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Muscle fiber number is determined around the time hatch with continued posthatch

muscle growth being mediated by the adult myoblast, satellite cell, population of cells.

Satellite cells are dynamic in their expression of proteins including the cell membrane

associated proteoglycans, syndecan-4 and glypican-1. These proteoglycans play roles

in organizing the extracellular environment in the satellite cell niche, cytoskeletal structure,

cell-to-cell adhesion, satellite cell migration, and signal transduction. This review article

focuses on syndecan-4 and glypican-1 as both are capable of regulating satellite

cell responsiveness to fibroblast growth factor 2. Fibroblast growth factor 2 is a

potent stimulator of muscle cell proliferation and a strong inhibitor of differentiation.

Proteoglycans are composed of a central core protein defined functional domains,

and covalently attached glycosaminoglycans and N-glycosylation chains. The functional

association of these components with satellite cell function is discussed as well as an

emerging role for microRNA regulation of syndecan-4 and glypican-1.
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INTRODUCTION

The extracellular matrix is an organized structure that can be either located outside cells
or directly associated with the cell membrane. Collagens, proteoglycans, and non-collagenous
glycoproteins compose the extracellular matrix. The protein constituents of the extracellular matrix
are dynamically expressed and are directly associated with cell proliferation, adhesion, migration,
and regulation of cell shape. The extracellular matrix produced by a tissue changes with age, injury,
and is tissue-specific. “Traditionally, the extracellular matrix was described as a ground substance
that the cells were embedded in and functioned as a structural framework for the cells but did
not biologically influence cell behavior (Velleman, 2012).” Research beginning in the 1980s with
the advent of molecular tools has shown that the extracellular matrix is critically important in
the physiological function of most tissues by forming a signaling loop with the cell responding
to extracellular matrix signals with altered gene expression, changes in cell shape, or adhesive
properties. Hence, the extracellular matrix produced by the cells within a tissue is creating an
extrinsic environment that governs its own behavior.
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Communication between the extracellular matrix and muscle
cells plays a pivotal role in the regulation of muscle cell
proliferation and differentiation. Proliferation represents the
replication of muscle cells available to fuse and differentiate into
multinucleated myotubes whereas differentiation refers to the
formation of muscle specific structures including multinucleated
myotubes and fibers. Increased proliferation will provide a larger
pool of muscle cells available for differentiation. Changes in the
level of differentiation will affectmuscle fiber size and the number
of myofibers.

In addition to the muscle fibers, there are three layers of
connective tissue in mature skeletal muscle: the endomysium,
perimysium, and epimysium. The endomysium separates
individual muscle fibers, the perimysium surrounds bundles
of muscle fibers, and the epimysium forms a sheath around
the entire muscle. These connective tissue layers are composed
of cells and extracellular matrix proteins. The predominant
extracellular matrix protein in the connective tissue layers are
collagens. Types I, III, IV, V, and VI collagen are found in skeletal
muscle (Nishimura et al., 1997). Although the collagens play
important structural and functional roles in extracellular matrix
regulation of muscle growth properties, this review will focus
on the cell membrane associated proteoglycans, syndecan-4
and glypican-1, due to their function in regulating the muscle
cell growth processes including muscle cell proliferation and
differentiation.

WHAT ARE PROTEOGLYCANS?

“Proteoglycans are a varied group of proteins containing
a central core protein and at least one covalently-attached
glycosaminoglycan (GAG) chain. The central core protein
ranges in size from ∼40,000 to >350,000 daltons (Iozzo and
Murdoch, 1996; Iozzo, 1998; Velleman, 2012).” The definition of
a proteoglycan is very broad and will include macromolecules
with a variety of biological roles including tissue hydration,
organization of the tissue architecture, regulation of gene
expression, cell proliferation and differentiation, cell migration,
cell adhesion, and transduction of extracellular signals to the cell.
The impact of proteoglycans on cellular behavior is immense with
all of these processes being essential for muscle development and
growth. Proteoglycan biological activity is not limited to just the
central core protein but involves the post-translational addition
of the GAGs and N-glycosylation chains.

“TheGAG chains are polymers of disaccharide repeats that are
sulfated and contain a high negative charge. The negative charge
permits ionic interactions withmolecules such as water or growth
factors. Glycosaminoglycan chains attached to the core protein
include chondroitin sulfate, dermatan sulfate, keratan sulfate,
and heparan sulfate (Velleman, 2012).” Glycosaminoglycans
preferentially attach to repeat amino acid sequences Serine-
Glycine-Serine or Serine-Glycine-Serine-Glycine which is the
primary acceptor site for xylosyltransferase to initiate the
addition of GAGs to the core protein (Bourdon et al., 1987;
Zhang et al., 1995). “Chondroitin sulfate is composed of repeats
of glucuronic acid and N-acetylglucosamine with sulfate groups

