next upstream

gene: At2g25090;

next downstream

gene: At2g25100

Arabidopsis miR156 is an ambient

temperature-responsive miRNA. It plays

an important role in regulating floral

signal transduction.

Telfer et al., 1997; Telfer and

Poethig, 1998; Aukerman

and Sakai, 2003; Wu and

Poethig, 2006

microRNA157b miR157b Ath-MIR157b; gene family:

MIPF0000008; Accession:
MI0000185

Next upstream

gene: At1g66790;

next downstream

gene: At1g66800

Overexpression of Arabidopsis
miR157b induces bushy architecture

and delayed juvenile-to-adult phase

transition

Shikata et al., 2012; May

et al., 2013

microRNA172a miR172a Ath-MIR172a; gene family:

MIPF0000035; Accession:
MI0000215

Next upstream

gene: At2g28050;

next downstream

gene: At2g28060

miR172 mediates light signals from GI

and promotes floral signal transduction

in Arabidopsis by inducing FT.

Jung et al., 2007; Wu et al.,

2009

PHYTOCHROME A PHYA ELONGATED HYPOCOTYL
8; F14J9.23; F14J9_23;
FHY2; FRE1; HY8

AT1G09570 Light-labile cytoplasmic red/far-red light

photoreceptor involved in floral signal

transduction.

Whitelam et al., 1993; Reed

et al., 1994

PHYTOCHROME B PHYB HY3; MSF3.17; MSF3_17;
OOP1; OUT OF PHASE 1

AT2G18790 PHYB regulates the expression of

genes in response to red light. It

repress floral signal trusnduction.

Koornneef et al., 1980;

Reed et al., 1994

(Continued)
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TABLE 1 | Continued

Gene name Abbreviation Allelic Gene identifier Description References

PHYTOCHROME D PHYD DL4165C; FCAALL.323 AT4G16250 Encodes a phytochrome photoreceptor

with a function similar to that of PHYB.
Reed et al., 1994

PHYTOCHROME E PHYE F15J5.100; F15J5_100 AT4G18130 PHYE is member of Histidine Kinase.

Mutation in PHYE confers early

flowering.

Reed et al., 1994; Devlin

et al., 1998

PLASTOCYANIN PETE 1 T23E18.3; T23E18_3 AT1G76100 One of two Arabidopsis plastocyanin
genes. PETE1 is essential for electron

transport.

Abdel-Ghany, 2009;

Pesaresi et al., 2009

PLASTOCYANIN PETE 2 DRT112; F14O10.6;
F14O10_6;

AT1G20340 One of two Arabidopsis plastocyanin
genes. It is expressed 10x higher than

PETE1.

Abdel-Ghany, 2009;

Pesaresi et al., 2009

RIBULOSE
1,5-BISPHOSPHATE
CARBOXYLASE/
OXYGENASE

RBCS OSRBCS; RBCS-C;
OsJ_016909

LOC4351966 Encodes a member of the Rubisco

small subunit multigene family in Oryza
sativa.

Takano et al., 2009

SCHLAFMÜTZE SMZ T15C9.6 AT3G54990 Encodes an AP2 domain transcription

factor that can repress floral signal

transduction.

Mathieu et al., 2009

SCHNARCHZAPFEN SNZ T16B24.11; T16B24_11 AT2G39250 Encodes an AP2 domain transcription

factor that can repress floral signal

transduction.

Mathieu et al., 2009

SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE 3

SPL3 T1B8.11; T1B8_11 AT2G33810 SPL3 is involved in regulation of floral

signal transduction. Its temporal

expression is regulated by miR156.

Jung et al., 2011; Wahl

et al., 2013

SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE 4

SPL4 F8L10.12; F8L10_12;
FTM6;

AT1G53160 SPL4 is involved in regulation of floral

signal transduction. Its temporal

expression is regulated by miR156.

Jung et al., 2011; Wahl

et al., 2013

SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE 5

SPL5 n/a AT3G15270 SPL5 is involved in regulation of floral

signal transduction. Its temporal

expression is regulated by miR156.

Jung et al., 2011; Wahl

et al., 2013

SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE
13A

SPL13A MBA10.13; MBA10_13;
SPL13

AT5G50570 SPL genes function in distinct pathways

to promote different adult vegetative

phase traits and floral induction.

SPL13A and SPL13B encode the same

protein.

Cardon et al., 1999; Xing

et al., 2010

SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE
13B

SPL13B MFB16.6; SPL13 AT5G50670 SPL13B and SPL13A encode the same

protein.

