
ORIGINAL RESEARCH
published: 20 July 2017

doi: 10.3389/fphys.2017.00522

Frontiers in Physiology | www.frontiersin.org 1 July 2017 | Volume 8 | Article 522

Edited by:

Luca Paolo Ardigò,

University of Verona, Italy

Reviewed by:

Supej Matej,

University of Ljubljana, Slovenia

Yves Henchoz,

Centre Hospitalier Universitaire

Vaudois (CHUV), Switzerland

H-C Holmberg,

Mid Sweden University, Sweden

*Correspondence:

Jörg Spörri

joerg.spoerri@balgrist.ch

Specialty section:

This article was submitted to

Exercise Physiology,

a section of the journal

Frontiers in Physiology

Received: 06 April 2017

Accepted: 06 July 2017

Published: 20 July 2017

Citation:

Spörri J, Kröll J, Fasel B, Aminian K

and Müller E (2017) The Use of Body

Worn Sensors for Detecting the

Vibrations Acting on the Lower Back

in Alpine Ski Racing.

Front. Physiol. 8:522.

doi: 10.3389/fphys.2017.00522

The Use of Body Worn Sensors for
Detecting the Vibrations Acting on
the Lower Back in Alpine Ski Racing

Jörg Spörri 1, 2*, Josef Kröll 1, Benedikt Fasel 3, Kamiar Aminian 3 and Erich Müller 1

1Department of Sport Science and Kinesiology, University of Salzburg, Hallein-Rif, Austria, 2Department of Orthopedics,

Balgrist University Hospital, Zurich, University of Zurich, Zurich, Switzerland, 3 Laboratory of Movement Analysis and

Measurement, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

This study explored the use of body worn sensors to evaluate the vibrations that act

on the human body in alpine ski racing from a general and a back overuse injury

prevention perspective. In the course of a biomechanical field experiment, six male

European Cup-level athletes each performed two runs on a typical giant slalom (GS)

and slalom (SL) course, resulting in a total of 192 analyzed turns. Three-dimensional

accelerations were measured by six inertial measurement units placed on the right and

left shanks, right and left thighs, sacrum, and sternum. Based on these data, power

spectral density (PSD; i.e., the signal’s power distribution over frequency) was determined

for all segments analyzed. Additionally, as a measure expressing the severity of vibration

exposure, root-mean-square (RMS) acceleration acting on the lower back was calculated

based on the inertial acceleration along the sacrum’s longitudinal axis. In both GS and

SL skiing, the PSD values of the vibrations acting at the shank were found to be largest

for frequencies below 30 Hz. While being transmitted through the body, these vibrations

were successively attenuated by the knee and hip joint. At the lower back (i.e., sacrum

sensor), PSD values were especially pronounced for frequencies between 4 and 10 Hz,

whereas a corresponding comparison between GS and SL revealed higher PSD values

and larger RMS values for GS. Because vibrations in this particular range (i.e., 4 to 10 Hz)

include the spine’s resonant frequency and are known to increase the risk of structural

deteriorations/abnormalities of the spine, they may be considered potential components

of mechanisms leading to overuse injuries of the back in alpine ski racing. Accordingly,

any measure to control and/or reduce such skiing-related vibrations to a minimum should

be recognized and applied. In this connection, wearable sensor technologies might help

to better monitor and manage the overall back overuse-relevant vibration exposure of

athletes in regular training and or competition settings in the near future.

Keywords: injury prevention, overuse injuries, wearable sensors, spine, back pain, athletes, alpine skiing, training

load management

INTRODUCTION

On the topic of the relationship between training load and sports injuries, there is emerging
evidence that poor load management (i.e., an insufficient balance between loading and recovery)
is a major injury risk factor (Drew and Finch, 2016). Accordingly, monitoring the external loads
that act on the human body is key to better understanding the occurrence of (and potentially to
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avoid) injuries in competitive sports (Soligard et al., 2016). In
this context, body worn inertial measurement units (IMU) may
offer a pervasive way to measure both load-related body postures,
as well as vibrations acting on the human body during outdoor
sports activities (Kim et al., 1993; Chardonnens et al., 2013;
Seel et al., 2014; Fasel et al., 2017). Moreover, they may provide
important information regarding training or competition time,
movement repetitions and/or the accelerations acting on the
different segments of the human body (Chardonnens et al., 2012,
2014; Rawashdeh et al., 2016; Yu et al., 2016; Whiteside et al.,
2017). Thus, particularly for investigating the link between load
and injury, as well as for monitoring and/or managing training
and competition load, sensor-based wearable technologies might
serve as an essential tool in the near future. In the current study,
their practical usefulness will be demonstrated through the sport
of alpine ski racing.