in the 4- and 6- position of the amino sugar. Heparan sulfate
consists of repeats of glucuronic acid and N-acetylglucosamine.
Keratan sulfate contains disaccharide repeats of galactose and N-
acetylglucosamine with the sulfate at the 6-position of the amino
sugar (Velleman, 2012).” The high negative charge of the GAGs
allows them to ionically interact with many molecules including
but not limited to water and growth factors. The N-glycosylation
chains are attached to the core protein at an asparagine amino
acid at the sequence Asparagine-Xaa-Serine/Threonine. The
Xaa can be any amino acid except proline (Kornfeld and
Kornfeld, 1985). N-glycosylation chains are involved in proper
folding of proteins (Parodi, 2000) and localization of membrane
proteins to the cell surface (Martinez-Maza et al., 2001). In
skeletal muscle, proteoglycan expression changes during muscle
development and growth from one rich in large chondroitin
sulfate proteoglycans to a mixture of chondroitin, dermatan,
and heparan sulfate proteoglycans immediately preceding hatch
(Young et al., 1989; Fernandez et al., 1991; Velleman et al., 1999).
This expression pattern of proteoglycans indicates that different
proteoglycans may have distinct developmental functions during
the muscle growth process.

HEPARAN SULFATE PROTEOGLYCANS:
THE SYNDECANS AND GLYPICANS

Two major groups of membrane-associated heparan sulfate
proteoglycans, the syndecans and glypicans, are found in skeletal
muscle. To date there are four members of the syndecan family,
1–4 (Larrain et al., 1997; Brandan and Larrain, 1998; Fuentealba
et al., 1999; Liu et al., 2006). The 4 syndecans share common
structural features. The syndecans all have an N-terminal signal
peptide, an extracellular domain that contains attachment sites
for the GAGs, a transmembrane domain, and a C-terminal
cytoplasmic domain containing conserved domain 1, variable
(V) domain, and conserved domain 2. The transmembrane and
cytoplasmic domains are conserved across species and within the
syndecan family. The ectodomain containing the GAG binding
sites and N-glycosylation sites is less conserved. The syndecans
are primary modulators of cellular behavior associated with both
cell proliferation and differentiation (Velleman and Liu, 2006).

Syndecan-4 is the most widely distributed of the syndecans
(Couchman, 2010). Although similar in structure to syndecans-1
through -3, syndecan-4 has several unique features. For example,
the extracellular domain of syndecan-4 can be shed from the
cell surface, and the cytoplasmic domain can bind to protein
kinase C alpha (PKCα) and phosphatidylinositol 4,5-biphosphate
(PIP2) (Oh et al., 1997a,b, 1998). Protein kinase C alpha binds
to the V region of the syndecan-4 cytoplasmic domain through
the intermediate PIP2 (Oh et al., 1997a,b, 1998; Horowitz et al.,
1999). In muscle, syndecan-4 has been shown to play a key role
in mechanisms modulating skeletal muscle development and will
be the focus of the following discussion.

The glypicans, unlike the syndecans, are not transmembrane
heparan sulfate proteoglycans, but attached to the cell surface
through a glycosylphosphoinositol (GPI) anchor. There are
six vertebrate glypicans: glypican-1 through -6. The glypicans
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contain an N-terminal signal sequence followed by a globular
domain containing multiple cysteine residues, a GAG binding
domain, N-glycosylation sites, and a C-terminus GPI anchor
domain leading to the attachment of glypican to the cell
surface. Unlike the syndecans which can make direct contact
with internal cytoskeletal components through their cytoplasmic
domain to activate signal transduction pathways, glypican
activation of signaling pathways is not indirect and involves
other transmembrane molecules, since glypican does not contain
a transmembrane domain (Velleman and Liu, 2006). Only
glypican-1 has been shown to play a role in myogenesis through
its regulation of fibroblast growth factor 2 (FGF2).

FUNCTION OF SYNDECAN-4 AND
GLYPICAN-1 ATTACHED HEPARAN
SULFATE CHAINS AND
N-GLYCOSYLATION CHAINS IN
MYOGENESIS

The covalently attached heparan sulfate chains to the syndecan-
4 and glypican-1 core proteins are involved in the biological
activity of these proteoglycans. For example, growth factors
are strong stimulators or inhibitors of myoblast and myogenic
satellite cell proliferation and differentiation. Fibroblast growth
factor 2 is a potent stimulator of muscle cell proliferation
and a strong inhibitor of differentiation into muscle specific
structures (Dollenmeier et al., 1981). Myogenin, a muscle specific
transcriptional regulatory factor, required for the initiation of
myotube formation (Brunetti and Goldfine, 1990) is inhibited
by FGF2. By suppressing myogenin expression, FGF2 maintains
the skeletal muscle cells in a state of proliferation increasing the
available pool of muscle cells for muscle fiber formation. For
FGF2 to interact with its tyrosine kinase receptor, it must bind
to heparan sulfate chains attached to proteoglycans like syndecan
or glypican. If the heparan sulfate chains are removed from the
proteoglycan core protein, FGF2 will no longer inhibit muscle
differentiation (Rapraeger et al., 1991).