Cardon et al., 1999; Xing

et al., 2010

SQUAMOSAPROMOTER
BINDING PROTEIN-LIKE 15

SPL15 n/a AT3G57920 Encodes a transcriptional regulator that

is involved in the

vegetative-to-reproductive phase

transition. Its expression is regulated by

miR156b.

Cardon et al., 1999;

Schwarz et al., 2008

SQUAMOSAPROMOTER
BINDING PROTEIN-LIKE 9

SPL 9 AtSPL9; T24P15.11;
T24P15_11

AT2G42200 Encodes a putative transcriptional

regulator that is involved in the

vegetative to reproductive phase

transition. Expression is regulated by

miR156b.

Cardon et al., 1999;

Schwarz et al., 2008; Wang

et al., 2008; Xing et al.,

2010

SUCROSE-PHOSPHATE
SYNTHASE

SPS ATSPS1F, SPS1F, SPSA1,
SUCROSE-PHOSPHATE
SYNTHASE A1

AT5G20280 Encodes a protein with putative

sucrose-phosphate synthase activity.

Park et al., 2008

SUCROSE TRANSPORTER
4

SUT4 ATSUC4; ATSUT4;
F21M12.35; F21M12_35;
SUC4

AT1G09960 AtSUT4 is expressed in companion

cells contributing, along with AtSUC2,
to phloem loading.

Schulze et al., 2003

SUCROSE UNCOUPLED 6 SUN6 ATABI4; GIN6; ISI3; SAN5;
SIS5; T7M7.16

AT2G40220 Involved in ABA signal transduction,

ABA-mediated glucose response, and

HXK-dependent sugar responses.

Arenas-Huertero et al., 2000

(Continued)
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TABLE 1 | Continued

Gene name Abbreviation Allelic Gene identifier Description References

SWEET11 SWEET11 NODULIN MTN3 FAMILY
PROTEIN; AtSWEET11;
T21J18.1

AT3G48740 Encodes a member of the SWEET

sucrose efflux transporter family

proteins.

Chen et al., 2012

SWEET12 SWEET12 BIDIRECTIONAL SUGAR
TRANSPORTER
SWEET12-LIKE PROTEIN

AT5G23660 Encodes a member of the SWEET

sucrose efflux transporter family

proteins.

Chen et al., 2012

TARGET OF EARLY
ACTIVATION TAGGED EAT
1

TOE1 RAP2.7; T17D12.11;
T17D12_11

AT2G28550 TOE1 is member of the AP2 family. AP2

regulates floral signal transduction

through regulating SOC1 and FT
expression.

Aukerman and Sakai, 2003;

Jung et al., 2007; Mathieu

et al., 2009; Yant et al.,

2010; Zhang et al., 2015

TARGET OF EARLY
ACTIVATION TAGGED EAT
2

TOE2 MGO3.10; MGO3_10 AT5G60120 TOE2 is member of the AP2 family.

Overexpression of TOEs confer late

flowering.

Aukerman and Sakai, 2003;

Jung et al., 2007; Mathieu

et al., 2009; Yant et al.,

2010; Zhang et al., 2015

TARGET OF EARLY
ACTIVATION TAGGED EAT
3

TOE3 K21H1.22; K21H1_22 AT5G67180 TOE3 is member of the AP2 family. Aukerman and Sakai, 2003;

Jung et al., 2007; Mathieu

et al., 2009; Yant et al.,

2010; Zhang et al., 2015

TREHALOSE-6-
PHOSPHATE
SYNTHASE

TPS1 ATTPS1; T30F21.9;
T30F21_9

AT1G78580 TPS1 synthesizes T6P. Knockdown of

TPS1 reduces T6P cellular

concentrations and represses floral

signal transduction.

Van Dijken et al., 2004;

Wahl et al., 2013

TWIN SISTER OF FT TSF F9F13.20; F9F13_20 AT4G20370 TSF Encodes a floral inducer that is a

homolog of FT. Mutant lines

overexpressing TSF flower earlier than

WT.

Yamaguchi et al., 2005

ULTRA VIOLET
RESISTANCE LOCUS 8

UVR8 MGI19.7; MGI19_7 AT5G63860 UV-B-specific signaling component that

orchestrates expression of a range of

genes with vital UV-protective functions.

Rizzini et al., 2011

ZEITLUPE ZTL ADO1; FKF1-LIKE PROTEIN
2; FKL2; LKP1; MSF19.2;
MSF19_2

AT5G57360 The protein contains a PAS domain ZTL

that contributes to the plant fitness

carbon fixation, biomass by regulating

the circadian clock.

