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Background: In silico modeling could soon become a mainstream method of

pro-arrhythmic risk assessment in drug development. However, a lack of human-specific

data and appropriate modeling techniques has previously prevented quantitative

comparison of drug effects between in silicomodels and recordings from human cardiac

preparations. Here, we directly compare changes in repolarization biomarkers caused

by dofetilide, dl-sotalol, quinidine, and verapamil, between in silico populations of human

ventricular cell models and ex vivo human ventricular trabeculae.

Methods and Results: Ex vivo recordings from human ventricular trabeculae in

control conditions were used to develop populations of in silico human ventricular

cell models that integrated intra- and inter-individual variability in action potential (AP)

biomarker values. Models were based on the O’Hara-Rudy ventricular cardiomyocyte

model, but integrated experimental AP variability through variation in underlying ionic

conductances. Changes to AP duration, triangulation and early after-depolarization

occurrence from application of the four drugs at multiple concentrations and pacing

frequencies were compared between simulations and experiments. To assess the

impact of variability in IC50 measurements, and the effects of including state-dependent

drug binding dynamics, each drug simulation was repeated with two different IC50

datasets, and with both the original O’Hara-Rudy hERG model and a recently

published state-dependent model of hERG and hERG block. For the selective

hERG blockers dofetilide and sotalol, simulation predictions of AP prolongation and

repolarization abnormality occurrence showed overall good agreement with experiments.

However, for multichannel blockers quinidine and verapamil, simulations were not in

agreement with experiments across all IC50 datasets and IKr block models tested.

Quinidine simulations resulted in overprolonged APs and high incidence of repolarization

abnormalities, which were not observed in experiments. Verapamil simulations

showed substantial AP prolongation while experiments showed mild AP shortening.
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Conclusions: Results for dofetilide and sotalol show good agreement between

experiments and simulations for selective compounds, however lack of agreement from

simulations of quinidine and verapamil suggest further work is needed to understand the

more complex electrophysiological effects of these multichannel blocking drugs.

Keywords: safety pharmacology, dofetilide, sotalol, quinidine, verapamil, cardiac modeling

INTRODUCTION

Cardiotoxicity is a major cause of attrition during drug
development (Piccini et al., 2009). The current difficulty of
predicting cardiotoxic effects of new drug candidates plays a
major role in the termination of drug development programmes
(Cook et al., 2014). Currently, the pro-arrhythmic potential of a
candidate drug is assessed preclinically using a combination of an
in vitro hERG channel assay and in vivo animal cardiovascular
studies (Anon, 2005a), followed by a Thorough QT study—
an ECG-based study of cardiac repolarization in the later
stages of drug development (Anon, 2005b; Wiśniowska et al.,
2017). While this strategy has been effective in preventing
approval and marketing of new drugs with strongly pro-
arrhythmic potential (Ewart et al., 2014; Vargas et al., 2015),
QT prolongation alone is an imperfect marker for fatal pro-
arrhythmic effects (Shah, 2005) and can result in ending
development of safe drugs (Stockbridge et al., 2013; Polak et al.,
2015).

The Comprehensive in vitro Pro-Arrhythmia Assay (CiPA), a
public-private collaboration with the aim of updating the existing
cardiac safety testing paradigm, has been proposed to improve
the assessment of new drug candidates’ pro-arrhythmic risk
(Sager et al., 2014). CiPA will consist of multiple components
including an ion channel screen of seven channels, combined
with an in silico modeling component that will model the effect
of new drugs on a human ventricular action potential (AP)
using data from the ion channel screens (Colatsky et al., 2016;
Fermini et al., 2016). Therefore, in silicomodeling is likely to soon
become part of mainstream pro-arrhythmic risk assessment in
drug development (Rodriguez et al., 2016; Li et al., 2017; Windley
et al., 2017).

Recently, several modeling methodologies have been
developed to address simulating the effects of different sources
of variability and the effect this has on the response of
cardiomyocytes to drugs. In particular, methodologies have
been developed to integrate the large amount of inter-individual
variability present in electrophysiological recording, which is
hypothesized to contribute to inter-individual variability of drug
response, with traditional cardiac modeling that uses a single
model representative of average cardiomyocyte behavior (Sarkar
and Sobie, 2010; Davies et al., 2012; Britton et al., 2013; Sadrieh
et al., 2013; Groenendaal et al., 2015). Methods are also under
development to probabilistically quantify the high levels of
uncertainty in measured drug IC50 values (Mirams et al., 2014;
Johnstone et al., 2016).

However, the lack of human-specific data and appropriate
modeling techniques have prevented assessment of the degree
to which in silico models can predict potentially pro-arrhythmic

drug-induced changes to the cardiac AP, including change to
quantitative biomarkers such as action potential duration (APD)
and triangulation (Hondeghem et al., 2001), and the occurrence
of qualitative phenomena such as early after-depolarizations
(EADs) (Qu et al., 2013). The ability to predict these cellular
biomarkers of pro-arrhythmic risk underpins the use of in silico
modeling to predict pro-arrhythmic risk for new drugs.

In this study, we systematically and quantitatively compare
drug-induced changes in repolarization biomarkers predicted by
human ventricular cell models against changes observed from
AP recordings of human ventricular trabeculae (Page et al.,
2016). We investigate four drugs commonly used as reference
drugs, three of which are torsadogenic: dofetilide; dl-sotalol; and
quinidine, and verapamil, which is a non-torsadogenic drug.
Both the average drug response and the variability in drug
response are compared against experiments using populations
of models (Britton et al., 2013, 2017; Muszkiewicz et al.,
2016) to mimic observed inter- and intra-heart variability in
AP biomarkers through variability in underlying ion channel
densities. The O’Hara-Rudy (ORd) ventricular cell model
(O’Hara et al., 2011), which has been selected by a consensus
of in silico modelers for use in CiPA’s in silico assay (Colatsky
et al., 2016; Fermini et al., 2016), is used as the baseline model
for the populations ofmodels.Multiple recent datasetsmeasuring
drug block using both standard IC50-based approaches (Kramer
et al., 2013; Crumb et al., 2016) and state- and voltage-
dependent models of hERG block (Li et al., 2017) are used to
obtain simulation results from a variety of drug block models.
We identify areas of qualitative and quantitative agreement
and disagreement between simulations and this specific set of
experiments and discuss strategies for interpreting the results of
in silico drug response predictions.

We find that quinidine and verapamil produce substantial
disagreement between experiments and simulations across
multiple concentrations, IC50 datasets, and hERG block models,
while dofetilide and sotalol have generally good agreement
between experiments and simulations in both degree of AP
prolongation and development of repolarization abnormalities.