The function of the individual heparan sulfate chains attached
to syndecan-4 and glypican-1 core proteins has remained an
enigma. To further define the functional contribution of the
covalently attached heparan sulfate chains to the syndecan-4 and
glypican-1 core proteins, a site directed mutagenesis approach
was developed targeting each of the syndecan-4 and glypican-1
heparan sulfate chains (Zhang et al., 2007, 2008). Syndecan-4 has
3 heparan sulfate attachment sites in its core protein at serine
residues 38, 65, and 67 (Zhang et al., 2008). Glypican-1 has 3
heparan sulfate attachment sites at serine residues 483, 485, and
467 (Zhang et al., 2007). For both syndecan-4 and glypican-1,
site directed mutant constructions were created leaving only 1
heparan sulfate chain attached to each of the serine residues or
no heparan sulfate chains attached (Zhang et al., 2007, 2008).
Figures 1, 2 are schematic representations of the site directed
mutagenesis cloning strategy used for syndecan-4 and glypican-1.

The activity of each of the GAG attachment sites were
studied by Velleman et al. (2007) and Zhang et al. (2008)
during proliferation and differentiation, and the responsiveness

FIGURE 1 | (A) Site-directed mutagenesis strategy used for turkey

syndecan-4. The 3 potential glycosaminoglycan (GAG) attachment sites are

located at Ser38, Ser65, and Ser67 and are referred to as chain 1, chain 2, and

chain 3, respectively. The following nomenclature was developed to identify

the specific site-directed mutants: S = syndecan-4, the number after S refers

to the number of potential GAG sites unaltered, and the number after hyphen

indicates the GAG attachment sites not modified. For example, S2–13 means

two-chain of syndecan-4 at the Ser38, and 67 sites intact. By the same token,

S1-1 would refer to a syndecan-4 with one-chain intact at the Ser38, and S0

represents the zero chain presented in the construct. All other abbreviations

follow this format. The schematic shows the generation of all possible

two-chain mutants, one-chain mutants, and no-chain mutant. (B) Partial

nucleotide and amino acid sequence of turkey syndecan-4 including the

potential GAG attachment sites showing the conversion of Ser (S) to Threonine

(T). The nucleotide and resulting amino acid sequence s for the site-directed

mutated sites are highlighted in the boxes (Figure reproduced from Zhang

et al., 2008).

to FGF2 in turkey breast muscle satellite cells. The satellite
cells were transfected with expression vector constructs of wild-
type syndecan-4, one-chain mutant, no-chain mutant or the
empty vector. All of the constructs inhibited cell proliferation
and delayed initial differentiation but did not affect the
responsiveness of the cells to FGF2 treatments. Taken together,
these data showed that syndecan-4 in turkey breast muscle
satellite cells can function in an FGF2-independent manner
and its function is not completely derived from the covalently
attached heparan sulfate chains.

Similar experiments were conducted by Zhang et al. (2007) on
glypican-1 function during proliferation and differentiation, and
responsiveness to FGF2. Unlike syndecan-4 the overexpression
of wild-type glypican-1 increased responsiveness to FGF2 during
proliferation compared to the one-chain and no-chain mutants,
but did not affect proliferation compared to the empty-vector
control. Glypican-1, in breast muscle satellite cells, functions in
an FGF2-dependent manner, whereas syndecan-4 can elicit a
biological affect in an FGF2-independent manner. Furthermore,
when glypican-1 is released from the cell surface by cleavage of
its GPI anchor it can still bind FGF2 to its heparan sulfate chains
(Velleman et al., 2013). When FGF2 is sequestered away from
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FIGURE 2 | (A) Site directed mutagenesis strategy used for turkey glypican-1.

The three potential glycosaminoglycan (GAG) attachment sites are located at

Ser483, Ser485, and Ser487. The Ser483 is referred to as chain 1, Ser485 is

chain 2, and Ser487 is chain 3. The following nomenclature was developed to

identify the specific site directed mutants: G = glypican-1, the number after G

refers to the number of potential GAG sites unaltered, S = serine, and the

number after S indicates the GAG attachment sites not modified. For example,

G2S12 means Glypican-1 with the Ser483 and 485 sites not mutated, and

G1S2 would refer to a glypican-1 one-chain mutant containing the Ser485 site,

and G0 represents the no-chain mutant construct. All other abbreviations

follow this rule. The schematic shows the generation of all possible two-chain

mutants, one-chain mutants, and no-chain mutant. (B) Partial nucleotide and

amino acid sequence of turkey glypican-1 including the potential GAG

attachment sites at Ser483, Ser485, and Ser487. The nucleotide and resulting

amino acid sequences for the site-directed mutated sites are highlighted in the

boxes. (Figure reproduced from Zhang et al., 2007).

the cell surface, it is no longer able to bind to its tyrosine kinase
receptor and activate cellular signal transduction pathways.

Historically, proteoglycan research has primarily addressed
the biological impact of the attached GAG chains, due to
their high negative charge and resulting ionic interactions
with both molecules like water and growth factors, and
more recently the proteoglycan central core protein. Many
proteoglycans contain N-glycosylation chains attached to the
core protein, but the function of the N-glycosylation chains
has largely been overlooked as they are a minor component
of the entire proteoglycan structure. N-glycosylation chains
have an important biological function in protein activity.
Properties attributed to N-glycosylation chains include protein
folding (Parodi, 2000), and localization of cell surface proteins
(Martinez-Maza et al., 2001).

