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Anatomy of frontal sinuses varies individually, from differences in volume and shape to
a rare case when the sinuses are absent. However, there are scarce data related to
influence of these variations on impact generated fracture pattern. Therefore, the aim of
this study was to analyse the influence of frontal sinus volume on the stress distribution
and fracture pattern in the frontal region. The study included four representative Finite
Element models of the skull. Reference model was built on the basis of computed
tomography scans of a human head with normally developed frontal sinuses. By
modifying the reference model, three additional models were generated: a model without
sinuses, with hypoplasic, and with hyperplasic sinuses. A 7.7 kN force was applied
perpendicularly to the forehead of each model, in order to simulate a frontal impact. The
results demonstrated that the distribution of impact stress in frontal region depends on
the frontal sinus volume. The anterior sinus wall showed the highest fragility in case with
hyperplasic sinuses, whereas posterior wall/inner plate showed more fragility in cases
with hypoplasic and undeveloped sinuses. Well-developed frontal sinuses might, through
absorption of the impact energy by anterior wall, protect the posterior wall and intracranial
contents.

Keywords: frontal sinus, fracture, frontal bone, finite element analysis, modeling

INTRODUCTION

It is well known that anatomy of the frontal sinuses varies individually, in terms of different
volume and shape. About 4% of the population does not have frontal sinuses and other 4 to 5%
have only small rudimentary air cells (Aydinlioglu et al., 2003; Pondé et al., 2003; Kalavrezos,
2004; Montovani et al., 2006). Normally developed frontal sinuses are usually about 28-30 mm
in height, 24-28 mm in width and 20 mm in depth, creating a space of 5-7 ml (Amine and
Anand, 2015). A small/hypoplasic frontal sinus is an underdeveloped sinus cavity, size of a smaller
peace, located above the frontal maxillar processus. Enlarged frontal sinuses could be classified
into three categories which include occurrence of symptoms as well: (1) hyper-(pneumatised)-sinus

Frontiers in Physiology | www.frontiersin.org

1 July 2017 | Volume 8 | Article 493


http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00493
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00493&domain=pdf&date_stamp=2017-07-11
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:fica@kg.ac.rs
https://doi.org/10.3389/fphys.2017.00493
http://journal.frontiersin.org/article/10.3389/fphys.2017.00493/abstract
http://loop.frontiersin.org/people/364216/overview
http://loop.frontiersin.org/people/425229/overview
http://loop.frontiersin.org/people/444487/overview
http://loop.frontiersin.org/people/425146/overview
http://loop.frontiersin.org/people/425135/overview
http://loop.frontiersin.org/people/218278/overview

Pajic et al.

Frontal Sinus Affects Frontal Fractures

- developed beyond the established limits of normal frontal sinus
aeration in an asymptomatic patient, (2) pneumosis dilatans-the
entire sinus or a segment develops beyond the confines of the
frontal bone and encroaches upon the adjacent structures, and
(3) pneumocele—produce regional signs and symptoms relative
to sinus overgrowth and causes thinning of the overlying bone
(Urken et al., 1987).

Frontal sinus is directly connected with the anterior cerebral
fossa, nose and orbital roof, giving a great complexity to the
trauma of this region. Generally, fractures of the frontal bone
are associated with high impact trauma and dynamic forces, such
as traffic accidents, assaults, and sport accidents (May, 1970;
Tiwari et al., 2005; Bell et al., 2007; Mithani et al., 2009). The
injuries of the frontal region are varying, as they range from
isolated fractures of the anterior sinus’ wall, to very complex
fractures involving the orbit and skull base (Strong et al., 2006;
Holier et al., 2010; Dimitrijevic et al., 2014). Fracture pattern
and its complexity depend on many factors, such as impact
force intensity and direction, site of impact, and frontal bone
quality.