Somers et al., 2000

INTERPLAY BETWEEN SUGAR AND
CRYPTOCHROME SIGNALING
MODULATES FLORAL INDUCTION

CRYPTOCHROMES (CRYs) comprise flavoproteins that are able
to detect blue light (Guo et al., 1998). The role of CRY1 in
promoting floral induction inArabidopsis has been demonstrated
by the late flowering phenotype of cry1 mutants compared to
WT in various light conditions (Mozley and Thomas, 1995).
Similarly, the cry2/fha1 (fha-1 is a mutant allele of CRY2 in
Landsberg erecta background) mutant flowers later than the WT
in LDs but not in SDs, whereas transgenic plants overexpressing
CRY2 flowered slightly early in SDs but not in LDs (Koornneef
et al., 1991). It has been shown that CRY2 interacts with bHLH
proteins CRYPTOCHROME-INTERACTING BASIC-HELIX-
LOOP-HELIX (CIB) proteins to regulate the FT expression and
floral signal transduction (Liu et al., 2008; Liu H. et al., 2013; Liu
Y. et al., 2013).

Further evidence for the interaction between photosynthetic
assimilates and CRYs is provided by a microarray analysis
revealing regulation of CRY1 and CRY2 transcription levels by
glucose (Li et al., 2006). It has been reported that PHYA interacts

with CRY1, and PHYB binds CRY2 (Ahmad et al., 1998; Mas
et al., 2000), so red and blue light may crosstalk at multiple layers
to co-ordinately regulate developmental transitions. PHYB,
CONSTANS (CO) and, indirectly, PHYA are under the regulation
of CRYs (Valverde et al., 2004; Thomas, 2006). Therefore, any
modification on CRYs transcription levels would also affect
the other photoreceptors and CO, which act directly upstream
of FT and TWIN SISTER OF FT (TSF) with catalytic effects
on the juvenile-to-adult and vegetative-to-reproductive phase
transitions.

Mutants lacking CRYs or having defects in their signaling

pathway show changes in chloroplast composition and

disturbance of normal acclimation (Smith et al., 1993; Walters

et al., 1999). The fact that CRY1 and CRY2 can also act as sensors

of irradiance (Guo et al., 1998) could provide a further link

between light quality and carbohydrate metabolism in regulation
of floral signal transduction.

The Arabidopsis ELONGATED HYPOCOTYL 5 protein
(HY5) is a central mediator of CRY and PHY responses
(Lee et al., 2007). It integrates multiple environmental and
phytohormonal signaling inputs (Catala et al., 2011; Xu et al.,
2014) by mediating homeostatic coordination of sugars (Chen
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FIGURE 1 | Multiple interactions among the components involved in floral signal transduction in response to photoreceptor and sugar signaling crosstalk.

et al., 2016), and maintaining chlorophyll levels and CO2 uptake.
It appears that HY5 might operate in conjunction with the
circadian oscillator to adjust levels of rhythmic photosynthetic
gene expression (Toledo-Ortiz et al., 2014). Interestingly, HY5
regulates both sucrose metabolism and subsequent movement
of sucrose into phloem cells for shoot-root translocation by
promoting the expression levels of SWEET11 and SWEET12
(Chen et al., 2016), genes encoding sucrose efflux transporters
(Chen et al., 2012), and TPS1 (Chen et al., 2016), a gene
encoding T6P. The T6P pathway controls the expression
of SPLs, partially via miR156, and partly independently of
the miR156-dependent pathway via the florigen FT (Wahl
et al., 2013). Evidence have been provided that miR156,
and possibly miR172, are directly regulated by HY5 (Zhang
et al., 2011). Taken together, these data could provide a
potential mechanistic link, at the molecular level, on how the
photoreceptor-sugar crosstalk might be involved in regulation
of floral signal transduction via the HY5 and TPS1-miR156-SPL
module.

LIGHT INTENSITY AND FLORAL SIGNAL
TRANSDUCTION

LI seems to be particularly important during the juvenile-to-
adult and vegetative-to-reproductive phase transition (Figure 1).
It has been proposed that the inability to flower during the
juvenile period is because of a foliar inability to produce floral
signals, the presence of antiflorigens, and/or of the incompetence
of the SAM to respond (Zeevaart, 1985; Matsoukas et al., 2012,
2013; Matsoukas, 2015). The length of the juvenile vegetative
phase in daylenth-sensitive plants can be revealed by reciprocal
transfers between inductive and non-inductive photoperiods
(Adams et al., 2003; Matsoukas et al., 2013; Matsoukas, 2014a).