Syndecan-4 has 2 N-glycosylation chains attached to the
asparagine (Asn) residue of amino acid sequence Asn-Xaa-
Serine/Threonine; Xaa can be any amino acid except proline
(Kornfeld and Kornfeld, 1985) at Asn residues 124 and 139.
The overexpression of syndecan-4 glycosylation mutants with or
without the heparan sulfate chains did not change satellite cell
proliferation, differentiation, or the ability to respond to FGF2
compared to wild-type syndecan-4 (Song et al., 2011). However,

during proliferation overexpression of the N-glycosylation chain
mutants without the heparan sulfate chains increased myogenic
satellite cell proliferation suggesting that syndecan-4 plays amore
prominent role during proliferation and both the heparan sulfate
andN-glycosylation chains are important inmuscle development
mediated by syndecan-4.

In addition, to the biological function of syndecan-4 requiring
the heparan sulfate and N-glycosylation chains, the syndecan-
4 core protein cytoplasmic domain also regulates syndecan-
4 signal transduction. Song et al. (2012b) studied how the
syndecan-4 cytoplasmic domain in combination with the
heparan sulfate chains and N-glycosylation chains regulates
the proliferation, differentiation, and FGF2 responsiveness of
satellite cells. The results from this study demonstrated that
the syndecan-4 cytoplasmic domain, heparan sulfate chains,
and N-glycosylation chains were important in the proliferation
and not the differentiation of the myogenic satellite cells by
modulating FGF2 responsiveness, and the localization of PKCα.
The following possible cellular mechanisms from the various
combinations of heparan sulfate, N-glycosylation chains, and
cytoplasmic domain mutants have been proposed for syndecan-
4 (Figure 3). In Figure 3A, syndecan-4 binds FGF2 to its
heparan sulfate chains and core protein with the cytoplasmic
domain interacting with PIP2. Deletion of the syndecan-4
cytoplasmic domain depicted in Figure 3B may increase the
binding of FGF2 to the heparan sulfate chains and core protein
as the serine residue in the C1 region of the cytoplasmic
domain is phosphorylated by FGF2 (Horowitz and Simons,
1998a). Removal of the N-glycosylation chains as shown in
Figure 3C may affect the secondary structure of syndecan-4 as
N-glycosylation chains are involved in the proper folding of
proteins (Parodi, 2000) and membrane localization (Martinez-
Maza et al., 2001). The deletion of the heparan sulfate chains
in Figure 3D will just leave the core protein as a site for the
binding of FGF2. Figure 3E depicts the syndecan-4 core protein
without the heparan sulfate and N-glycosylation chains. Thus,
core protein three dimensional structure will be altered and FGF2
will only be able to bind to the core protein. In Figures 3B–E, the
cytoplasmic domain is deleted from the syndecan-4 core protein.
Deletion of the cytoplasmic domain will also affect the biological
function of syndecan-4 by impacting cellular signal transduction.

Glypican-1 has 3 N-linked glycosylated chains attached to
the core protein at Asn amino acid residues 76, 113, and 382
(Song et al., 2010). Glypican-1 site directed mutants were created
containing one of each of the N-glycosylation chains, a mutant
without any N-glycosylation chains, and N-glycosylation chain
1-chain and no-chain mutants with or without attached core
protein heparan sulfate chains. The glypican-1 N-glycosylation 1-
chain and no-chain mutants without the heparan sulfate chains
were transfected into turkey myogenic satellite cells to examine
the interaction of glypican-1 N-glycosylation chains and the
heparan sulfate chains in the proliferation, differentiation, and
responsiveness to FGF2 (Song et al., 2010). The overexpression
of glypican-1 N-glycosylation 1-chain and no-chain mutants
without the heparan sulfate chains increased the proliferation
and differentiation of the satellite cells compared to the wild-
type glypican-1. However, a similar affect was not observed
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FIGURE 3 | Syndecan-4 cytoplasmic domain regulation of cellular responsiveness to fibroblast growth factor 2 (FGF2). (A) Syndecan-4 can bind FGF2 to its core

protein and GAG chains, and then present FGF2 to its receptor to initiate cellular responsiveness to FGF2; (B) The deletion of syndecan-4 cytoplasmic domain may

cause increased binding of FGF2 to syndecan-4 (Ser residue in the conserved 1 region is critical in this process). (C) The deletion of syndecan-4 N-linked glycosylated

(N-glycosylation) chains changes the three dimensional structure of the core protein which may lead to the decreased interaction with FGF2; (D) The deletion of

syndecan-4 glycosaminoglycan (GAG) chains gives more spaces for the core protein to bind to FGF2; and (E) The deletion of both syndecan-4 N-glycosylation chains

and GAG chains changes the three dimensional structure of the core protein which deceases FGF2 binding to syndecan-4, however, the deletion of the GAG chains

give more space for the core protein to bind to FGF2 which rescues the interaction between syndecan-4 and FGF2. S4, wild type syndecan-4; S4C, syndecan-4

without cytoplasmic domain; S4C-N0, syndecan-4 without cytoplasmic domain and N-glycosylation chains; S4C-S0, syndecan-4 without cytoplasmic domain and