However, the influence of the frontal sinus volume on the
stress distribution and fracture pattern at impact within the
frontal region is still unclear. Some experimental studies on
cadavers and artificial head models investigated influence of
impact on facial bones, and its biomechanical response (Nyquist
et al., 1986; Allsop et al., 1988; Cormier and Manoogian, 2010).
But the studies were limited to small number of cadavers and
didn’t consider the influence of variations in human anatomy
and impact force, since the experiments are not repeatable and
commonly ended with the specimen fracture. These limitations
motivated researchers to apply the computers and numerical
procedures such as Finite Element Analysis (hereinafter FEA)
for studying head injury. Using realistic geometry obtained from
medical scans and experimentally determined material properties
of the tissues, FEA allows for calculation of head physical
response (displacements, stresses, strains etc.) under an arbitrary
conditions (loads, constraints), which are very difficult (if at
all) to estimate in the experimental conditions. A number of
human-head models were developed, validated and proposed
for studying the human head and brain injuries (Zhang et al,,
2001; Samaka and Tarlochan, 2013; Asgharpour et al., 2014).
However, most of these studies were focused on brain injuries
assuming simplified human head models that did not included
the frontal sinuses. Song et al. (2015) were the first who have
studied the dynamic response of the skull under blunt frontal,
zygomatic and maxillary impacts, considering the cases with
and without sinuses. The results of this study demonstrated
that, in forehead impact, the frontal sinuses significantly affected
the distribution of stress and strain in the skull. However, this
study did not consider the influence of various sinus volumes
on the stress distribution in the frontal bone and cranial
base.

Therefore, the aim of the study was to evaluate the
impact of the frontal sinus volume on the stress distribution
and fracture pattern in the frontal region, by means of
FEA.

MATERIALS AND METHODS

Test Cases Considered and Methodology

for Development of Numerical Models

The patient specific anatomical models used in this study
were developed from the CT scans of the human head, with
normally developed frontal sinuses. The scans were selected from
the database of the Emergency Hospital/Emergency Radiology
Department of Diagnostics-Clinical Center of Serbia CT scanner
(Aquilion™ PRIME 160 slices AIDR 3D integrated, Toshiba
Medical System Tehnologies, Nasu, Japan, 72kW, 13,6mGy). This
study was carried out in accordance with the recommendations
of Helsinki declaration and the guidelines of the International
Committee of Medical Journal Editors, with approvals from Ethic
Committee of the Clinical Centre Serbia (Date 24. 11. 2016.
No. 195/43) and Ethics Committee of the Faculty of Medicine
University of Nis (Date 27 12 2016 No. 12-14532-2/6). Moreover,
all subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Image reconstruction was performed by using a filtered back-
projection type cone beam reconstruction algorithm (ConeXact,
Toshiba Medical Systems, Nasu, Japan). The considered patient
was a male adult (27 year old) with no sinus pathology. The
160-slice CT scans were acquired with the 0.5 mm isotropic
resolution of 350 x 350 pixels with the pixel size 0.5 x 0.5 mm?
and 0.5 mm slice thickness. Three dimensional reconstruction of
human head model from its CT scans (Figure 1A) was performed
by using the Mimics software (Materialize, Leuven, Belgium),
version 10. The first step was obtaining the mask of cortical
bone, than the masks of diploe and teeth. Subsequently, the
masks of the following intracranial tissues were created: dura
mater, cerebro-spinal fluid (CSF), brain tissue and ventricles.
All developed masks were converted from the volume into
the stereolithography (STL) format by using the Mimics STL+
module. The quality of STL mesh was improved by reducing the
number and fixing quality of the triangles by using the REMESH
module. The described model represents Model 1- with normally
developed frontal sinuses and it was used as a reference model for
the further analyses (Figure 1C).

Using the CT scans and STL meshes of the model with
normally developed sinuses, three additional virtual models
were generated. Model 2 represents the human skull without
frontal sinuses (Figure 1D), Model 3 is with small- hypoplasic
(Figure 1E), and Model 4-with large frontal sinuses (Figure 1F).
Anatomical skull geometries were achieved by corresponding
contraction and expansion of the Model 1 sinus cavity, i.e., by
adding or deleting the pixels of cortical and medullary bone.
The modifications were made with respect to the anatomies of
patients, who had frontal bone with hypoplasic, enlarged, and
with undeveloped sinuses, using the database available in the
Clinical Center Serbia. The categorisation criteria for defining
the hypoplasic, normal and enlarged sinus cavities were based
on the sinus volume determined by CT and data available in
the open literature (Yiiksel Aslier et al, 2016). Namely, the
hypoplasic frontal sinus is defined as a sinus with volume size
lower than 1131.25 mm?>. Volume of the normally developed
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the FEA models from the reference model.
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FIGURE 1 | FEA models and boundary conditions. (A) Considered materials-tissues; (B) Loading conditions; (C) Reference model with normally developed frontal
sinus cavities; (D) Model without frontal sinuses; (E) Model with hypoplasic frontal sinus cavities; (F) Model with hyperplasic frontal sinus cavities; (G=J) Deviation of
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frontal sinus is between 1131.25 mm?® and 3328.50 mm?, whilst
the volume of the enlarged or hyperplasic frontal sinus is
over 3328.50 mm?>. Hyperplasic frontal sinus selected for this
study was classified as hyper-(pneumatised)-sinus- one that is