In alpine ski racing, the relatively high risk of injury is
well documented and recognized (Pujol et al., 2007; Flørenes
et al., 2009; Westin et al., 2012; Bere et al., 2013). In recent
years, substantial research efforts concerning injury causes and
prevention measures have been undertaken (Spörri et al., 2016b).
However, most alpine ski racing-related research has focused
on traumatic injuries, while overuse injuries have received little
attention (Supej et al., 2017). Accordingly, exploring the potential
causes of overuse injuries in order to provide evidence-based
recommendations for their prevention has been suggested to be
an important task for the future alpine ski racing-related research
agenda (Supej et al., 2017).

Similar to other competitive sports, in alpine ski racing the
athlete’s back has been reported to be one of those body parts
that is particularly prone to overuse injuries (Bergstrom et al.,
2004; Hildebrandt and Raschner, 2013; Spörri et al., 2015a). As
early as adolescence, competitive alpine skiers were discovered
to have significantly more prevalent radiographic abnormalities
as non-athletic age-matched controls (Rachbauer et al., 2001;
Todd et al., 2015). Furthermore, several studies have documented
such abnormalities as being associated with a higher risk of
developing low-back pain later, either during or after the sports
career (Luoma et al., 2000; Lundin et al., 2001; Ogon et al., 2001;
Iwamoto et al., 2004). From a biomechanical perspective, several
factors may contribute to the development of overuse injuries of
the back in alpine ski racing.

First, similar to other competitive sports, an accumulation
of heavy mechanical loads exceeding the athletes’ capacities,
particularly if the recovery time between the loadings is
insufficient, may lead to tissue damage and overuse injuries
(Soligard et al., 2016). This appears quite plausible, as an
association between cumulative low back loads and low back pain
has already been demonstrated for different athletic (i.e., other
than alpine skiing) and occupational cohorts (Kujala et al., 1996;
Heneweer et al., 2011; Coenen et al., 2013).

Second, with the use of body worn sensors, recent studies
of alpine ski racing explored that typical loading patterns of
the back include a combined occurrence of frontal bending,
lateral bending and torsion in the trunk, as well as high peak
loads (Spörri et al., 2015a,b, 2016a). Since a combination of
these factors is known to be related to high spinal disc loading

(Nachemson, 1981; Wilke et al., 1999; Haid and Fischler, 2013),
and has been suggested to be attributable to different types
of spine deteriorations (Rachbauer et al., 2001; Hangai et al.,
2009), they may be considered important mechanisms leading
to overuse injuries of the back in alpine ski racing (Spörri et al.,
2015a,b, 2016a).

Third, there is strong scientific evidence that excessive
exposure to whole-body vibrations, particularly at frequencies
close to the resonant frequency of the spine [∼4–10 Hz
according to Izambert et al. (2003), Guo et al. (2009), Guo et al.
(2011), and Baig et al. (2014)], increases the risk of structural
deteriorations/abnormalities of the spine and of developing low
back pain (Hill et al., 2009; Burström et al., 2015). For that and
other reasons, there are international standards such as, ISO
2631 (ISO, 1997) orDirective 2002/44/EC of the European Union
(EU, 2002) that define minimum health and safety requirements
for the exposure of workers arising from whole-body vibrations
(Griffin, 2004).

Regarding the vibrations that occur while skiing, earlier
studies primarily focused on recreational skiing (Kugovnik et al.,
2000; Federolf et al., 2009; Supej, 2013; Tarabini et al., 2015)
and/or the ski-plate-binding-boot unit level (Kugovnik et al.,
2000; Federolf et al., 2009; Tarabini et al., 2015). However, it
is reasonable that vibrations in alpine ski racing are markedly
different than those occurring in recreational skiing. Based on
the preliminary findings of two pilot studies, it is known that
vibrations are damped when being transmitted through the
skier’s body (Supej, 2013; Fasel et al., 2016a). Thus, in the context
of alpine ski racing, it is not a priori clear which frequencies and
signal powers the occurring vibrations possess, and how much
of them are actually transmitted to the lower back. Moreover,
in alpine ski racing it is so far largely unexplored whether the
vibrations acting on the lower back should be considered to be
harmless, or whether they might act as potential contributors for
developing overuse injuries.