GAG chains; and S4C-S0N0, syndecan-4 without cytoplasmic domain, N-glycosylation chains, and GAG chains. (Figure reproduced from Song et al., 2012b).

with the glypican-1 N-glycosylation 1 chain constructs with the
heparan sulfate chains attached to the core protein. Interestingly,
overexpressing the glypican-1 N-glycosylation chain constructs
with or without the heparan sulfate chains increased satellite
cell responsiveness to FGF2 compared to wild-type glypican-1.
Thus, the N-glycosylations are likely involved in glypican-1 FGF2
responsiveness.

Figure 4 is a schematic illustration highlighting the function
of the glypican-1 N-glycosylation and heparan sulfate chains
in the biological function of glypican-1. Figure 4A depicts
expected glypican-1 signal transduction. In Figure 4B, the
heparan sulfate chains are deleted but the core protein can
still bind FGF2 and present it to its tyrosine kinase receptor
with reduced responsiveness to FGF2. Removal of the N-
glycosylation chains in Figure 4C will result in changes to
the three dimensional structure of the glypican-1 core protein.
Without appropriate secondary and tertiary structure, the protein
may be degraded or be altered in its cell surface localization. As
depicted in Figure 4D, glypican-1 without the heparan sulfate
or N-glycosylation chains will likely not be shed from the
cell surface but can still present FGF2 to its tyrosine kinase
receptor as FGF2 can still bind directly to the glypican-1 core
protein.

SYNDECAN-4 FUNCTION IN FOCAL
ADHESION FORMATION

Focal adhesions are areas where muscle cells are observed
to be tightly attached to the extracellular matrix. The focal
adhesions are composed of many proteins including but not
limited to: (i) extracellular matrix molecules that cells attach
to; (ii) transmembrane receptors including integrins (Hynes,
1992; Schwartz et al., 1995), cadherins (Takeichi, 1988, 1990,

1991), selectins (Bevilacqua and Nelson, 1993) and syndecan-
4; (iii) cytoplasmic structural proteins such as β-actin, talin,
vinculin, α-actinin, paxillin, and tensin; and (iv) the signaling
proteins including focal adhesion kinase (FAK), PKCα (Clark
and Brugge, 1995; Burridge and Chrzanowska-Wodnicka, 1996)
and Src (Clark and Brugge, 1995; Burridge and Chrzanowska-
Wodnicka, 1996). Focal adhesions act not only as anchorage
points for the cells, but also mediate mechanical and biochemical
signaling.

Integrins are the primary factors for assembling focal

adhesions. In muscle cells, integrins are involved in cell
proliferation, adhesion, and apoptosis (Liu et al., 2008). In
the process of focal adhesion formation, heparan sulfate
proteoglycans are also required (Woods et al., 1986). For

example, syndecan-4 was reported to play an important
role in promoting focal adhesion formation (Woods and
Couchman, 1994; Echtermeyer et al., 1999). Saoncella et al.
(1999) described that syndecan-4 is critical for integrin mediated

fibronectin induced focal adhesion formation and stress fiber
assembly. Syndecan-4 and integrins cooperate with each other to

regulate focal adhesion formation and modulate cell migration

(Couchman, 2003; Morgan et al., 2007). The interaction between
integrins and syndecans is comprehensively reviewed by Roper

et al. (2012). In muscle stem cells, overexpression of syndecan-

4 decreased cell proliferation (Zhang et al., 2008; Song et al.,
2011, 2012b). It is possible that more focal adhesions were formed
and cell migration was suppressed with the overexpression of

syndecan-4. Because migration is essential for muscle stem
cells to interact with each other and exchange signals for
proliferation, the increased number of focal adhesions inhibited

cell proliferation. This is evidenced by Longley et al. (1999)
who used Chinese hamster ovary K1 cells which showed greater
expression of syndecan-4 increased focal adhesion formation and
decreased cell migration.
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FIGURE 4 | Function of glypican-1 N-linked glycosylated (N-glycosylation) chains and glycosaminoglycan (GAG) chains in fibroblast growth factor 2 (FGF2) signaling.

(A) Glypican-1 has both membrane-associated and shed forms. The membrane-associated form is attached to the cell membrane by a glycosylphosphatidylinositol

(GPI) anchor. Glypican-1 has three N-glycosylation chains and three GAG chains. The N-glycosylation chains are attached to the core protein at Asn76, Asn113, and

Asn382. The Asn76 is referred to as the N1 chain, Asn113 is the N2 chain, and Asn382 is the N3 chain. Both glypican-1 core protein and GAG chains can bind and

present FGF2 to its tyrosine kinase receptor and initiate cell signaling into the nuclei to stimulate gene transcription that influences cell proliferation and differentiation.