METHODS

Experimental Data Acquisition
Microelectrode AP recordings from stimulated ex vivo human
ventricular trabeculae at 1 and 2 Hz were obtained as described
in detail in Page et al. (2016). Briefly, undiseased donor hearts
were obtained from organ donors in the United States with legal
consent. Trabeculae were dissected from the inner endocardial
wall of the ventricle and used for microelectrode recording at
∼37◦C. Each trabecula was paced under control conditions to
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establish a baseline for that trabecula for each frequency, and
then three increasing concentrations of drug were applied. For
each step of this protocol, trabeculae were paced at both 1 and
2 Hz. For this study, we used the baseline control recordings
and recordings from the two higher concentrations of each drug,
as at the lowest concentration of each drug the effect of the
drug was small compared to experimental variability. In addition,
only data from left ventricular trabeculae were used, to remove
electrophysiological differences between left and right ventricles
as a source of variability. All donor hearts used in this study
included recordings from at least three left ventricular trabeculae.
Examples of AP traces used in this study are shown in Figure S1
in the Supplementary Material.

Baseline Human Ventricular Cell Model
The ORd model (O’Hara et al., 2011) of the human ventricular
cardiomyocyte was used as the baseline model for our
investigations, as it is particularly well-suited for studying human
ventricular repolarization; is one of the most recent, widely
used and extensively tested models of the human ventricular
cardiomyocyte using experimental recordings from over 140
human hearts; and has been identified as the model to be used
in the in silico component of CiPA (Colatsky et al., 2016; Fermini
et al., 2016).

Models were paced at 1 and 2 Hz using a biphasic stimulus
protocol to approximate the electrotonic effects of tissue coupling
(Livshitz and Rudy, 2009). Model code is available in the
Supplementary Material and includes the modification proposed
by Passini et al. (2016) of the INaF inactivation gate to improve
upstroke robustness over different conductance profiles.

Simulating Experimental Variability in AP
Biomarkers through Variability in Ionic
Conductances Using Populations of
Models
Based on the ORd model and using the methodology described
in Britton et al. (2013) and Britton et al. (2017), we first
created an initial pool of 20,000 candidate models by varying
11 ionic conductances for the following currents: INaF, INaL,
ICaL, Ito, IKr, IKs, IK1, INCX, INaK, IRyR, and ISERCA, with
resulting differences in baseline electrophysiological properties
and responses to drug application. Each conductance was
randomly selected using Latin Hypercube Sampling (McKay
et al., 1979) across a range of 0.25–1.75 times the baseline
value of that conductance in the original ORd model. This
range was selected for two reasons. Firstly, this range allows
substantial conductance variability while disallowing extremely
low conductance values, which would only be expected to
occur under pathological conditions. This reflects the undiseased
nature of the human hearts used in this study. Secondly, the
range allows up to sevenfold variation in conductances, in line
with the range of conductance variability reported from studies
of neurons (Schulz et al., 2006). This is an approximation as
equivalent measurements for cardiomyocytes have not yet been
reported, although variability in the conductances of individual
currents in cardiomyocytes are known to be highly variable (Qi

et al., 2008; Xiao et al., 2008) and affected by a wide range
of external factors including circadian rhythms, hormones and
pacing rate (Qi et al., 2008; Jeyaraj et al., 2012; Odening and
Koren, 2014). Finally, conductances were independently sampled
as no evidence of covariation has been reported. Should advances
in experimental methods allow for a better characterization of
ionic conductances in intact tissue, these assumptions can be
reviewed.

As different hearts were used in different experiments of
drug block, we created populations of models based on the
AP biomarker ranges for each individual heart. Due to the
limited number of trabeculae available for each heart, biomarker
ranges were calculated as the minimum and maximum values
of each biomarker observed across all trabeculae from that
heart at a particular pacing frequency. Ranges were calculated
for both 1 and 2 Hz pacing in control conditions. Five AP
biomarkers were used for filtering: APD10 (APD at 10%
of repolarization); APD30; APD90; triangulation (APD90–
APD30); and the maximum negative (repolarization) gradient
of membrane potential with respect to time. These biomarkers
were selected to focus on accurate representation of the
variability during repolarization, without using a large number of
biomarkers. The biomarker ranges for some hearts were narrow,
and using larger numbers of biomarkers resulted in fewer models
being found that were within range for all biomarkers. There was
therefore a trade-off between the number of models in each of the
final populations and the number of biomarkers that each model
in a population was guaranteed to be within the experimental
range for.

For each heart, the biomarker ranges calculated from
trabeculae from that heart were used to select from the pool
of 20,000 candidate models only those models which had all
biomarkers within the ranges calculated for that heart, for both
pacing frequencies. These models formed a population of models
for the heart, where all models in the population had different
conductance parameters, representing different possible ionic
profiles that all produced AP biomarkers that were consistent
with the observed variability between preparations from that
heart. The populations of models therefore allow evaluation of
predictions of the variability of response to drug application, not
just the average response, and allow consideration of a wide range
of ionic scenarios. The information content from action potential
measurements such as those typically recorded in human-based
studies is insufficient to identify the specific conductances of a
cardiomyocyte. We therefore chose to analyse a wide range of
ionic scenarios that are consistent with experimental recordings.
This allows testing the hypothesis that variability in ionic
conductances is critical for the comparison of experiments and
simulations of drug block.

Biomarker Calculation
Biomarkers were calculated from the final pacing cycle of each
simulation, and from the mean of a sequence of 30 pacing cycles
from each experimental recording. In simulations, EADs were
classified as depolarizations that occurred more than 100 ms after
the beginning of a pacing cycle with a voltage gradient >0.01
mV/ms. For recordings, EADs were classified as any abnormal

Frontiers in Physiology | www.frontiersin.org 3 August 2017 | Volume 8 | Article 597

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Britton et al. Human Cardiac Drug Block Comparison

depolarizations during phases 2 or 3 of an AP, after the upstroke
completed but before normal repolarization was complete.

Simulations
Simulations were performed using the CVODE adaptive timestep
ODE solver (Hindmarsh et al., 2005) implemented within the
CHASTE software package (Pitt-Francis et al., 2008). Data
analysis was carried out using Python scripts.

Simulation of Drug Effects–Simple Pore
Block Model
Drug effects were first simulated using a simple pore block model
using IC50 and Hill coefficient data. The blocked fraction of a
current I was calculated as:

B =
1

1+
(

C
IC50

)h
,

where B is the fraction of I that is blocked by a compound, C
is the concentration of the compound, and IC50 and h are the
measured IC50 and Hill coefficient of the compound against that
current, respectively. B was calculated for each simulation, and
the conductance of each affected current was multiplied by the
unblocked fraction (1− B) to simulate block.