developed beyond the established limits of normal frontal sinus
aeration in an asymptomatic patient (Urken et al., 1987).

The resulting STL files of the four models developed were
imported into the CATIA V5 software R20 (Dassault Systémes,
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Velizy-Villacoublay, France; modules Digitized Shape Editor
and Quick Surface Reconstruction modules) in order to obtain
their NURBS surfaces representation which is suitable for the
further structural analysis. The obtained solid models were
finally imported into ANSYS software (SASI, Canonsburg, PA,
United States of America), version 14.5.7, for generating FEA
mesh and conducting structural analysis.

FEA Models and Material Properties

Material characteristics of the bone, teeth and intracranial
contents were taken from the literature (Mao et al., 2013;
Asgharpour et al., 2014; Antic et al., 2015; Song et al., 2015) and
are shown in Table 1. The cortical bone, diploe, dura, ventricles
and teeth were modeled as linear elastic material, described with
Young’s modulus (E), Poisson’s ratio (v) and density. Brain and
cerebro-spinal fluid (CSF) were modeled using the viscoelastic
material model described with the following equation: G(t) =
Goo+(Go+Goo)-ePt, where G is long-time shear modulus, Go
is short-time modulus, B is decay coefficient and t is time. In
order to estimate a risk from skull fracture, it was necessary
to adopt the limiting values of compressive and tensile stresses
of cortical bone. In the present study, the adopted values of
compressive and tensile ultimate strength were o = 133 MPa
and oy = 92 MPa, respectively (Antic et al., 2015). The four FEA
models were discretized into the fine volume mesh, using the
linear tetrahedron elements (Tet4) available in ANSYS Meshing
module. The FEA models of the Model 1, Model 2, Model 3
and Model 4 were defined with 665614, 663517, 664729, and
666815 tetrahedron elements, respectively. For the considered
models, values of the considered mesh quality indicatros were:
Jacibian = 1; average Element quality (the ratio of the volume
to the square root of the cube of the sum of the square of the
edge lengths) was 0.83 with the standard deviation of 0.142;
average Aspect ratio was 2.136 with the standard deviation of
0.70. These values were achieved iteratively, by refining the mesh
until coarsening of the mesh does not disturb the stress field
(particularly, the changes of the stress values between the last two
successive refinements were ~2%).

Boundary Conditions and Structural
Strength Analysis

All of the simulations were conducted in ANSYS as the transient
structural analysis within 100 time-steps (Figure 1B). A blunt

trauma was applied as an impact force acting perpendicularly to
the forehead over a circular area 2 cm in diameter (Figure 1B).
The impact force intensity of 7.7 kN was adopted from the
experimental study conducted by Nahum (Nahum et al., 1977)
and used in previous FEA studies of the human head impact
(Zong et al., 2006; Mao et al., 2013). The nodes of the external
occipital protuberance of the investigated skull were fixed in all
degrees of freedom. The distribution of the effective-von Mises
stress (a measure of the intensity of the multiaxial stress state,
Pruitt and Chakravartula, 2011), Maximum and Minimum stress,
estimated at the peak moment of the impact force, were analyzed.
The fracture risk for the developed models was calculated by
using the Maximum Principal Stress Criterion- MPSC (Gross and
Seelig, 2011; Antic et al., 2015; Zelic et al., 2015). Following the
MPSC, it was assumed that the skull failure occurs when a positive
(compressive) component of the principal stress exceeds the
tensile strength o or when a negative component of the principal
stress is less than the compressive strength oc. Therefore, the
failure index (FI) was calculated using the principal stresses o}
(maximum) and o3 (minimum) as: FI(c;) = oj/oys if 6; > 0 and
FI(o0;) = o0j/0s otherwise.