(B) When GAG chains are deleted, glypican-1 core protein can still bind and present FGF2 to its tyrosine kinase receptor and initiate cell signaling. The cell has lower

responsiveness to FGF2. (C) The deletion of glypican-1 N-glycosylation chains will change the three-dimensional structure of glypican-1 core protein which may

influence glypican-1 localization on the cell membrane. Fibroblast growth factor 2 signaling will be initiated normally in the presence of the glypican-1 core protein and

GAG chains. The protein without folding properly may be degraded ( ). (D) Glypican-1 N-glycosylation mutants without GAG chains cannot be released

from the cell membrane normally. The increased number of glypican-1 core proteins bound to the cell surface will increase cell responsiveness to FGF2. Transcription

levels are indicated by the density of the arrows ( indicates normal transcription level, indicates reduced transcription level, and indicates

increased transcription level). (Figure reproduced from Song et al., 2010).

The syndecan-4 core protein, covalently attached heparan
sulfate chains, and the N-linked glycosylated chains are all
involved in focal adhesion formation (Song et al., 2012c).
The cytoplasmic domain of syndecan-4 is critical in focal
adhesion formation and signal transduction (Echtermeyer et al.,
1999; Saoncella et al., 1999; Woods et al., 2000; Woods
and Couchman, 2001; Song et al., 2012d). Overexpression of
syndecan-4 induced more focal adhesion formation, whereas
the overexpression of a mutant syndecan-4 without the V
region of the cytoplasmic domain decreased focal adhesion
formation (Longley et al., 1999). Syndecan-4 heparan sulfate
chains have been reported to bind to the heparin-binding domain
of fibronectin in intergrin-mediated focal adhesion formation
(Lyon et al., 2000; Woods et al., 2000). Furthermore, Woods
et al. (2000) and Woods and Couchman (2001) demonstrated
that syndecan-4 heparan sulfate chains function in the initial
binding steps of syndecan-4 to the focal adhesion complex.
This is supported by the results of LeBaron et al. (1988) that
demonstrated GAG-deficient syndecan-4 reduces actin stress
fiber assembly and focal adhesion formation. The important
role of syndecan-4 N-glycosylation chains in focal adhesion
formation was demonstrated by comparing overexpression of
wild-type syndecan-4 to syndecan-4 deficient N-glycosylation
chains in turkey breast muscle satellite cells (Song et al.,
2012c). Overexpression of wild-type syndecan-4 increased FAK
activity and deletion of the N-glycosylation chains decreased this
effect.

Mechanistic studies have shown that syndecan-4 may regulate
focal adhesion formation through enhancing FAK activity (Guan

et al., 1991; Kornberg et al., 1992) or function by activating
PKCα (Oh et al., 1997a; Lim et al., 2003; Keum et al., 2004).
Focal adhesion kinase is a non-receptor tyrosine kinase which
functions as a scaffold for focal adhesion components such as
Src, Cas, and paxillin (Hanks et al., 1992; Schaller et al., 1992,
1999; Xing et al., 1994; Polte and Hanks, 1995). Its activity
can be regulated by syndecan-4 (Wilcox-Adelman et al., 2002).
Altered activity of FAK changes the number and size of the focal
adhesions (Pirone et al., 2006; Israeli et al., 2010), which can
influence cell migration, proliferation, differentiation, survival,
and cell signaling pathways (Giancotti and Ruoslahti, 1999; Jeong
et al., 2001; Wozniak et al., 2004; Goffin et al., 2006).

Protein kinase C alpha has been reported to affect the
formation of focal adhesions (Haller et al., 1998) whose activity
can be regulated by the serine residue in the C1 region of
the syndecan-4 cytoplasmic domain. The dephosphorylation
of the serine residue increases the binding affinity of PIP2
to the V region of syndecan-4, and increases PKCα activity
(Couchman et al., 2002; Murakami et al., 2002). The tyrosine
residue (amino acid sequence KKPIYKK) in the V region of
the syndecan-4 cytoplasmic domain mediates PKCα activity by
binding PIP2 (Oh et al., 1998; Horowitz et al., 1999; Couchman
et al., 2002) that robustly activates PKCα (Oh et al., 1997b, 1998;
Horowitz and Simons, 1998a; Couchman et al., 2002), and alters
stress fiber organization including focal adhesion formation
(Sun and Rotenberg, 1999). Song et al. (2012a) reported that
either deletion of the whole syndecan-4 cytoplasmic domain
or the mutation of Ser/Tyr residues resulted in altered PKCα

activity.
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SIGNAL TRANSDUCTION PATHWAYS

As a transmembrane receptor, syndecan-4 participates in signal
transduction in two ways: (i) by transmitting signals from
the extracellular matrix into the cell and; (ii) by binding and
activating intracellular proteins and related downstream signals
including Rho family of GTPases, mTOR (mammalian target of
rapamycin)-AKT1 (Protein Kinase B), and Wnt.