IC50 values have substantial uncertainty attached to them,
and there is considerable variability between studies reporting
IC50s of the same compounds. We chose to use and compare
IC50 values from two recent studies, by Crumb et al. (2016),
which assessed six ion channels (hERG—IKr, KvLQT1/mink—
IKs, Kv4.3–Ito, Kir2.1–IK1, Nav1.5—INaF and INaL, and Cav1.2—
ICaL), and by Kramer et al. (2013), which assessed 3 (hERG—
IKr, Nav1.5—INaF, and Cav1.2—ICaL). We simulated two separate
datasets to indicate whether variability in IC50 values and
number of channels assessed substantially altered simulation
results.

For each simulation of drug block, only models from the
populations that corresponded to hearts that had been used
for experiments with that drug were simulated. For each drug,
simulations were performed at 1 and 2 Hz, for two different
concentrations an order of magnitude apart. The fractional
blocks of ionic currents calculated for each drug, concentration,
and dataset are listed in Table S1 in the Supplementary Material.

Simulation of Drug Effects–Dynamic hERG
Block Model
To capture possible changes to effective hERG block caused by
the binding kinetics of the drugs used in this study, we also
performed repeats of each drug simulation with the ORd model’s
formulation of IKr replaced with the state-based model of IKr
and IKr block developed by Li et al. (2017). Unlike the simple-
pore block model, this model of hERG block integrates data on
drug-specific binding timescales and degrees of trapping, as well
as the steady-state concentration dependence of channel block.
Briefly, this model uses a state-transition modeling approach
with six unbound states (two closed; two closed and inactivated;
one open; and one open and inactivated) and three drug-bound
states (open and bound; closed and bound; and inactivated,
open and bound). Therefore, transient binding and unbinding

of drugs during the AP can be simulated, and a trapping
parameter determines the degree to which each drug can prevent
a bound open channel from closing. Each drug simulation was
repeated using this state-based hERG and hERG block model by
replacing the ORdmodel’s IKr formulation and simple pore block
model of IKr block. In simulations for drugs with multichannel
block, the previous drug blocks calculated from the Crumb and
Kramer datasets were used for non-IKr currents. Changes to
model biomarkers in control conditions caused by replacing the
IKr model are summarized in Table S2 in the Supplementary
Material.

Statistics
Intra-individual, inter-individual and total variability in
biomarker values was assessed using coefficients of variation
(CV). Effects on AP biomarkers of drug application were assessed
using change relative to control conditions. Drug response data
from experiments and simulations are visualized using boxplots.
The central box indicates the central quartiles and median of the
data. Boxplot whiskers extend to the farthest data point less than
two times the interquartile range from the median.

RESULTS

Inter-Heart APD Biomarker Variability is of
Similar Magnitude to Intra-Heart Variability
Figure 1 displays the mean APD30, APD50, and APD90 values
recorded for each trabecula from the baseline control period
of each experiment, for 1 and 2 Hz pacing, grouped by donor
heart. Variability between trabeculae from the same heart (intra-
individual variability) and between the means of different hearts
(inter-individual variability) is quantified in Table 1. CVs for
intra- and inter-individual variability were of similar magnitude–
neither source of variability made a dominant contribution to
total biomarker variability.

Development of the Populations of Models
in Control Conditions
Figure 2 shows the biomarker distributions for the full
experimental dataset and the models accepted for nine
standard AP biomarkers, including the five biomarkers used
for calibration. 860 models were accepted in total across all
populations. Model biomarkers show good overlap with the
range and shape of the experimental biomarker distribution for
seven of the biomarkers, with the two exceptions being resting
membrane potential (RMP) and action potential amplitude
(APA). RMP is more variable between experiments than
between models, which may be due to experimental fluctuations,
particularly in extracellular K+, that are not modeled in
this study. APA (the difference between RMP and peak
membrane potential) has similar variability between models and
experiments, but the distribution mean is shifted ∼ +20 mV in
the model distribution relative to experiments.

The accepted models were in range with experimental
biomarkers at both frequencies for 14/16 hearts (model APs
for each population are shown in Figure 3). The majority of
hearts had substantial variability between trabeculae (Figure 1)
but for two hearts, the biomarker ranges between experiments
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FIGURE 1 | Variability of APD30/50/90 values under control conditions for ventricular trabeculae from different donor hearts. Each dot indicates mean results of 30

action potentials from one trabeculae, each row represents data from a different donor heart. Top: 1 Hz pacing. Bottom: 2 Hz pacing.

were very narrow and none of the 20,000 tested models were
within range, simultaneously, for the five tested biomarkers at
both 1 and 2 Hz pacing frequencies. The 860 accepted models
provided acceptable coverage of the biomarker space for the
purpose of our study, which was to allow comparison of drug
response between experiments and simulations (rather than to
construct a population for every heart).

Figure 4 shows the overlap between experimental and model
biomarkers for models accepted into all of the populations for
APD90 and triangulation, two biomarkers of pro-arrhythmic

risk that were also used to calibrate the populations. There is
generally good coverage of the experimentally-observed range of
biomarkers, potentially highlighting the ability of the ORdmodel
and variability in ionic conductances to account for variability
in human electrophysiological measurements, although for the
most outlying combinations of biomarkers there were no
candidate models that were in range for all five biomarkers
at both pacing frequencies simultaneously. This highlights the
fact that in spite of the large conductance variability imposed,
simulations did not yield the most outlying combinations of
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TABLE 1 | Total, intra- and inter-heart variability.

Biomarker Mean (n = 89) Intra-individual

CV

Inter-individual

CV

Total CV

APD90 312 ms 0.12 0.12 0.17

APD30 171 ms 0.14 0.12 0.18

Triangulation

90–30

141 ms 0.21 0.17 0.28

Intra-individual variability was defined as the mean of CVs that were each calculated using

biomarker values from an individual heart. Inter-individual variability was defined as the CV

calculated from the mean biomarker values from each heart. Total variability was defined

as the CV calculated from biomarker values from all trabeculae.

biomarker values observed in experiments. Therefore, this type
of quantitative comparison also allows identification of potential
limitations of the ORd model in capturing outlying behaviors
from experiments through variability in conductances, which
may require sources of variability beyond ion channel densities
to account for the variability in experimental recordings.

Comparison of Experimental and
Simulated Drug Application for Dofetilide,
Sotalol, Quinidine, and Verapamil Using
Multiple Ic50 Datasets and Ikr Models
Using data from studies by Kramer et al. (2013) and Crumb
et al. (2016), we simulated application of four reference drugs,
three that have high risk torsadogenic classifications (quinidine,
dofetilide, dl-sotalol) and one that is classified as low risk, but has
a significant hERG IC50 (verapamil).

