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Cuttlefish are highly visual animals, a fact reflected in the large size of their eyes and

visual-processing centers of their brain. Adults detect their prey visually, navigate using

visual cues such as landmarks or the e-vector of polarized light and display intense visual

patterns during mating and agonistic encounters. Although much is known about the

visual system in adult cuttlefish, few studies have investigated its development and that

of visually-guided behavior in juveniles. This review summarizes the results of studies

of visual development in embryos and young juveniles. The visual system is the last to

develop, as in vertebrates, and is functional before hatching. Indeed, embryonic exposure

to prey, shelters or complex background alters postembryonic behavior. Visual acuity

and lateralization, and polarization sensitivity improve throughout the first months after

hatching. The production of body patterning in juveniles is not the simple stimulus-

response process commonly presented in the literature. Rather, it likely requires the

complex integration of visual information, and is subject to inter-individual differences.

Though the focus of this review is vision in cuttlefish, it is important to note that other

senses, particularly sensitivity to vibration and to waterborne chemical signals, also play

a role in behavior. Considering the multimodal sensory dimensions of natural stimuli and

their integration and processing by individuals offer new exciting avenues of future inquiry.

Keywords: cephalopod, vision, embryo, brain, polarization, camouflage, behavioral plasticity

INTRODUCTION

One of the most remarkable experiences one can have as a SCUBA diver is an encounter with a
cuttlefish. Not only is it unexpected (during daytime, cuttlefish aremostly camouflaged, and only an
experienced eye is likely to spot one), but you have a strange feeling of being observed! Indeed, the
eyes of the cuttlefish are large and captivating (Figure 1). They are single-chambered camera-type
eyes whose structure strikingly resembles that of vertebrates. This convergence is unique among
invertebrates and was probably driven by shared ecology and competition with fish (Packard, 1972).
Another indication of the importance of vision to cuttlefish, though other senses are important,
is the size of the optic lobes. These two bean-shaped lateral nervous structures process visual
information and occupy 140% of the whole central nervous system (Nixon and Young, 2003;
Figure 2). The primary purpose of the visual system is to recognize objects so that individuals may
interact with them appropriately and execute the behaviors necessary for survival. Vision plays a
crucial role in the early life stages, as functional vision is essential for perception of prey, predator
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FIGURE 1 | Eyes of the cuttlefish Sepia elongata caught off the coast of Eilat

(Gulf of Aqaba, Israel; photo AS Darmaillacq).

FIGURE 2 | Central nervous system of 3-month-old Sepia officinalis cuttlefish.

Frontal section. Prenant-Gabe trichrome stain. Abbreviations: OL, optic lobe;

SpM, supra-esophageal mass; SbM, sub-esophageal mass; Oe, esophagus.

Modified from Jozet-Alves et al. (2012a).

avoidance and visually-guided behavior (e.g., predation,
Darmaillacq et al., 2004; camouflage, Zylinski et al., 2012;
navigation, Cartron et al., 2012). Consequently, the early
development of functional vision is critical because it enhances
the chances of survival. Although the visual capacities of
cephalopods have been studied extensively in adults, few
studies have investigated their development. Indeed, embryos
were traditionally considered to possess only limited abilities
because of the immaturity of their developing brains. In this
review, we will describe how the visual system develops in
embryos and how it allows embryonic visual learning. We
will also summarize our knowledge of some of the interesting
particularities of cephalopods: polarization sensitivity (PS)
and contrast perception (Shashar et al., 2002), and that of
visual lateralization. Lastly, more recent data regarding the
development and plasticity of defensive behavior in juveniles will
be presented.

EMBRYONIC DEVELOPMENT OF THE
VISUAL SYSTEM AND EMBRYOS’
RESPONSES TO VISUAL STIMULI

Development of Sensory Systems
Sepia officinalis eggs are laid in clusters on various kinds of rigid
support such as algae, tubeworms, ropes or nets. Unlike other
species of Sepia, the eggs are usually darkened with maternal ink
but become more translucent due to the expansion of the capsule
during embryonic development (Boletzky, 2003). S. pharaonis
eggs are completely translucent.