Therefore, the aims of the current study were: (1) to describe
power spectral density (i.e., the signal’s power distribution
over frequency) of the vibrations acting on the different body
segments in the competition disciplines giant slalom (GS) and
slalom (SL); and (2) to quantify and compare the root-mean-
square (RMS) accelerations acting on the lower back (i.e., the
severity of vibration exposure) while skiing GS and SL turns.

MATERIALS AND METHODS

Measurement Protocol and Experimental
Setup
Six male European Cup-level athletes (85.3± 4.9 kg) participated
in the study. Within the framework of a biomechanical field
experiment, for each athlete the data of two GS runs and two
SL runs were collected. For each run performed, an eight-turn
section in the middle of a 16 gate-course was considered for
further data analysis, resulting in a total 192 included turns
(Figure 1). The GS course was set with linear gate distances of
25m and gate offsets of 6.5 m. The SL course had linear gate
distances of 10m and gate offsets of 3 m. Both courses were set
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FIGURE 1 | Schematic overview of the experimental on-hill setup.

on a constantly inclined slope (19◦) with very compact artificial
snow conditions, as are typically encountered in the sport of
alpine ski racing. Accordingly, on both courses only minor ruts
and grooves resulted from the 12 runs performed. The protocol
was approved by the ethics committee of the Department of
Sport Science and Kinesiology at the University of Salzburg and
all subjects gave written informed consent.

Data Collection and Instruments
The three-dimensional (3D) accelerations acting on the skier’s
body segments while skiing were measured at a sampling rate
of 500 Hz with six inertial measurement units (Physilog IV;
Gait Up; CH) placed on the right and left shanks, right and left
thighs, the sacrum and the sternum. The sensors’ dimensions
were 50 × 39 × 9.2 mm with a 19-gram weight. They were
electronically synchronized by radio frequency pulses. In order
to minimize the occurrence of any self-resonance and/or soft
tissue artifacts, the sensors were fixed to the corresponding body
segments on predefined anatomical locations using a skintight
custom made underwear suits. For the shank, this was on the
medial surface of the tibia bone above the ski boot top and for
the thigh, at the mid-distance between the knee and hip joint
center (slightly on the lateral side). The sacrum and sternum
sensors were fixed directly on the corresponding anatomical
landmarks. Additional fixation of the sensors was provided by
the athletes wearing their own very close-fitting racing suit. The
accelerometers included in the inertial measurement units were
set to capture a range of ±16 g and were calibrated following the
procedure of Ferraris et al. (1995). To align the sensor frames
with the anatomical frames of the body segments, before each

analyzed run, a functional calibration procedure consisting of
upright still standing, slow squats, vertical trunk rotation and
hip abduction and adduction movements was performed. The
anatomical frames were defined in accordance to the guidelines
of the International Society of Biomechanics (Wu and Cavanagh,
1995). All data processing, parameter computation and statistical
analysis steps were performed using the software MATLAB
R2012b and/or IBM SPSS Statistics 22.

Data Processing and Parameter
Computation
During analog-to-digital conversion, all acceleration and angular
velocity raw data was low-pass filtered at IMU manufacturer-
predefined cut-off frequencies of 94 and 98 Hz, respectively.
In order to automatically segment each run and to extract
the relevant eight-turn section, 3D segment orientations and
a 3D body segment model were calculated as described in
detail in previous studies (Fasel et al., 2016b, 2017). For each
time instance, the distances between the athlete’s center of
mass and the left and right ankle joint centers were computed.
Turn switches were defined as the crossing points of these
two distances, as suggested and validated by Fasel et al.
(2016c). Inertial acceleration was computed by transforming the
measured acceleration in the global frame, removing the gravity
component, and transforming the resulting acceleration back
into the anatomical frame.

Power spectral density (PSD) was estimated with the single-
sided amplitude spectrum (SSAS) of the inertial acceleration.
First, the amplitude spectrum (AS) was computed as the square
of the norm of the Fast Fourier Transform (FFT) coefficients
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of the inertial acceleration along the segment’s longitudinal
axis. Second, to obtain the SSAS, AS was normalized by the
sampling frequency and total number of FFT coefficients and was
multiplied by two. For illustration purposes, the final PSD was
obtained by smoothing SSAS with a moving average of length 5
and interpolating it between 0.5 and 75 Hz in 0.1 Hz steps.