Exposure to low or high LI levels can delay or hasten time
to flowering, respectively. For instance, Achillea millefolium
grown under a 16 h d−1 photoperiod in controlled environment
conditions flowered after 57, 45, and 37 d when grown under
100, 200, or 300 µmol m−2 s−1, respectively (Zhang et al.,
1996). Similarly, Adams et al. (1999) demonstrated that Petunia
flowering was hastened by LDs, but that decreased LI prolonged
time to flowering. Arabidopsis plants flower rapidly under non-
inductive SDs after exposure to 8–12 d at a high LI. It has been
shown that this “photosynthetic” response is FT-independent. In
contrast, the IDD8 locus of Arabidopsis was reported to have a
role in FT-dependent induction of flowering bymodulating sugar
transport and metabolism by regulating SUCROSE SYNTHASE4
activity (Seo et al., 2011).

However, the effect of LI on time to flowering can be

unpredictable in several species. Hence, the term “facultative

irradiance response” (FI) has been coined to describe a

developmental hastening of flowering by addition of

supplemental light (Erwin and Warner, 2000). Species such

as Antirrhinum [LD plant (LDP)], Nicotiana [LDP or SD plant
(SDP)], and Petunia (LDP) that exhibit a FI response, show
a decrease in leaf numbers and days to flower as irradiance
increases. In contrast, the term “irradiance indifferent” (II) refers
to species such as Salvia (SDP or facultative LDP) and Zinnia
(day neutral plant or facultative SDP) that do not show any
response to increased irradiance (Thomas and Vince-Prue, 1997;
Erwin and Warner, 2000; Mattson and Erwin, 2005; Thomas,
2006).

Despite the high sensitivity of FI species to elevated levels of
LI, the majority does not show a hastened flowering phenotype
with increasing irradiance. It has been shown for Pelargonium x
hortorum that a linear relationship between LI and days to flower,
for an increased irradiance developmental response, exists until a
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threshold level between 6.89 and 9.01 µmol m−2 d−1 (Erickson
et al., 1980). However, some species require greater threshold
levels. For instance, absolute flowering of Digitalis was reached
with LI > 11 µmol m d (Fausey et al., 2001). Furthermore, giving
supplemental irradiance (at 30, 60, and 90 µmol m−2 s−1) to
Gerbera hastened flowering by up to 23 d in the winter, but only
up to 11 d during the Spring (Gagnon and Dansereau, 1989).
This suggests that the impact of supplemental irradiance on floral
signal transduction can be dependent on season’s ambient light
conditions and species’ threshold requirement.

What is not clear is the precise molecular genetic mechanisms
by which LI, if acting through photosynthates can regulate
the floral signal transduction. It may well be that assimilates
themselves act as part of the florigen (Périlleux and Bernier,
2002; Bernier and Perilleux, 2005). Interestingly, long-distance
floral signal transport is now accepted as more complex than the
movement of a single type of signal molecule (Matsoukas et al.,
2012; Matsoukas, 2015). It is possible that total carbohydrate, or a
particular carbohydrate level may be required to reach a specific
threshold in order to sustain a steady supply of sufficient bulk
flow through the phloem from the leaves to the SAM to enable
delivery of florigen. This would be necessary to render the SAM
competent to flower.

CONCLUDING REMARKS

Floral signal transduction has been the focus of a great deal of
attention during the last few decades. Themolecular mechanisms
underlying light perception and the downstream signaling
pathways that regulate the floral signal transduction have been
intensively challenged. The fact that some photoreceptors can

also act as sensors of irradiance provides a promising link
between light qualities and assimilate partitioning and resource
utilization in regulation of floral signal transduction.

Numerous reports highlight the role of several molecules that
integrate light, clock, temperature, and hormone signaling
pathways in orchestration of floral signal transduction.
However, further investigation is vital for the elucidation
of the molecular mechanism underlying photoreceptor-
mediated signal integration at the subcellular, tissue-specific
and temporal level in response to sugar signaling. This research
field is prosperous and technical advances in “-OMICS”
tools might shed light on the underlying molecular genetic
mechanisms.
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NOMENCLATURE

The following nomenclature will be used in this article:
• Names of genes are written in italicized upper-case letters,

e.g., CRY2.

• Names of proteins are written in non-italicized upper-case
letters, e.g., CRY2.

•Names of mutants are written in italicized lower-case letters,
e.g., cry2.
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