During the final phase of embryonic development (stages
23–30; Boletzky et al., 2016), rhythmic mantle contractions
are visible through the egg capsule after removal of the outer
darker envelopes. These can be measured to assess embryonic
responses to various external stimuli. Like this, Romagny et al.
(2012) showed that in cuttlefish embryos, the order of the
onset of function of chemosensitivity, touch and vision follows
the same sequence as that of birds and mammals, with the
visual system being the last to develop. Neurobiological data
illustrating the early development of sensory neurons in embryos
support these behavioral observations (Baratte and Bonnaud,
2009). This is another evidence of convergent evolution between
cephalopods and vertebrates, perhaps instigated by similar
environmental pressures and direct competition (Packard, 1972).
Because embryonic development takes place outside of the
mother and in the absence of direct parental care, there is
strong evolutionary pressure for the rapid development of
functional sensory systems, so that predators can be avoided
and feeding can begin. Unlike some vertebrate species, in
which the visual system is still immature at birth (Bremner
et al., 2012), indirect evidence suggests that cuttlefish embryos
can discriminate objects outside the egg. However, to date,
no systematic study has been conducted on the development
of retina morphology and physiology in the embryo (but see
Imarazene et al., in press).

Embryonic Visual Responses
There is increasing empirical evidence that prenatal experience
influences postnatal perception, cognitive performance and
behavior. Embryonic perceptual learning, (tested in neonates)
has been demonstrated across many taxa, including insects
(Caubet et al., 1992), amphibians (Mathis et al., 2008), rats
(Hepper, 1988), dogs (Wells and Hepper, 2006), precocial birds
(Sneddon et al., 1998), altricial birds (Colombelli-Négrel et al.,
2012, 2014), and humans (Moon et al., 2013).

Studies showed that embryonic visual experience affects both
feeding and defensive behaviors. Cuttlefish embryos visually
exposed to juvenile crabs for the last week before hatching will
prefer crabs to their innately preferred shrimp prey (Darmaillacq
et al., 2008). Likewise, cuttlefish innately prefer black crabs to
white crabs but will preferentially select white crabs following
embryonic exposure to them (Guibé et al., 2012; Figure 3A).
Thus, it seems that not only do the cuttlefish pay attention
to the shape of the prey (crab vs. shrimp) but also to its
brightness. The relative importance of shape and brightness
can be inferred from the fact that cuttlefish select black
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FIGURE 3 | Seven-day-old cuttlefish’s prey choice depending on whether they

have been exposed to white crabs during embryonic development (“exposed”)

or not (“control”). (A) To the left of the vertical: when they are presented a

choice between white and black crabs. (B) To the right: when they have a

choice between black crabs and shrimp. *Significant prey preference within

groups (chi-square exact test: p < 0.05) and ◦significant difference in prey

choice between groups (Fisher’s exact test: P < 0.05). Modified from Guibé

et al. (2012).

crabs over shrimp after embryonic exposure to white crabs,
suggesting that they are generalizing the characteristics of a
learned preference (crab shape) to the closest alternative (black
crab) if the preferred item is not present (Guibé et al., 2012;
Figure 3B).

Juvenile cuttlefish, that spontaneously prefer dark shelters,
lose this bias when they have been exposed embryonically
to white ones (Guibé and Dickel, 2011). Lee et al. (2012)
also showed that cuttlefish raised prenatally in a visually
enriched have a preference for high-contrast backgrounds
whereas control cuttlefish have no substrate preference. More
experiments are needed to study the direct response of the
embryo to visual stimuli and the development of related brain
structures.

These preferences for certain visual characteristics such as
shape and brightness following embryonic exposure are relatively
straight-forward. In contrast, chemical exposure to waterborne
cues from shrimp or crab alters visual preferences after hatching
in a less explicable fashion. Embryonic exposure to crab odor
and blank seawater had no effect on the normal preference
for shrimp; exposure to shrimp cue however resulted in a
reversal of the normal shrimp preference (Guibé et al., 2010).
The authors suggested that this is possibly due to cross-
modal effects, in which odor cue modulates a primarily-visual
preference. Alternatively, it could be that because embryos in
this experiment were exposed to the odors of adult shrimp
and crabs and they were somehow able to determine the
size of the animal by its odor cue, perceiving them as a
danger rather than as prey. Repeating these experiments with
shrimps and crabs of various sizes could determine whether
age causes differences in odor cues that are distinguished by
cuttlefish.