Syndecan-4 can interact with heparan-binding growth factors
including FGF2, hepatocyte growth factor (HGF), vascular
endothelial growth factor (VEGF), and platelet-derived growth
factors (PDGFs). The lipid raft localization of syndecan-
4 oligomers initiates numerous downstream signaling events
(Tkachenko and Simons, 2002). By binding FGF2 to its heparan
sulfate chains, syndecan-4 concentrates FGF2 on the cell surface
and then presents FGF2 to FGF tyrosine kinase receptors
(FGFR; Steinfeld et al., 1996) and stabilizes their interaction. The
binding of FGF2 phosphorylates FGFR, and then activates Raf-
1 and mitogen-activated protein kinase which modulates gene
transcription in the nucleus (Figure 5). This aspect is similar in
other FGFs as well as HGF, VEGF, and PDGFs.

Syndecan-4 translocates PKCα to the cell membrane and
activates it with the assistance of PIP2 (Oh et al., 1998). The
binding of PIP2 to the V region of syndecan-4 cytoplasmic
domain facilitates the oligomerization of syndecan-4 (Oh et al.,
1997a, 1998; Lee et al., 1998; Shin et al., 2012). Syndecan-4
oligomers, not the monomer, promotes the binding of PKCα

catalytic domain to the V region of syndecan-4 cytoplasmic

FIGURE 5 | A generalized illustration of pathways, growth factors, and

extracellular matrix interactions affected by syndecan-4 and glypican-1. FGF2,

fibroblast growth factor 2; FGFR, fibroblast growth factor receptor; MAP

kinase, mitogen-activated protein kinase; PI3 kinase, phosphatidylinositol

3-kinase; and PKCα, protein kinase C α.

domain which activates PKCα (Oh et al., 1997a,b; Horowitz and
Simons, 1998a,b). Once activated, PKCα initiates downstream
signaling to activate RhoA and Rho kinase to regulate stress fiber
formation and maintenance (Woods et al., 2000; Dovas et al.,
2006).

The cytoplasmic domain of syndecan-4 is critical in regulating
PKCα activity. Song et al. (2012b) demonstrated that the
deletion of the syndecan-4 cytoplasmic domain decreased PKCα

activity. Furthermore, the serine in the cytoplasmic domain
is critical in regulating PIP2 binding and oligomerization
status of syndecan-4 (Song et al., 2012a). The serine can
be dephosphorylated in the presence of FGF2, then promote
syndecan-4 oligomerization, and enhance PKCα activity and
downstream signaling pathways (Horowitz and Simons, 1998a;
Rybin et al., 1999). The phosphorylation status of the serine can
also be mediated by PKCδ (Murakami et al., 2002) which inhibits
binding of PIP2 to syndecan-4, thus preventing PKCα activation.
Syndecan-4-dependent translocation of PKCα to the membrane
is critical for the assembly of mTOR complex 2 (mTORC2) and
activation of AKT (Partovian et al., 2008).

Syndecan-4 has been reported to mediate canonical and
non-canonical Wnt signaling pathways during embyogenesis.
Escobedo et al. (2013) reported that syndecan-4 functions in
the non-canonical Wnt signaling during embyogenesis in mice.
This is evidenced by the fact that syndecan-4 knockout mice had
defects in stereociliary bundle orientation in the mechanosensory
hair cells in the inner ear (Escobedo et al., 2013), which
resulted from the interrupted non-canonical Wnt signaling
(Montcouquiol et al., 2006). Syndecan-4 is also involved in the
canonical (Wnt/ β-catenin) pathway by regulating low-density-
lipoprotein receptor-related protein, LRP6, and R-sponsin 3
(Astudillo et al., 2014).

Glypican-1 mediated cell signaling is largely through
interacting with other proteins with its heparan sulfate chains
(Figure 5). Glypican-1 heparan sulfate chains bind to FGF2 and
are shed from the cell membrane through the cleavage action
of phospholipases, thus sequestering FGF2 away from its FGFR
receptors (Mythreye and Blobe, 2009; Velleman et al., 2013). This
is supported by the report that cells deficient of glypican-1 have
increased sensitivity to FGF2 (Gutierrez and Brandan, 2010).

In addition to FGF2 signaling, glypican-1 can regulate other
signaling pathways, such as HGF, Wnt, transforming growth
factor-beta, and hedgehog (Jackson et al., 1997; Shiau et al.,
2010; Wilson and Stoeckli, 2013; Gutierrez et al., 2014). The
mechanisms by which glypican-1 regulates cellular signaling
pathways are fully understood.