Root-mean-square acceleration (RMS) acting on the lower
back (i.e., sacrum sensor) during the analyzed eight-turn section
was determined based on the inertial acceleration data along the
sacrum’s longitudinal axis. In accordance with the international
standard ISO 2631 (ISO, 1997), the inertial acceleration data was
filtered in the frequency domain prior to computing the RMS
according to the ISO filter specifications [frequency weighting
Wk (vertical direction) with k = 1]. This filter amplifies
accelerations at frequencies close to the resonant frequency of the
spine [∼4–10 Hz according to Izambert et al. (2003), Guo et al.
(2009), Guo et al. (2011), and Baig et al. (2014); (Figure 2)]. RMS
was then equal to the RMS value of this filtered acceleration.

Following this procedure, for each run and athlete, one PSD
curve and one RMS value were obtained. For providing more
representative subject/competition discipline curves and values,
finally, the PSD curves and RMS values of two eight-turn sections
performed by the same athlete and in the same competition
discipline were averaged.

Statistical Analysis
The statistical analysis consisted of the following steps: (1) for
each body segment and competition discipline, group average
PSD curves were computed based on the aforementioned six
representative subject average PSD curves; (2) these group
average PSD curves were visualized as the areas of uncertainty
around the estimate of the mean (i.e., ± the standard error (SE)
boundaries); (3) for each competition discipline, group average

RMS accelerations acting on the lower back (i.e., sacrum sensor)
were calculated based on the aforementioned six representative
subject average RMS values and, subsequently, were reported as
mean ± standard deviation (SD); and (4) potential differences
in the lower back (i.e., sacrum sensor) RMS values between
GS and SL were tested using a paired sample t-test (level
of significance: p < 0.05), and effect sizes (Cohen d) were
calculated.

RESULTS

The group average PSD curves of all segments representing GS
and SL skiing are depicted in Figures 3, 4. Generally, in both GS
and SL, the PSD values of the vibrations acting on the shank were
largest for frequencies below 30 Hz. While being transmitted
through the body, vibrations were found to be attenuated by each
joint (i.e., vibrations at the shank sensor> thigh sensor> sacrum
sensor > sternum sensor). Moreover, while at the shank sensor
and thigh sensor, PSD values were especially pronounced for
frequencies between 10 and 20 Hz; at the lower back (i.e., sacrum
sensor), between 4 and 10 Hz PSD values were particularly high.
Comparatively, small PSD values were observed at the sternum
sensor. At frequencies of below 4 Hz, in the PSD curves of all
segments another peak was observed.

The PSD curves that explicitly illustrated the vibrations that

acted on the lower back (i.e., sacrum sensor) in GS and SL are
presented in Figure 5. At frequencies between 4 and 10 Hz, PSD

values and, therefore, signal powers of the vibrations acting on

the lower back were larger in GS than in SL. Lower back (i.e.,
sacrum sensor) RMS values were found to be 11.10± 1.20m/s2 in

GS and 9.35± 0.77 m/s2 in SL, whereas these values significantly
differed at p < 0.001 (Table 1).

FIGURE 2 | Specifications of the frequency weighted ISO filter used for the calculation of root-mean-square acceleration in accordance with the international standard

ISO 2631 ISO (1997).
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DISCUSSION

PSD of the Vibrations Acting on Different
Body Segments in GS and SL
As observed previously for recreational skiing (Federolf et al.,
2009; Supej, 2013), in both GS and SL skiing the PSD values of
the vibrations acting at the level of the shank sensor were found
to be largest for the frequency range below 30 Hz (Figures 3,
4). In this context, it is worth discussing that PSD peaks within
this particular range might have different origins. PSD peaks
below 4 Hz can most likely be ascribed to the frequency of turns
and/or the skier’s basic movement patterns. For GS, previous
studies revealed turn frequencies of 0.7 Hz and basic movement
frequencies of 1.4 Hz, while for SL, turn frequencies of 1.1 Hz
and basic movement frequencies of 2.2 Hz were observed (Reid,
2010; Spörri et al., 2012, 2016a). PSD peaks above 4 Hz are most
likely a direct consequence of uneven or bumpy snow surfaces
and the chattering of the skis when interacting with the snow
surface while turning. In this context, it is already known that
ski chattering and, therefore, vibrations around 15 Hz to 25 Hz
are strongly dependent on the skier’s turn technique (skidding
vs. carving), the ski’s sidecut, and the occurring snow conditions
(Kugovnik et al., 2000; Federolf et al., 2009; Supej, 2013).