DEVELOPMENT OF PS, CONTRAST
SENSITIVITY, VISUAL ACUITY AND VISUAL
LATERALIZATION

The cephalopod rhabdomeric-type eye has only one type of
photoreceptor. The microvilli of neighboring photoreceptors are
arranged orthogonally in the retina which confers sensitivity to
the linear polarization of light (Shashar et al., 2002), one of the
main properties of light in shallow water (Cronin and Shashar,
2001). Cephalopod eyes are positioned laterally on the head
allowing both a monocular and a binocular vision.

Spatial Resolution and Polarization
Sensitivity
Spatial resolution (or visual acuity), is the ability to discriminate
fine detail (Tansley, 1965), and plays an extremely important role
in the lives of animals, as it allows them to navigate in space, evade
predators, catch prey, and in some species differentiate between
males and females. Using an optomotor apparatus and stripes of
different width, Groeger et al. (2005) showed that visual acuity
improves as cuttlefish grow, ranging from a minimum separable
angle of 2.5–0.57◦ (a decrease in this angle value means a better
spatial resolution). A decrease in light intensity affects visual
acuity whatever the age of the individual.

Polarization sensitivity (PS) improves the visibility of objects
by enhancing the contrast between them and the background. In
cephalopods, PS increases the success of predation on transparent
prey or silvery fish (Shashar et al., 1998, 2000); in cuttlefish, it
may also play a role in communication between adults (Shashar
et al., 1996; Boal et al., 2004) and in navigation (Cartron et al.,
2012). PS matures gradually after hatching. Cartron et al. (2013a)
found that only 20% of cuttlefish hatchlings showed an OMR
to a polarized striped pattern when it was rotated slowly. The
proportion of cuttlefish responding increased throughout the
first month of life (100% by the age of 30 days; Figure 4).
However, a choice test with fully polarized or depolarized mysids
(transparent shrimps) showed that 1 week-old cuttlefish detect
polarized shrimp faster than non-polarized, suggesting an earlier
maturation of PS (Cartron et al., 2013a). These apparently
contradictory results could be explained by the motion of the
rotating pattern in the OMR apparatus compared with the more
stationary prey. It is possible that polarization contrast is more
useful in assessing the shape of prey and that motion can interfere
somewhat with this ability. This deficiency could be mitigated
by the fact that polarization is not the only quality of light
to which cuttlefish are sensitive. Though colorblind (Mäthger
et al., 2006; but see Stubbs and Stubbs, 2016), cuttlefish are
sensitive to contrast. Indeed, most hatchling cuttlefish (75%)
showed an OMR to the black, white and gray striped pattern
rotating at the lowest velocity, with the proportion reaching
100% by the age of 1 month. Thus, it can be hypothesized
that polarization and luminance signals are processed separately
and may play different roles in vision as observed in insects
(Pfeiffer et al., 2005). In the desert locust Schistocerca gregaria
for instance, a group of neurons in the central complex (a
neuropil in the center of the brain), has been found to be
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FIGURE 4 | Proportion of the cuttlefish (N = 10 per group) that showed an

optomotor response (OMR) to BWG (luminance only; black) or Pol

(polarization; gray) patterns rotating at a velocity of 30 deg s−1, at hatching (0)

and at the age of 30 days. Asterisks indicate a significant difference in the

percentage of cuttlefish showing an OMR between the BWG and Pol patterns

McNemar’s test, (P < 0.05). Modified from Cartron et al. (2013a).

sensitive to polarized light while neighboring neurons are not
(although all neurons responded to unpolarized light). More
experiments, notably electrophysiological and immunochemistry
investigations, are needed in order to determine the neural
pathways for polarization and luminance information processing
in cuttlefish.

Ontogenesis of Visual Lateralization
Cerebral lateralization, a trait that is widespread in animal
kingdom (Vallortigara and Rogers, 2005; Frasnelli et al.,
2012), is often revealed behaviorally by motor and perceptual
asymmetries. In cuttlefish, adults have a preference for turning
right or left (side-turning preference) in a T-maze (Alves et al.,
2007), which can be the result of an eye use preference as in
octopus (Byrne et al., 2002, 2004). In juveniles, Jozet-Alves et al.
(2012b) showed that although cuttlefish do not show any side-
turning preference in a basic T-maze, they do develop a left-
turning bias when shelters are available at the end of the maze’s
arms from the age of 3 to 60 days. Interestingly, when cuttlefish
have been exposed to a predator odor before hatching, they
preferentially turn to the left in the simple T-maze (Jozet-Alves
and Hebert, 2013); this suggests an influence of environmental
factors on the ontogenesis of visual lateralization in cuttlefish.
This may be adaptive for young cuttlefish to decide rapidly which
shelter to choose specially in a risky situation where predators are
potentially present around.