Quinidine and verapamil, in addition to both being
multichannel blocking compounds, are also known to have
“untrapped” hERG binding dynamics, which means when
bound to hERG they block the channel from closing and so can
unbind at polarized membrane potentials (Zhang et al., 1999;
Tsujimae et al., 2004; Windley et al., 2017). Depending on the
timescales of channel binding and unbinding, this can result
in reduced effective block. Due to the potential effects of these
binding dynamics, which are not incorporated in the simple pore
block model of drug action, we hypothesized that inclusion of
these binding dynamics would improve agreement of quinidine
and verapamil simulations with experiments, and that not
accounting for these effects could result in overestimating the
effects of hERG block, as demonstrated in a simulation study
by Di Veroli et al. (2014). Therefore, we additionally evaluated
the effects of replacing the ORd model’s original IKr model with
the recently developed state-based dynamic IKr model from Li
et al. (2017), which includes state- and voltage-dependent drug
binding and includes parameterized models for the four drugs
used in this study.

Figures 5–8 show the changes to repolarization biomarkers
APD90 and triangulation under application of each drug for all
models in the relevant populations of models for that drug (the
populations that were calibrated using data from the hearts that
were used in experiments with that drug), and for the original
baseline ORd model, compared to experimental results recorded
from trabeculae. Figures also indicate models and trabeculae that

developed EADs and other repolarization abnormalities (e.g.,
repolarization failure) under drug application. Biomarker and
repolarization abnormality data is additionally summarized in
the Supplementary Material (Tables S3–S5).

As expected, there were substantial differences between drugs
in the levels of qualitative and quantitative agreement between
experiments and simulations. We therefore break down the
agreement in changes to APD90, triangulation, and occurrence
of EADs between experiments and populations of models using
each of the IC50 datasets and IKr models, for each individual
drugs used in this study.

Dofetilide
Dofetilide is a potent and selective IKr blocker that prolongs the
QT interval and is classified as a high-risk compound for drug-
induced torsade de pointes (TdP). Qualitatively, application
to human trabeculae caused substantial concentration-
dependent APD90 and triangulation increase (Figure 5) at
both concentrations tested (0.01 and 0.1 µM, Free Therapeutic
Concentration (FTC) = 0.002 µM), which was captured by
the populations of models and the baseline ORd model using
all datasets. EADs occurred in trabeculae from 2/3 tested
hearts at 0.1 µM, but did not occur at 0.01 µM. Simulations
with the Crumb dataset and the dynamic hERG model both
reproduced this behavior at 1 Hz (4/26 models developed
repolarization abnormalities in both sets of simulations at
0.1 µM, 0/26 models at 0.01 µM), but no repolarization
abnormalities were detected at either concentration using the
Kramer dataset, or in any simulation at 2 Hz pacing. The baseline
ORd model only developed EADs at 0.1 µM using the Crumb
dataset.

Quantitatively, for 0.1 µM dofetilide, APD90 and
triangulation changes (1APD and 1Triangulation) from
all datasets were consistent with experiments at 1 Hz pacing,
with the distributions of experiments and models overlapping,
but not for 2 Hz, where experimental AP prolongation was
>1 Hz, unlike all other drugs and concentration studied. In
this case, experiments showed prolongation beyond the cycle
length. This skipping behavior was not reproduced in any
simulations, as the stimulus current was always sufficient to
initiate a new AP, while in experiments the stimulus could cause
a transient depolarization. Therefore, it is possible that at 2 Hz
AP prolongation was>1 Hz due to the additional inward current
provided during repolarization by the stimulus.

At the lower dofetilide concentration (0.01 µM), the two
IC50 datasets gave substantially different results to each
other, neither of which overlapped with the experimental
range at 1 Hz. Simulations using the Crumb dataset over-
predicted the experimental results, with much higher 1APD
and 1Triangulation, and level of variability, than that observed
experimentally. In contrast, use of the Kramer dataset under-
predicted APD and triangulation increases and variability.
However, the dynamic hERG model produced 1APD and
1Triangulation distributions between these two datasets, which
did overlap with the experimental range at both pacing
frequencies.
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FIGURE 2 | Distributions of experimental and model biomarkers. Normalized histograms and probability density estimates for biomarkers from all trabeculae (green,

n = 89) and from all populations of models (blue, n = 860) under control conditions 1 Hz pacing.

Overall, simulations captured the effects of
dofetilide—substantial AP prolongation along with incidence of
repolarization abnormalities at the higher tested concentration.
The comparison with experiments was reasonable for all three
sets of simulations at 1 Hz, although no simulations captured
the skipping behavior observed at 2 Hz. This could possibly be
due to mismatch between experimental and simulated stimulus
current strengths. Use of the dynamic hERGmodel produced the
best overall agreement with experiments, as it had overlap with
experimental 1APD90 and 1Triangulation ranges for three out
of four concentration and frequency combinations (excepting

0.1 µM at 2 Hz), and showed occurrence of repolarization
abnormalities.

Sotalol
Like dofetilide, dl-sotalol is a selective IKr blocker, although it
also has beta-adrenergic receptor blocking effects in vivo. Sotalol
is torsadogenic and prolongs the QT interval. In the Kramer
dataset it was also measured as causing non-negligible block of
Cav 1.2 (ICaL); however this was not replicated in the Crumb
dataset. Application of sotalol caused concentration-dependent
APD and triangulation increase in experiments at both tested
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FIGURE 3 | AP traces of models in each heart-specific population of models. AP traces for each heart-specific population of models, and trace from the ORd

baseline model for reference. 2/16 hearts did not have any of the 20,000 candidate models in range for all biomarkers and therefore had no accepted models, so are

excluded from the figure. 860 out of the 20,000 candidate models were accepted into at least one population.

concentrations (10 and 100 µM, FTC = 14.7 µM), which was
captured by all simulations (Figure 6). EADs did not occur
at either concentration in any experiments, and this was also
reflected in all simulations, as no model developed repolarization
abnormalities.

At 100 µM, all sets of simulations displayed overlap with
experiments for APD90 increase, although simulations with the
Kramer dataset under-predicted the amount of triangulation and
APD increase. Overall, results using the dynamic IKr model
were similar to those using the default IKr model, but for
both IC50 datasets use of the dynamic model caused a small
increase in APD and triangulation which improved agreement
with experiments. For 10 µM, all simulation datasets were fully
within the experimental range for both biomarkers, however
this was partly because experimental results for 10 µM sotalol
displayed much higher variability than simulations. In contrast,

for dofetilide, variability at the lower concentration—0.01 µM—
was of similar magnitude for experiment and simulations,
and less than the variability of the higher concentration—0.1
µM. One potential reason for this is the relatively low IKr
block predicted for 10 µM Sotalol (12.6% from Crumb et al.
14.7% from Kramer et al.) results in a low dispersion of APD
prolongation, lower than the intrinsic experimental variability
that would be present without drug application, which then
dominates the total experimental variability but is not present in
simulations.