Starting from the aforementioned vibrations acting on the

shank, in both GS and SL vibrations were found to be successively

attenuated while being transmitted through the body (Figures 3,

4). While the knee joint mainly attenuated the signal power of

all occurring vibrations, the hip joint damped the vibrations,

particularly at frequencies >10 Hz, which is in line with previous

findings of a pilot study in GS skiing (Fasel et al., 2016a)

and fundamental studies under laboratory conditions (Rubin

et al., 2003; Kiiski et al., 2008). A distinctive attenuation of ski

racing-specific vibrations at frequencies between 4 to 10 Hz,

was performed by the spinal structures between the sacrum

FIGURE 3 | Group average power spectral density (PSD) curves of all

segments in GS skiing visualized as the area of uncertainty around the

estimate of the mean (±SE). Red, right shank sensor; blue, right thigh sensor;

gray, sacrum sensor; green, sternum sensor.

and sternum sensors. Thus, knowing that vibrations of those
frequencies (i.e., close to the resonant frequency of the spine) are
the most damaging vibrations for spinal structures and increase
the risks of developing low back pain (Hill et al., 2009; Burström
et al., 2015), they may be considered potential components of
mechanisms leading to overuse injuries of the back in alpine
ski racing. Accordingly, special emphasis should be placed on
controlling and/or reducing them to a minimum (Griffin, 2004),
and protecting athletes by adequate prevention measures. This
consideration especially applies to youth athletes whose bodies
are still in growth stages.

Vibration Exposure of the Lower Back
While Skiing GS and SL Turns
Comparing the competition disciplines GS and SL, distinct
differences regarding the vibrations acting on the lower back (i.e.,
sacrum sensor) were identified: for the back overuse-relevant
frequencies of 4 to 10 Hz, PSD values were apparently larger
in GS than in SL (Figure 5). Moreover, lower back (i.e., sacrum
sensor) RMS values, for which calculation accelerations in the
range of 4 to 10 Hz are particularly more weighted, were found
to be significantly larger for GS than SL (Table 1). This might
be explained by the larger average angle between the ski axis
and the instant direction of motion (i.e., higher amount of
skidding) in GS than in SL (Reid, 2010; Spörri et al., 2012) and,
therefore, the more intense vibrations that result when the skis
slide more transversally (and less longitudinally) over damaged
and/or bumpy snow surfaces. A skidding-induced increase of
“usual” chattering of the skis when interacting with undamaged
and/or smooth snow surfaces might not serve as an explanation,
because this phenomenon is known to be typically related to
frequencies around 15 to 25 Hz (Supej, 2013). However, whether
the observed competition-discipline specific differences are of

FIGURE 4 | Group average power spectral density (PSD) curves of all

segments in SL skiing visualized as the area of uncertainty around the estimate

of the mean (±SE). Red, right shank sensor; blue, right thigh sensor; gray,

sacrum sensor; green, sternum sensor.
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FIGURE 5 | Areas of uncertainty around the estimate of the mean (±SE) of the

lower back (i.e., sacrum sensor) group average power spectral density (PSD)

curves for frequencies below 30 Hz in GS and SL. Light gray, GS; dark gray,

SL.

TABLE 1 | Descriptive and inferential statistics of the root-mean-square

accelerations (RMS) that act on the lower back (i.e., sacrum sensor) in the

competition disciplines giant slalom (GS) and slalom (SL).

Parameter Mean ± SD t-test

Giant slalom (GS) Slalom (SL) p-value Cohen d

RMS [m/s2] 11.10 ± 1.20 9.35 ± 0.77 0.001*** 2.822

Level of significance: ***p < 0.001.

clinical relevance needs to be verified by future studies combining
both health and load monitoring.

Methodological Considerations
The current study provided valuable insights on the vibrations
acting on the human body in GS and SL skiing from a general
and a back overuse injury prevention perspective, though there
is a potential limitation that needs to be considered when
interpreting the study findings. Since the IMU sensors were
fixed on the skin and not directly on the bones, particularly
for the thigh segment, relative movements between the IMU
sensors and the underlying bones might have occurred. These
relative movements mainly can be ascribed to soft tissue artifacts,
relative displacements of the fixation suit and the resonance
of the attached sensors. As a consequence, peak accelerations
may be overestimated by ∼12%, as it was estimated in a
previous study comparing the accelerations measured by skin-
fixed and bone-fixed sensors (Kim et al., 1993). However, in
view of the major challenges when collecting kinematic data
under field conditions and on an alpine ski racing course,
a bone fixation was not a feasible option for the current
study.

