AUTHOR=Beltrame Thomas , Hughson Richard L. TITLE=Mean Normalized Gain: A New Method for the Assessment of the Aerobic System Temporal Dynamics during Randomly Varying Exercise in Humans JOURNAL=Frontiers in Physiology VOLUME=8 YEAR=2017 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2017.00504 DOI=10.3389/fphys.2017.00504 ISSN=1664-042X ABSTRACT=

The temporal dynamics of the oxygen uptake (V˙O2) during moderate exercise has classically been related to physical fitness and a slower V˙O2 dynamics was associated with deterioration of physical health. However, methods that better characterize the aerobic system temporal dynamics remain challenging. The purpose of this study was to develop a new method (named mean normalized gain, MNG) to systematically characterize the V˙O2 temporal dynamics. Eight healthy, young adults (28 ± 6 years old, 175 ± 7 cm and 79 ± 13 kg) performed multiple pseudorandom binary sequence cycling protocols on different days and time of the day. The MNG was calculated as the normalized amplitude of the V˙O2 signal in frequency-domain. The MNG was validated considering the time constant τ obtained from time-domain analysis as reference. The intra-subject consistency of the MNG was checked by testing the same participant on different days and times of the day. The MNG and τ were strongly negatively correlated (r = −0.86 and p = 0.005). The MNG measured on different days and periods of the day was similar between conditions. Calculations for the MNG have inherent filtering characteristics enhancing reliability for the evaluation of the aerobic system temporal dynamics. In conclusion, the present study successfully validated the use of the MNG for aerobic system analysis and as a potential complementary tool to assess changes in physical fitness.