RESULTS

The results demonstrate the distribution of the impact-induced
stress in the frontal region, depending on the volume of the sinus
cavities. Distributions of the effective (von Mises) and principal
stresses (compressive and tensile stress) with calculated failure
indices are estimated at the time distance that corresponds to
the peak of the impact force, and presented chromatically on the
figures below (Figures 2, 4, 5).

Chromatic analysis of the distributed effective-von Mises
(VMS) is presented in the Figure 2. The results obtained show
that, following the impact, the extreme values of the VMS
occurred in vicinity of impact (including anterior sinus wall)
in all the models. The stress concentration also occurred in the
regions of septum, posterior sinus wall and frontal part of the
cranial base. Considering the anterior sinus wall, the highest level
of stress was reached in Model 4, whilst the maximum values
of the obtained stress appeared in the models in the following
decreasing order: Model 4 > Model 1 > Model 3 > Model 2.
In contrast, considering the posterior sinus wall/interior cortical

TABLE 1 | Mechanical properties of the considered materials.

Material Property E (Mpa) v P (kg/m3) K (MPa) G (kPa) G (kPa) B (kPa)
Cortical bone Elastic 15,000 0.21 1,900 - - - -
Diploe Elastic 4,600 0.05 1,500 - - - -
Brain Viscoelastic - - 1,040 2,190 6 0.1 80
Dura Elastic 31.5 0.35 1,100 - - - -
CSF Viscoelastic - - 1,040 2,190 0.5 0.1 80
Ventricles Elastic 31.5 0.315 1,100 - - - -
Teeth Elastic 18.60 0.31 2,100 - - - -

E, Young’s modulus; v, Poisson’s ratio; p, Density; K, Bulk modulus; Go, Short-time shear modulus; G, Long-time shear modulus.
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FIGURE 2 | Distribution of effective-Von Mises stress. (A-D) Model 1; (E-H) Model 2; (I-L) Model 3; (M-P) Model 4.
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FIGURE 3 | Sinus volume and maximum Von Mises stress ratio. TSV, total
sinuse volume (left+right sinus cavity); VMS, Von Mises stress (presented are
the maximum values).

plate, and frontal part of the cranial base, the order of the Models
with decreasing stress values was totally opposite: Model 2 >
Model 3 > Model 1 > Model 4 (Figure 2).

Figure 3 shows the ratio of the frontal sinus volume and
maximum values of the concentrated VMS. It is demonstrated
that the increase in the volume of the sinuses was followed
with the increase of the VMS at the anterior sinus wall,
which was more significant than the decrease of the VMS
at the posterior sinus wall. However, regardless the small
differences in the maximum VMS measured at the posterior
sinus wall/ depending on the sinus volume, the differences in
the distribution of the VMS among the models were obvious
(Figures 2B-N).

Analysis of the principal stresses with calculation of their
failure indices (FI) showed the following:

- Compressive stress mostly concentrated at the point of impact,
and in the septal regions of the Model 1 and Model 4.
Based on the obtained results and the calculated values of
the FI, fracture could be expected only in the frontal region
of Model 4, and septal regions of the Models 1 and 4
(Figure 4).

- Tensile stress distribution was observed mostly at the posterior
sinus wall and frontal part of the cranial base, reaching
the maximum values in Model 2 and Model 3, respectively.
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FIGURE 4 | Distribution of compressive stress and FI-compression. (A-D) Model 1; (E-H) Model 2; (I-L) Model 3; (M-P) Model 4.
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However, none of the Models showed a failure, which suggests
that the failure could be expected only at higher levels of the
impact force (Figure 5).

DISCUSSION

Numerous assumptions have been proposed in order to explain
the function of the paranasal sinuses and many of them were
discarded (Blaney, 1990; Rhys-Evans, 1992; Rae and Koppe,
2004; Keir, 2009). Recently, Kellman and Schmidt (2009) have
proposed a theory that paranasal sinuses serve as a crumple zones
with a role to provide a compressible or fragmentable barrier
that absorbs and disperses energy through the destruction and/or
deformation of the crumple zone itself. In an experimental study
with nine cadavers, they showed that when trauma was directed
to the globe, the thin orbital floor fractured referentially into

the maxillary sinus, thereby protecting the globe from rupture.
When the ethmoid and maxillary sinuses were eliminated, similar
trauma caused ruptures of the globes. Furthermore, they assumed
that there is a similar way in which frontal sinuses protect the
frontal lobe.