Overall, sotalol simulations have relatively good agreement
with experiments, due to the absence of repolarization
abnormalities in all experiments and simulations, and the
overlap between simulation and experimental ranges for APD90
and triangulation. The main disagreement between experiments
and simulations is that the wide variability observed in both
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FIGURE 4 | Calibration of heart-specific populations of models using

biomarker ranges. Values from all individual trabeculae (colored dots–each

color corresponds to a donor heart), and for all models accepted into any

population (gray dots) are shown for APD90 vs. triangulation, two of the five

biomarkers used to construct the populations, which are also biomarkers of

drug-induced pro-arrhythmic risk.

biomarkers at 10 µM in the experiments is uniformly not
replicated across all simulations.

Quinidine
Quinidine is a multichannel blocker, with significant IC50s found
for all 3 channels measured in Kramer et al. (Nav1.5/INaF,
hERG/IKr, Cav1.2/ICaL) and 3/7 of the channels measured by
Crumb et al. (hERG/IKr, KvLQT1/IKs, and Kv4.3/Ito). Crumb
et al. also detected block for Nav 1.5 and Cav 1.2 however an IC50
was not reached for these channels during experiments and so
was not calculated.

Experimentally, quinidine caused a moderate increase in
APD90 and triangulation (Figure 7) at the higher applied
concentration (10 µM, FTC = 3.2 µM), and no substantial
change at the lower concentration (1 µM) for both 1 and 2 Hz
pacing. In addition, no EADs were observed in any experiments.
However, 10 µM quinidine had the highest predicted level of
hERG block out of all drugs and concentrations tested in this
study for both sets of IC50s; the Crumb and Kramer hERG
IC50s predicted 95% and 97% IKr block respectively for 10 µM
quinidine (Table S1). In the simulations of quinidine’s effects,
the Kramer IC50s for quinidine (which measured IC50s for INaF,
ICaL and IKr) resulted in higher APD and triangulation increases
at both concentrations than were observed experimentally, and
EADs were observed in 15/501 models at 10 µM (and none at
1 µM). For the Crumb dataset, in which IC50s were found for
IKs, Ito, and IKr, EADs and other repolarization abnormalities
(e.g., repolarization failure) occurred in a large majority of

models (421/501) at 10 µM, and for 1/501 models at 1 µM
at 1 Hz pacing. The ORd baseline model also developed
complete repolarization failure using the Crumb IC50s for
10 µM quinidine. Results for 2 Hz pacing for both sets of
IC50s were similar except that no model using the Kramer
IC50s developed repolarization abnormalities (Table S5). For
10 µM quinidine, the 1APD90 and 1Triangulation values
using the Crumb dataset were highly variable; however these
values, particularly from models showing APD shortening,
were due to abnormal APs with repolarization abnormalities,
rather than due to shortening of normal APs. At 1 µM,
the Crumb dataset, like the Kramer dataset, generated much
higher levels of APD90 and triangulation increase than seen
experimentally.

Quinidine both binds and unbinds rapidly from the hERG
channel (Tsujimae et al., 2004; Li et al., 2017;Windley et al., 2017).
Therefore, depending on the balance between the timescales
of these two processes, there was the possibility that modeling
state-dependent block of quinidine would reduce effective AP
prolongation. However, results using the dynamic IKr model
with the other measured IC50s produced similar levels of AP
prolongation and EAD prevalence compared to the default ORd
IKr model.

Overall, simulations of quinidine predicted far greater APD
and triangulation increase (for both Crumb and Kramer datasets
and both IKr block models) than seen in these experiments,
and both datasets predicted occurrence of repolarization
abnormalities that were also not observed in any trabeculae. The
Kramer dataset, which included IC50s for both Nav 1.5 and Cav
1.2 as inward currents, and only hERG as an outward current,
still predicted far higher AP prolongation than experiments.
Quinidine appears to be a particularly challenging drug to
model, which could be due to the wide range of both inward
and outward ionic currents that it blocks, and our study
identifies that additional experiments are required for its detailed
characterization.

Verapamil
Verapamil blocks both hERG and Cav 1.2 (ICaL). Despite
blocking hERG, it is non-torsadogenic and is known to have only
a small effect on APD and on the QT interval (Johannesen et al.,
2014; Vicente et al., 2015) which has been hypothesized to be due
to its hERG binding kinetics (Zhang et al., 1999; Di Veroli et al.,
2014) and/or counteracting effects of ICaL block.

Recordings obtained with verapamil applied at 0.1 and 1
µM (FTC = 0.081 µM) showed minor APD shortening of
similar magnitude at both concentrations (Figure 8), while in
all sets of simulations most models produced concentration-
dependent APD and triangulation increase, in qualitative
disagreement with experiments. A minority of models developed
AP shortening, predominantly in 2 Hz simulations. For
simulations at the lower concentration (0.1 µM) this was
due to drug-induced shortening of normal APs, in line
with experimental results. However for simulations at the
higher concentration (1 µM) shortening was caused by AP
prolongation beyond the duration of the pacing cycle. For
these models, the APD was longer than the pacing cycle and
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FIGURE 5 | Dofetilide. Changes to APD90 and triangulation relative to control from application of 0.01 and 0.1 µM dofetilide during 1 and 2 Hz pacing. In each panel,

response is shown for (left to right): human ventricular trabeculae, populations of models using drug effects calculated using data from Crumb et al. from Kramer et al.

and from use of the hERG model by Li et al. As Crumb and Kramer datasets both measured only hERG IC50s for dofetilide, unlike the other tested compounds, there

is only one result from use of the dynamic model. Dots indicate results from individual trabeculae and models, crosses show the result from the baseline ORd model.

Red symbols indicate simulations and experiments where repolarization abnormalities occurred.

so repolarization was incomplete during the next stimulus.
This lead to a reduced upstroke and shortened APD on
the subsequent pacing cycle. This behavior was not observed
in experiments. However, simulations and experiments were
in agreement for repolarization abnormality occurrence: no
repolarization abnormalities were detected in any experiments or
simulations.