Influence of Environmental Constraints on
PS and Visual Lateralization
S. officinalis, the European cuttlefish, is widespread in the
English Channel, the Atlantic Ocean and the Mediterranean
Sea where the turbidity can be high. On the other hand, S.
pharaonis and S. prashadi are found in the Red Sea, on coral
reefs, where the water is clearer. All these species are able to
detect a polarized stimulus at higher turbidity levels than an

unpolarized one (Cartron et al., 2013b,c), indicating that PS can
improve the capacity for object detection through turbid waters
when intensity information alone is insufficient. S. officinalis
can detect objects, whether polarized or unpolarized, at higher
turbidity levels than the other two (Cartron et al., 2013b). It is
thus likely that PS, which is present in most cuttlefish species
(but see Darmaillacq and Shashar, 2008), is a product of natural
selection driven by visual features of the species’ environment.
This hypothesis is supported by the fact that the S. officinalis
used in this experiment were lab-reared individuals that had
never encountered turbidity, yet were still better-equipped to
discriminate objects under these conditions.

DEFENSIVE BEHAVIOR

Cephalopods are known for their skills in quickly changing
skin patterns in response to environmental change, a property
referred to as “dynamic camouflage” (Hanlon and Messenger,
1996; Hanlon, 2007). This dramatic behavior is made possible
by their unique skin structure that comprises three layers of
cells: the chromatophores (containing dark-brown, reddish-
orange or yellow pigments), within the most superficial dermis
of the dorsal part of the mantle and arms, under the direct
control of the brain; the iridophores, underneath, that reflect
environmental light to create iridescence (particularly prominent
on the ventral part); and the leucophores, the deepest, that reflect
mainly white. Together with textural, postural and locomotor
components, these chromatic elements constitute the “body
pattern” of cuttlefish (Hanlon and Messenger, 1988). Body
patterns displayed in a chronic fashion are mainly used for
crypsis in juveniles as a primary defense strategy to avoid
detection. Cuttlefish adopt a brightness similar to the substrate
(general color resemblance), or a display disruptive colorations
that breaks up the outline of the body so that the overall form
of the animal is lost (Hanlon et al., 2009). The disruptive pattern
has been the most studied. In the lab, it has been shown that
artificial backgrounds such as 2d checkerboards can elicit this
pattern (Chiao and Hanlon, 2001; Chiao et al., 2007). More,
several authors (Chiao and Hanlon, 2001; Barbosa et al., 2007,
2008) showed that both check size and achromatic contrast
affected the body patterns. Other characteristics of the objects
present in the vicinity of cuttlefish are taken into account by
juveniles such as the presence of egdes, the spatial phase and
the three dimensionality (Chiao et al., 2005; Zylinski et al., 2009;
Ulmer et al., 2013).

Other body patterns (such as the deimatic and flamboyant
displays) are shown in a more acute manner (only for a few
seconds) and are used mainly as “secondary” defense strategies
after a cuttlefish has been detected. Cuttlefish can also adopt
a deceptive resemblance to natural objects in the environment
(e.g., floating algae) to deceive potential predators or prey. In
juvenile cuttlefish, uniform and mottle patterning are generally
displayed on uniform/fine sandy backgrounds (Figure 5A)
while disruptive coloration occurs on more patchy/contrasted
substrates (Figures 5B,D). Uniform, mottle and disruptive
patterns are usually mixed to varying degrees (Hanlon et al., 2009;
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FIGURE 5 | The diversity of body patterns displayed by 2-month-old cuttlefish (ca. 3–4 cm dorsal mantle length). (A) stipple-uniform pattern elicited on uniform blue

gravel; (B) disruptive pattern elicited on a black and white checkerboard combined with mottle pattern; (C) deimatic pattern following exposure to a “threat” (D) mottle

coloration with some components of the disruptive pattern (i.e., white square, white head bar, and paired black dots). Note that patterns are not always fully

expressed but exist in combination with others and may or may not directly reflect the visual background.