HEPARAN SULFATE AND
N-GLYCOSYLATION MAY HAVE A ROLE IN
THE CONVERSION OF MYOGENIC CELLS
TO AN ADIPOGENIC LINEAGE

Satellite cells are a multipotential mesenchymal stem cell
population with plasticity to commit to myogenesis or alternative
differentiation programs such as osteogenesis or adipogenesis
(Asakura et al., 2001; Shefer et al., 2004). The first week posthatch
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in broilers has been shown to be the period of maximal satellite
cell activity and satellite cells are sensitive to environmental
stimuli including temperature and nutritional regime during this
time (Halevy et al., 1998, 2000, 2001, 2006; Velleman et al.,
2010, 2014a). Both hot temperatures and feed restrictions during
the first week posthatch result in the conversion of satellite
cells to an adipogenic lineage (Velleman et al., 2014b; Pietsun
et al., 2017). Grassot et al. (2017) showed that increased levels of
heparan sulfate and decreases in N-linked glycosylation promote
preadipogenic differentiation in lieu of myogenic differentiation
in isolated murine satellite cells. At this time, it is not known if
satellite cell membrane associated proteoglycans like syndecan-4
and glypican-1 play a role in the conversion of satellite cells to
an adipogenic cellular fate. However, the expression of glypican-
1 has been shown to be altered by an immediate posthatch feed
restriction. Velleman and Mozdziak (2005) harvested pectoralis
major (breast) muscle tissue from pretreatment day 0 chicks
and chicks either fed or feed deprived for 1, 2, or 3 days after
hatch, and after day 3 feeding was resumed in the feed deprived
birds until day 7. Glypican-1 expression was decreased in the
muscle tissue from feed deprived birds at day 3 (P < 0.05), but
by day 7 after reinitiating feeding on day 3, was significantly
elevated compared to the muscle tissue for the chicks maintained
on feed (P < 0.05). Chicks feed restricted during the first week
after hatch have higher fat levels in the breast muscle at market
weight (Velleman et al., 2014b). In addition, to the functions
of syndecan-4 and glypican-1 in myogenic cell proliferation,
differentiation, and FGF2 regulation, they may also promote
adipogenic differentiation of satellite cells.

POSSIBLE MICRORNA REGULATION OF
SYNDECAN-4 AND GLYPICAN-1 DURING
SATELLITE CELL PROLIFERATION AND
DIFFERENTIATION

MicroRNAs (miRNA) are small 20–25-nucleotide RNA
sequences encoded in the genome, which post-transcriptionally
regulate gene expression (Ameres and Zamore, 2013; Finnegan
and Pasquinelli, 2013). “These small RNA sequences have
been shown to regulate a number of aspects of skeletal muscle
development including satellite cell senescence and expression
of the satellite cell-specific marker Pax7 (Chen et al., 2010; Dey
et al., 2011; Cheung et al., 2012; Koning et al., 2012; Harding
et al., 2016).” Since satellite cells are a heterogeneous pluripotent
population of stem cells, functional differences in satellite cell
subpopulations may, in part, be due to miRNA regulation.
MicroRNAs have been shown to affect satellite cell function
including their proliferation and differentiation (Chen et al.,
2006, 2010; Kim et al., 2006; Dey et al., 2011). Both syndecan-4

and glypican-1 have been shown to play essential roles in satellite
cell proliferation, migration, and differentiation (Velleman et al.,
2007; Shin et al., 2013). However, the mechanisms regulating
syndecan-4 and glypican-1 gene expression have not been well-
studied. Harding and Velleman (2016) identified 3 microRNAs,
miR-128, miR-24, and miR-16, predicted to target syndecan-4
and glypican-1. Inhibitors of these microRNAs were transiently
transfected into turkey breast muscle myogenic satellite cell
cultures and proliferation and differentiation were measured. In
general, inhibition of the miRNAs resulted in a general reduction
in satellite cell proliferation and differentiation. MicroRNAs-128
and -24 also inhibit the migration of satellite cells to form
differentiated myotubes (Velleman and Harding, 2017). The
reports by Harding and Velleman (2016) and Velleman and
Harding (2017) are the first demonstration of a role of these
miRNAs in poultry myogenesis and suggest that miR-128,
miR-24, and miR-16 may target genes integral for satellite cell
proliferation and differentiation as other genes in addition to
syndecan-4 and glypican-1 may be affected by these miRNAs.
Since miRNAs imperfectly base pair to target genes, each miRNA
can have multiple gene targets (Krek et al., 2005; Sanchez et al.,
2013). Furthermore, miR-24 has been shown in myoblasts to
negatively regulate transforming growth factor-β to promote
differentiation (Sun et al., 2008). Transforming growth factor-β
is a strong inhibitor of both myogenic cell proliferation and
differentiation.

CONCLUSIONS

The heparan sulfate proteoglycans, syndecan-4 and glypican-
1 both play critical roles in the regulation of avian breast
muscle satellite cell activity including but not limited to
proliferation, differentiation, and migration. To regulate
these cellular processes, syndecan-4 and glypican-1 must be
dynamically expressed and function in a communication
network transmitting signals especially from growth factors like
FGF2 to the cell resulting in cell behavior changes. MicroRNAs
may also function in regulating the gene expression of syndecan-
4 and glypican-1 and contribute to their dynamic expression
during myogenesis. Figure 5 summarizes the cellular pathways
and growth factor interactions for syndecan-4 and glypican-
1. In addition to modulating muscle development recent
research suggests that heparan sulfate proteoglycans and their
N-glycosylation chains could be important in the conversion of
myogenic cells to an adipogenic lineage.
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