Quantitatively, both Crumb and Kramer datasets generated
similar distributions of APD and triangulation increase to
each other, suggesting that uncertainty in IC50 values is less
likely to be the source of the mismatch with experiments
for verapamil. Instead, the simple pore drug model and

IC50 data used in this study may not be sufficient to
approximate the electrophysiological effects of verapamil
due to its binding kinetics, and/or the balance of L-type
calcium and hERG currents in the ORd model may not be
accurate.

Verapamil can unbind from hERG channels at voltages close
to typical cardiac resting membrane potentials (Zhang et al.,
1999; Windley et al., 2017), although the timescale is relatively
slow (time constant of recovery ∼100 s at −80 mV). This type
of “untrapped” behavior has been shown in simulation studies
(Di Veroli et al., 2014) to potentially reduce AP prolongation
due to hERG block relative to a “trapped” hERG blocker (e.g.,
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FIGURE 6 | Sotalol. Changes to APD90 and triangulation relative to control from application of 10 and 100 µM sotalol during 1 and 2 Hz pacing. In each panel,

response is shown for (left to right): human ventricular trabeculae, populations of models using drug effects calculated using data from Crumb et al. from Crumb et al.

with IKr replaced by the Li et al. IKr model; from Kramer et al. and from Kramer et al. with IKr replaced by the Li et al. IKr model. Dots indicate results from individual

trabeculae and models, crosses show the result from the baseline ORd model.

dofetilide). Therefore, this was an important drug to simulate
with the dynamic hERG model, as neglect of its unbinding
dynamics could potentially cause a substantial overestimation of
AP prolongation.

However, Figure 8 shows that use of the dynamic hERG
model did not substantially alter predictions of APD
prolongation compared to the simple-pore block model
using only IC50 data. For example, for the Crumb dataset,
mean 1APD90 at 1 µM, 1 Hz pacing was 148 ± 32 ms for
populations using the ORd IKr model, 198 ± 43 ms with the
dynamic IKr model, while for the Kramer dataset in the same
conditions, with the ORd IKr model 1APD90 was 195 ± 40
ms, and 194 ± 43 ms with the dynamic IKr model. Therefore,
across all models simulated, use of a drug block model of IKr

that included data on binding rates and trapping behavior did
not improve the agreement of simulated APD prolongation with
experimental results (experimental1APD90 in this case was−15
± 30 ms).

Overall, no set of simulations was consistent with the minor
AP shortening caused by verapamil in experiments, as all
sets of simulations instead showed AP prolongation. However,
all simulations were consistent with the observed lack of
repolarization abnormalities.

Comparison of Drug Block Datasets and
Modeling Methodologies
In this study we simulated two different IC50 datasets and two
different models of IKr and IKr block, each combination of
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FIGURE 7 | Quinidine. Changes to APD90 and triangulation relative to control from application of 1 and 10 µM quinidine during 1 and 2 Hz pacing. In each panel,

response is shown for (left to right): human ventricular trabeculae, populations of models using drug effects calculated using data from Crumb et al. from Crumb et al.

with IKr replaced by the Li et al. IKr model; from Kramer et al.; and from Kramer et al. with IKr replaced by the Li et al. IKr model. Dots indicate results from individual

trabeculae and models, crosses show the result from the baseline ORd model. Red symbols indicate simulations and experiments where repolarization abnormalities

occurred.

which produced a different simulated response to each drug.
In addition we performed simulations with both populations
of experimentally-calibrated models, and the baseline ORd
model. Figure 9 summarizes the differences between simulation
predictions and experimental results for the mean and standard
deviation of 1APD90 and 1Triangulation, separated by drug,
drug block dataset, and modeling methodology. Figure 9 shows
results for dofetilide and sotalol only as for quinidine and
verapamil, all drug block datasets have the same qualitative
mismatch with experiments. This makes a quantitative

comparison redundant—all simulations can be thought of
as being equally mismatched for these drugs.

We see from this comparison that the overall best drug block
dataset for predicting1APD90 and1Triangulation tested in this
study is the dynamic IKr and IKr block model by Li et al. using the
IC50s from Crumb et al. for non-hERG channels. In particular,
the dynamic IKr model is consistently better than the default ORd
IKr model using both Crumb and Kramer IC50s in all tested
cases for both dofetilide and sotalol. Comparisons between the
ORd baseline model and average of the populations of models are

Frontiers in Physiology | www.frontiersin.org 12 August 2017 | Volume 8 | Article 597

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Britton et al. Human Cardiac Drug Block Comparison

FIGURE 8 | Verapamil. Changes to APD90 and triangulation relative to control from application of 0.1 and 1 µM verapamil during 1 and 2 Hz pacing. In each panel,

response is shown for (left to right): human ventricular trabeculae, populations of models using drug effects calculated using data from Crumb et al.; from Crumb et al.

with IKr replaced by the Li et al. IKr model; from Kramer et al. and from Kramer et al. with IKr replaced by the Li et al. IKr model. Dots indicate results from individual

trabeculae and models, crosses show the result from the baseline ORd model.

inconclusive: the baseline ORdmodel is closer to experiments for
dofetilide, while the average of the populations of models is closer
for sotalol. However, only the populations of models and not
the baseline ORd model can provide predictions on variability
of drug response.

DISCUSSION

Main Findings
In this study, changes in repolarization biomarkers and EAD
occurrence caused by application of dofetilide, sotalol, quinidine,
and verapamil were compared between in silico simulations using
populations of human ventricular models and ex vivo human
ventricular trabeculae. The four reference drugs examined in

this study all blocked hERG but included both selective and
multichannel blockers, as well as drugs in high and low TdP
risk categories. Experimental data therefore spanned a wide
range of effects from high APD prolongation with widespread
EAD occurrence (dofetilide) to mild APD shortening with
no EADs (verapamil). In silico populations of models were
calibrated to reflect experimentally-observed AP variability
between trabeculae from the same donor heart in control
conditions, through variation in underlying ionic conductances.
These populations were used to simulate the effects of each drug
at multiple pacing rates and concentrations using IC50 data from
two recent studies (Kramer et al., 2013; Crumb et al., 2016),
and with both the ORd model’s original model of hERG, and
a recently developed state-dependent dynamic model of hERG

Frontiers in Physiology | www.frontiersin.org 13 August 2017 | Volume 8 | Article 597

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Britton et al. Human Cardiac Drug Block Comparison

FIGURE 9 | Summary of average difference in mean and standard deviation between experiment and simulation for 1APD90 and 1Triangulation. Absolute

differences in mean (top) and standard deviation (bottom) between experiments and simulations for 1APD90 and 1Triangulation are shown for dofetilide (left) and

sotalol (right), for each drug block dataset. Differences in mean are shown for both the mean of the populations of models (dark blue) and the single biomarker value

produced by the ORd baseline model (light blue), while differences in standard deviation can only be shown for the populations of models. Values for each drug block

dataset are averaged across all concentrations and frequencies used in this study. Results for dofetilide show only one block dataset for the dynamic hERG model as

neither Crumb nor Kramer IC50 datasets contained non-hERG IC50s for dofetilide (for sotalol, Kramer et al. measured an IC50 for Cav 1.2).
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and hERG block (Li et al., 2017) that integrates additional drug-
specific data on hERG binding rates and trapping to model
state-dependent block.
The main findings of this study were:

1) Comparison of in silico and ex vivo results showed overall
agreement in APD90 and triangulation increase and EAD
occurrence for both selective hERG blockers (dofetilide
and sotalol). These drugs caused high APD prolongation,
and dofetilide also caused EAD occurrence at the higher
tested concentration (0.1 µM), while sotalol did not. These
behaviors were all replicated at both pacing frequencies for
sotalol and at 1 Hz for dofetilide. At 2 Hz EADs were not seen
in dofetilide simulations, and simulated APD prolongation
was lower overall than experiments due to skipping behavior,
resulting in APs that were longer than one pacing cycle, which
did not occur in simulations.

2) Experimental results for quinidine and verapamil, both
multichannel blocking drugs, were generally not in
agreement with simulations, due to prediction by simulations
of substantially higher AP prolongation than observed
experimentally. Although both quinidine and verapamil
have untrapped hERG binding dynamics (Zhang et al., 1999;
Tsujimae et al., 2004; Li et al., 2017), simulations using
the recent state- and voltage-dependent model of IKr by
Li et al. (2017) did not substantially improve agreement
with experiments or reduce AP prolongation. However
verapamil simulations did not develop any repolarization
abnormalities such as EADs, in agreement with experiments.
Quinidine simulations showed a very high incidence of
repolarization abnormalities using the Crumb IC50s but a
substantially lower incidence with the Kramer IC50s, most
probably because the Crumb et al. study calculated IC50s
for multiple potassium currents but was not able to reach a
measurable IC50 for either Nav 1.5 (INaF) or Cav 1.2 (ICaL),
while the Kramer et al. study calculated IC50s for Nav 1.5 and
Cav 1.2 as well as hERG. Overall, results for quinidine and
verapamil suggest that inclusion of channel binding dynamics
in the hERG block model are not sufficient to bring in silico
results in line with experiments at the concentrations and
frequencies tested, and suggest further studies are necessary
to understand the biophysical mechanisms of these drugs’
electrophysiological effects.

Explanations for Qualitative Mismatch of
APD Changes but Consistency in Lack of
EADs Caused by Verapamil
Ex vivo (Figure 8) and in vivo recordings (Johannesen et al.,
2014; Vicente et al., 2015) show that verapamil causes minor
QT and APD shortening or no effect. However, voltage clamp
studies have consistently reported substantial hERG block in the
concentration range tested in this study (Kramer et al., 2013;
Crumb et al., 2016; Li et al., 2017). There are twomain hypotheses
in the literature regarding the lack of APD prolongation from
verapamil despite thismeasured hERG block. The first hypothesis
is that block of ICaL by verapamil counteracts the AP prolonging
effects of IKr block as both inward and outward currents are

reduced, which produces the observed minor shortening of
APD. However, the effects of IKr block alone are substantial
and variable (e.g., Figures 5, 6). Therefore, it seems that this
mechanism would require fine tuning of the ratios of ICaL
and IKr block, as well as the baseline cellular conductances
GKr and GCaL, to consistently allow ICaL block to cancel out
the effects of IKr block alone, which multiple voltage clamp
studies predict to be substantial at the concentrations tested.
For example, for 1 µM verapamil both Crumb and Kramer
datasets predict greater IKr block (68 and 77% respectively)
than for 100 µM sotalol, the effects of which can be seen in
Figure 6. It therefore seems unlikely that block of ICaL could be a
sufficient mechanism to precisely cancel out the AP prolongation
from hERG block. However, verapamil’s ICaL block could be
one of several contributing factors that collectively limit the
AP prolongation from its IKr block, and experimental and in
silico studies indicate it is the main mechanism preventing the
occurrence of EADs under verapamil application.

The second hypothesis for verapamil’s effects on APD is that
IKr block from verapamil is overestimated by dose-response
curve models parameterized from voltage clamp experiments
that do not measure its hERG binding dynamics. Data from
Zhang et al. (1999) show that verapamil is an untrapped
hERG blocker–when bound it reduces the probability of the
hERG channel closing, increasing the probability of verapamil
unbinding at voltages close to the resting membrane potential.
This contrasts with other hERG blockers, such as dofetilide,
that do not prevent the channel from closing and therefore
remain bound when the membrane is polarized. Therefore,
IC50s measured from voltage clamp studies that do not account
for this may overestimate the level of IKr block, and therefore
the level of AP prolongation, caused by verapamil under
normal pacing conditions. A simulation study by Di Veroli
et al. (2014) suggests that verapamil’s increased unbinding
from hERG relative to compounds such as dofetilide could
result in reduced AP prolongation during normal pacing,
depending on binding timescales. However, use of the dynamic
hERG model incorporating verapamil’s untrapped dynamics
did not substantially lower AP prolongation. Therefore, the
mechanism(s) that limit the impact of verapamil’s measured IKr
block are currently unclear.

Mismatch in APD Prolongation and EAD
Occurrence for Quinidine
Experimentally, quinidine causes QT and AP prolongation
(Nademanee et al., 1990; Vicente et al., 2015), and is classified as
a high risk torsadogenic drug. These features were qualitatively
replicated in simulations (Figure 7); however the degree of AP
prolongation was overestimated by simulations compared to
ex vivo results. Additionally, while no EADs were recorded
from any trabeculae under quinidine application, repolarization
abnormalities occurred for themajority of models when using the
IC50s from Crumb et al. in which only potassium channel IC50s
were able to be calculated for quinidine, as recorded blocks of INa
and ICaL at the maximally tested concentration were too low to
estimate IC50s, and in a small minority of models when using the
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IC50s from Kramer et al. which included block of ICaL which is
known to suppress EAD formation.