Figures 5B,C,D), making camouflage “efficiency” very difficult
to define or measure (see discussion in Hanlon et al., 2009).
Last, in adults, body patterning plays a large role in intra-
specific signaling, especially in agonistic and courtship behavior
(Hanlon and Messenger, 1988). While social interaction between
hatchlings appears to be non-existent (see Holmes, 1940; Hanlon
and Messenger, 1996), it is still possible that body patterning also
plays a role in signaling between young cuttlefish. This remains
unclear as inter-individual communication has never carefully
investigated in juvenile cuttlefish, and scarcely even in adults (see
Boal et al., 2004).

Functional chromatophores first appear in ovo during stage
25 of embryonic development, when the dorsal mantle length
of the animal is about 2 mm (Bonnaud-Ponticelli and Boletzky,
2016). While the total number of chromatophores increases with
age, their density progressively decreases from 400 to 500/mm2

at hatching to 35 to 50/mm2 in adults (Hanlon and Messenger,
1988). Nevertheless, both juveniles and adults possess a high
density of cells that allow them to express an infinite range
of gradations of various components of their body patterns,
depending on background and lighting (Hanlon and Messenger,
1988). Thirteen “typical” body patterns have been identified in
adults, but since the body patterning related to sexual behavior
is absent in juveniles, the number of color, postural-kinetic,
and structural components is lower—only nine distinct patterns

(Hanlon and Messenger, 1988). Qualitative changes in body
patterning also occur in juveniles. For example, when a late
juvenile (about > 6 weeks) or adult is threatened by a small
predator, it often displays a “deimatic pattern” in an attempt at
intimidation: it flattens its body and flashes two big spots against
a white dorsal mantle in a manner resembling eyes (Figure 5C).
In younger animals, this pattern appears very rarely (Thorpe,
1963; Hanlon and Messenger, 1988), and though the postural
components are the same as in adults they flash not two but
six dark spots (Hanlon and Messenger, 1988; Mangold, 1989)
until about 2 weeks of age. While this version of the deimatic
display is used sometimes, newly-hatched cuttlefish are more
likely to respond to potential danger with a general darkening
or blanching of its body or a cryptic flamboyant display (Hanlon
and Messenger, 1988).

One wonders whether body patterning development in
juvenile cuttlefish is rigidly fixed or is more influenced by prior
individual experience. Simple observations of body patterning
in early juveniles speak to this question: when placed on the
same background different individuals display different body
patterns, suggesting that the response is partially determined
by previous experience. Other anecdotal and experimental
evidence has the opposite implication however. Hanlon and
Messenger (1988) released young cuttlefish (from <1 to 17
weeks of age) previously reared in captivity into the field
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and observed that they concealed themselves effectively against
every substrate encountered and were extremely difficult to see
by human observers. Unfortunately, the personal histories of
individuals were not described (i.e., whether they were reared
in groups or in isolation, the amount of time spent in the wild
before the behavioral observations, etc.), so we cannot make
any definitive conclusions. Still, this observation suggests that
body patterning development could be hard-wired since the
impoverished artificial conditions of rearing do not seem to have
any deleterious effects on the concealment skills in juveniles.

More controlled experiments also support an innate origin.
Cuttlefish were reared in either “impoverished” conditions
(housed individual tanks on a dark uniform background) or
in “enriched” conditions (housed in groups in a variegated
environment with sand, stones, shells, and artificial seaweeds)
for 2 months (Poirier et al., 2005). Later, individuals from each
group were tested on either a uniform gray substrate or checkered
black and white background. In juveniles, a uniform background
should elicit a uniform or slightly mottled body pattern (but
see discussion in Hanlon et al., 2009), while a disruptive color
pattern seems most adaptive against a contrasted background.
The authors then assessed camouflage efficiency of by measuring
the hue and intensity of various components of body patterning,
on both uniform and contrasted substrates. At hatching, many
cuttlefish display disruptive patterning regardless of background
type. But starting at 15 days of age, cuttlefish previously reared in
enriched conditions were better able to match both background
types. Cuttlefish raised in enriched conditions also had greater
cell proliferation in the optic lobes than those of cuttlefish from
impoverished conditions. This makes sense, as the optic lobes
are key structures controlling body patterning in cephalopods
(Nixon and Young, 2003). Further evidence for greater innate or
“hard-wired” control of body patterning comes from experiments
with potential predators, in which S. officinaliswas found to show
the deimatic pattern toward small, low-threat teleost fish but
not toward larger more dangerous predators such as sea bass or
small sharks (Langridge et al., 2007; Langridge, 2009). Moreover,
these reactions occur the first time such threats are encountered,
suggesting innate recognition of threat type.