PERSPECTIVES

Load Monitoring in Alpine Ski Racing with
Body Worn Sensor Technology
One approach for keeping the occurrence of lower back vibration
exposure of athletes, and in particular that of youth athletes,
within a minimal or healthy dose might be found in the
systematic management of training load and recovery time. For
that purpose, both continuous load monitoring and a profound
injury monitoring are fundamental, implying an evident need
for precise assessment tools (Soligard et al., 2016). In the near
future, sensor-based wearable technologies might serve as an
essential tool, especially for monitoring the cumulative exposure
to external loads. In the context of overuse injuries of the
back and alpine ski racing, the IMU sensor-based methodology
used in this study objectively illustrates the great potential such
technologies can have.

On the one hand, with the use of only one IMU sensor,
it might be possible to quantify the overall severities of lower
back vibration exposures during entire training sessions and/or
to specifically monitor vibrations at dangerous frequencies. On
the other hand, with the use of two IMU sensors and pressure
insoles, it might be feasible to assess the overall trunk movement
components and peak loads (enabling a rough estimate of the
patterns of spinal disc loading) by long-term measurements
during regular training. In the context of alpine ski racing, such
an approach has already been applied to short experimental trials
under field conditions (Spörri et al., 2015b, 2016a); indicating the
small remaining gap toward a direct real-time biofeedback during
regular training sessions and or competitions.

Where to Go from Here?
Nevertheless, for finding broad application in sport practical
settings, there are several preceding steps that need to be
taken: from an engineering perspective, body worn sensor
technologies still need to be optimized regarding their size,
fixation and usability, as well as their real-time and embedded
data-processing. In addition, custom-made and application-
specific algorithms that take advantage of the characteristics of
the specific movement analyzed need to be developed. Finally,
prior to the wearable devices/algorithms being launched on
the market, rigorous and independent validation and reliability
studies are indispensable (Halson et al., 2016; Sperlich and
Holmberg, 2016). From a scientific perspective, future research
should primarily focus on investigating the relationship between
sport-specific external loads and injury risks in order to be able to
identify the most relevant parameters for monitoring purposes,
and to verify their predictive validity.

In a working-related context, the evaluation of exposures
to whole-body vibration is based on the calculation of daily
exposure expressed as either: (i) an equivalent continuous RMS
acceleration over an 8 h period, or (ii) the vibration dose value
(VDV) (Griffin, 2004). Such single measures with corresponding
action/limit criteria might serve a more intuitive and perhaps
“more coach friendly” approach than the PSD analyses presented
in this study. Thus, also in a sports-related context such measures
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might work. The only missing steps are the definition of sport-
related testing protocols and the exploration of appropriate
action/limit criteria, which indispensably need to be associated
with exposure time. However, as it was nicely illustrated in
Griffin (2004), there is a large internal inconsistency within
the Directive 2002/44/EC of the European Union for short
duration exposures to whole-body vibration, for instance. In this
case, the aforementioned two alternative methods (RMS and
VDV) may give very different action/limit values. Accordingly,
it might appear more prudent to base actions on the qualitative
guidance (i.e., reducing risk to a minimum) rather than only
refer to the contradicting quantitative guidance values (Griffin,
2004). Catching up this line of argumentation, also in sports-
related context, it might be a reasonable alternative approach
to just monitor the vibrations acting on the lower back and try
(regardless of exposure time) to reduce them to a minimum.

CONCLUSION

The findings of this study lead to the conclusion that in
addition to the previously suggested combined occurrence of
frontal bending, lateral bending and torsion in the highly loaded
trunk, the vibrations acting on the lower back also may be
considered potential components of mechanisms leading to
overuse injuries of the back in alpine ski racing. Accordingly,
prevention measures should also aim to control and/or reduce
to a minimum the vibrations acting on the lower back while
skiing. A particular focus should concentrate on vibrations
occurring with a frequency around 4 to 10 Hz because these
are known to be the most damaging to the spine. In addition,

the current study clearly illustrated the great potential of
wearable sensor technologies tomonitor andmanage the external
loads that act on alpine skiers during regular training and/or
competitions.
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