We can suggest four possible hypotheses for why simulations
overestimated quinidine-induced AP prolongation. Firstly, as
quinidine significantly blocks a particularly large number of
channels, the compound effects of measurement uncertainty
across multiple channels could result in a substantial total
uncertainty when all channel blocks are integrated into an action
potential model. Estimates of the hERG IC50 for the same
drug across different studies have been shown to vary by an
order of magnitude (Polak et al., 2009), and for a multichannel
blocker like quinidine, this measurement uncertainty will be
compounded over multiple ion channels. The second hypothesis
is that the IKr current in the ORd model could have too large
an influence on APD relative to other currents. However, the
results for dofetilide and sotalol (Figures 5, 6) show that over a
range of different conductance profiles the ORd model provides
good agreement with experiments for selective block of IKr
across multiple compounds, which provides confidence that the
strength of IKr relative to other currents is reasonable. Thirdly,
inward currents acting during repolarization, particularly ICaL,
may be too weak in the ORd model, so that block of these
currents produces too little reduction in APD prolongation when
combined with IKr block. This could be tested in future studies
by comparing simulations to experiments with more selective
calcium channel blockers. If APD shortening in experiments
is found to be substantially larger than in simulations using
the ORd model, this would support this hypothesis. Finally,
quinidine is known to be an untrapped hERG blocker (Tsujimae
et al., 2004), so simple-pore block models may overestimate
the degree of hERG block. However, quinidine binds rapidly to
hERG channels (Windley et al., 2017), which would limit the
effects of transient unbinding, and simulations with the dynamic
hERG model did not show substantial differences to using only
IC50 data (Figure 7). Therefore, the causes of mismatch between
experiment and simulations for quinidine in our study require
further investigation and could include a range of contributing
factors.

Limitations
This study investigated the response of models derived from
a single baseline model, the ORd model, although with two
different models of IKr and a wide range of different conductance
profiles, to mimic biological variability in ion channel densities.
Other sources of variability that are known to influence the
electrophysiological phenotype, such as alterations in channel
structure to change gating dynamics, are not included in this
study. Other human ventricular models (e.g., ten Tusscher and
Panfilov, 2006; Grandi et al., 2010) also have different balances
of ionic currents and therefore produce different results in
simulations and have different strengths and weaknesses. In
particular, we found that across a wide range of conductances
the ORd model could not reproduce the range of action potential
amplitudes observed in this dataset, which were in the range
of 87–119 mV (Figure 2). It is possible that the discrepancy
in action potential amplitude could impact repolarization and
ideally a modification to the model could be found to rectify this

issue, but we have not yet found an appropriate modification.
However, the ORd model was chosen as the baseline model
for this study due to its integration of human-specific voltage-
clamp and current-clamp recordings from human ventricular
cardiomyocytes, and its current relevance for in silico drug testing
due to being selected as the model of choice for the in silico
section of CiPA (Fermini et al., 2016).

To incorporate inter- and intra-heart variability into
simulation predictions, we chose to use the population of
models methodology. However, other methodologies for
integrating biological variability into cardiac modeling have been
developed and could have been used, including multivariate
partial regression analysis (Sobie, 2009; Sarkar and Sobie, 2010;
Sadrieh et al., 2013) and particularly cell-specific modeling
(Davies et al., 2012; Groenendaal et al., 2015). Each of these
methodologies has particular strengths, e.g., partial least
squares regression analysis can constrain model parameters
and identify relationships between many model parameters
and outputs simultaneously without the need for additional
experimental data while cell-specific modeling can estimate
best-fit parameter sets for recordings from specific cells, and can
take advantage of information from dynamically rich pacing
protocols (Groenendaal et al., 2015). The advantage of using
cell-specific modeling in this study would have been the ability
to find a unique model that agreed with the experimental
recordings for each trabecula. However, the likelihood of each
model accurately representing conductances of the associated
preparation would be low as experimental recordings typically
recorded from human preparations, such as those available here,
would not contain enough information to constrain each model.
These techniques are still under investigation.

Instead, we decided populations of models were a good
choice of methodology for the purposes of this study. Although
populations of models do not reconstruct the conductances
of a particular preparation, they can find models with a wide
range of ionic profiles that are all consistent with experimental
biomarkers. This is ideal for simulating drug effects, as a
wide range of possible responses, including outliers, can be
evaluated. If the response to a simulated drug is different to
experimental results across all or most models, as with quinidine
and verapamil, this can then suggest that the mismatch is due
to other causes, such as the model of drug block, or non-
conductance sources of variability, rather than the specific set(s)
of conductances in one or a few models. In addition, all current
methods for incorporating experimental variability rely on the
equations of an underlying baseline cell model such as the
ORd model. Regardless of which model is chosen, there will
likely be experimentally observed combination of AP biomarkers
across different pacing protocols that cannot be simultaneously
reproduced by a model with any set of conductances, due to the
structure of the model equations. Therefore, no matter which
methodology is used it may not be possible for all experimental
observations to be reproduced in simulations with a single set
of underlying model equations. Our study yields important
quantitative information on the ability of the ORd model with
variations in ionic conductance and current knowledge on drug
action to reproduce experimental recordings.
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The simple pore block model of drug action assumes that
channel block is independent of the state of each ion channel.
For many drugs this is an effective approximation; however
for others, incorporating state-dependent block and binding
information could be necessary to explain mismatches between
simulations and experiments. Therefore, we also evaluated the
state-dependent hERG block model by Li et al. (2017). Use of
this model did not result in substantial changes in simulation
results compared to the ORd baseline hERGmodel, however only
one parameterization of this block model was available for each
drug. Given the substantial uncertainty in measurements of IC50
values it is likely there is also substantial uncertainty in the drug
block parameters measured for the Li et al. model. Replications
of the type of voltage clamp studies used to parameterize these
drug block models would be necessary to determine the level of
uncertainty in hERG binding and trapping parameters, combined
with further simulation studies to understand the effects this
uncertainty has when propagated to AP-level models.

Future Work
The identification of mismatches between experiments and
simulations is vital for continued improvement of in silico cardiac
models and for identifying areas where our understanding of
electrophysiological mechanisms of drug action is inconsistent
with experimental data. We hope this study will motivate
combined experimental and simulation studies that can explain
the causes of the mismatches for quinidine and verapamil,
and in doing so allow iterative modification and improvement
of the ORd model and other cardiac cell models. This
iterative improvement has been an important part of cardiac
electrophysiology from the beginning of the field (Noble, 2011).

Future studies could also build on this work by analyzing a
wider range of drugs, particularly other multichannel blockers,
and selective blockers of channels other than hERG. This would
provide a more thorough understanding of agreement and
disagreement across a broad range of ion channel blocking
compounds, providing confidence where selective block showed

good agreement between simulations and experiments (e.g., as
for dofetilide and sotalol in this study) and identifying areas
for model modification where there is significant mismatch.
In particular, it will be important to investigate whether the
results for quinidine and verapamil are representative of other
multichannel blockers that block hERG, or are outliers due to
unique features of these two drugs. If the former, then it is likely
the ORd model will need modification, if the latter, then the
mismatch may be due to an incomplete understanding of the
mechanisms of verapamil and quinidine block.
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