While the preponderance of evidence suggests that body
patterning is preprogrammed the fact that different individuals
may use a different concealment strategies when placed in the
same environment (Poirier et al., 2004), suggest some amount
of experience-dependence, potentially through learning and
phenotypic plasticity, although we cannot rule out the possibility
that these inter-individual differences are the result of genetic
history or parental experience. These data lead us to conclude
that body patterning in cuttlefish is definitely not a simple
stimulus-response process, as it is commonly presented in the
literature. It probably involves a complex integration of visual
information, genetic history and individual experience (West-
Eberhardt, 1989), possibly even before hatching (Figure 6). Thus,
further investigation of body pattern development could lead
to insight not only about camouflage and defense, but also to
a better understanding of learning, plasticity, decision making
and higher-order cognitive processes in cephalopods (Vitti, 2012;
Skelhorn and Rowe, 2016).

FIGURE 6 | Stage 30 embryo (less than 1 cm) showing a mottle-disruptive

coloration inside the egg. It has also squirted ink; note the cloud of ink in the

perivitellin fluid. Note that the embryo is seen from under through a peeled S.

officinalis egg (photo C.E. O’Brien).

CONCLUSION: EMBRYONIC ECOLOGY

In this review, we discussed the fact that the visual system is
functional well before hatching, as indicated by indirect evidence
from embryonic visual learning. By stage 25, the embryo’s eyes
are mature enough to perceive light and also to discriminate
stimulus shape, movement and brightness. Unfortunately, little is
known about the direct response of embryos to such stimulations
and about the development of the brain structures that process
visual information in cuttlefish, namely the optic lobes. The fact
that cuttlefish are able to attend to and learn from their biotic and
abiotic environment during the final stages of their embryonic
development from the relative safety of their egg suggests that
prenatal learning plays a large facilitative role in finding food and
shelter after hatching. This ability may also enable prenatal social
learning. Eggs are laid in clusters, and as a consequence, embryos
are likely to be able see each other during development. Social
rearing conditions after birth are known to have strong effects
on growth and memory (Dickel et al., 2000), so the possibility
of prenatal effects exists. No studies have yet addressed this,
and experiments to test the effect of embryonic development in
isolation on postembryonic behavior are needed.

Many questions about the development of vision in cuttlefish
remain to be explored. For instance, do females actively choose
their egg-laying site in order to increase offspring learning
and survival (i.e., non genetic maternal effects)? Cuttlefish
reproduce only once in their lifetime and hence, have only a
single opportunity to produce offspring. This, combined with
the potential for juvenile behavior to be shaped by embryonic
learning, implies that strong selection pressure (based on
the presence of predators, shelters or prey for juveniles) is
exerted on females’ decision. Since it has long been assumed
that invertebrate behaviors are mostly genetically programmed,
attention should be paid to such previously-neglected effects.
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This synthesis highlights the importance of vision in embryo
and juvenile cuttlefish behaviors. However, like other animals,
cuttlefish live in a multisensory world, and even if vision appears
predominant, their behaviors may be influenced by other senses.
In most animals, the senses are not equal in their ability to
provide accurate information about the environment (Bremner
et al., 2012). For example, in a turbid environment, relying only
on vision may be risky, and other senses may play a greater
role. Komak et al. (2005) have demonstrated that young cuttlefish
are sensitive to local water movements thanks to specialized
cells on the arms and the head that are analogous to the lateral
lines of fish. Water movement detected by these cells could
alert cuttlefish to the presence of prey or predators before it is
possible to see them. The importance of particular senses may
also vary throughout the life of an individual. In cuttlefish, given
the opacity of the egg capsule, the sensory world of embryos is
probably dominated by chemosensory information. This likely
changes as soon as the cuttlefish leaves the egg. Assessing the

relative importance of vision and its interactions with the other
senses through multimodal perception in different situations and
at different ages offers exciting new tracks of research such as
prey and predator recognition through visual and/or chemical
information.
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