Inspired with the theory of paranasal sinuses as protective
structures, Song et al. (2015) have validated two models of the
human head: with and without paranasal sinuses, against three
different impacts: impact to the forehead, zygoma and maxilla.
In forehead impact, frontal sinuses significantly influenced the
accumulation of stress in the nearby intracranial zone. Namely,
stress in the nearby intracranial zone was higher in the model
without sinuses by about 35% than in model with sinuses.

Yu et al. (2014) in an epidemiological study examined the
interactions of the frontal sinuses with different volume and the
brain in the setting of head trauma. They showed that the volume
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FIGURE 5 | Distribution of tensile stress and F/-tension. (A-D) Model 1; (E-H) Model 2; (I-L) Model 3; (M-P) Model 4.

of the frontal sinuses was 33% less in patients with contusion
than in patients without contusion of the brain, meaning that the
frontal sinuses impart a protective advantage against frontal brain
contusion.

In accordance with these data, the results of the present study
showed that dynamics of head injury and stress distribution in
the frontal region depend on the sinus volume, and confirmed
the protective role of the frontal sinuses. After applying an impact
force of 7.7 kN to the frontal region of the forehead, the stress
occurred at the anterior sinus wall, region of sinus septum, at the
posterior sinus wall and frontal region of cranial base in all the
four Models. However, significant differences in the distribution
of the extreme stress levels were found depending of the sinus
volume. The anterior sinus wall showed the highest fragility in

the case with hyperplasic sinus cavity due to high compressive
stress. Based on the FI results (Figure 4), this stress could cause
a fracture of the anterior wall of the hyperplasic sinuses and also
the septa of the hyperplasic and normally developed sinuses. In
contrast, posterior sinus wall/inner plate and frontal region of the
cranial base demonstrated more fragility in cases with hypoplasic
and even more in undeveloped sinuses, due to high tensile stress.
However, the amounts of tensile stress in these regions were not
sufficient to cause a failure (Figure 5). Fracture of the posterior
wall or frontal cranial base require higher impact force, and will
occur primarily in cases with hypoplasic or undeveloped sinuses.

In case of trauma of the frontal region with developed sinus
cavity, anterior sinus wall and septa are predisposed to fracture
due to the absorbed compressive stress, thereby minimizing the
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impact energy transmission to the frontal lobe. With hypoplasic
or undeveloped sinus cavities, the anterior wall was less fragile,
as the stress was conveyed to the posterior wall and frontal part
of the cranial base. Although a higher impact force is required to
cause a fracture of these regions, the distributed stress might also
be transmitted onwards and affect the brain and vital structures.
This is consistant with the results of the epidemiological study
of Yu et al. (2014), where patients with brain contusion had 33%
smaller sinuses than the patients without brain contusion.

Results of the study support the theory that frontal sinuses
provide a compressible or fragmentable barrier that absorbs and
disperses energy through the destruction and/or deformation of
its anterior wall, thus protecting the posterior wall and sinus
floor. Knowing that fractures of the posterior cortical plate and
sinus floor usually cause injuries of the intracranial and orbital
contents (Heller et al., 1989; Stanley, 1989), frontal sinuses do
impart a protective role against the brain and eye trauma.

Understanding the dynamics of the skull in trauma is
important for early recognition of severe cases, as well as
for providing the future protection of the brain. In frontal
trauma, brain contusion should be expected more likely in
persons with smaller sinus cavities, therefore, special care should
be taken in order to avoid possible oversights in diagnosis.
The results of the study support the management of the
frontal sinus fractures that follow the surgical approach of
preservation and restoration of the posterior wall and sinus
cavity, avoiding the radical procedures, whenever possible.
This is of particular importance in people who are prone
to regaining the impact in this region, such as individuals
involved in various sports, or jobs with increased risk of
being injured. Future investigations should be addressed to the
development of adequate restorative materials and reconstructive
strategies for preserving the integrity of the frontal sinus
cavity.

In conclusion, our results showed that impact-induced stress
distribution and fracture pattern in the frontal region highly
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