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Background: The effects of capsaicin on obesity and glucose homeostasis are still

controversial and the mechanisms underlying these effects remain largely unknown. This

study aimed to investigate the potential relationship between the regulation of obesity

and glucose homeostasis by dietary capsaicin and the alterations of gut microbiota in

obese diabetic ob/ob mice.

Methods: The ob/ob mice were subjected to a normal, low-capsaicin (0.01%), or

high-capsaicin (0.02%) diet for 6 weeks, respectively. Obesity phenotypes, glucose

homeostasis, the gut microbiota structure and composition, short-chain fatty acids,

gastrointestinal hormones, and pro-inflammatory cytokines were measured.

Results: Both the low- and high-capsaicin diets failed to prevent the increase in body

weight, adiposity index, and Lee’s obesity index. However, dietary capsaicin at both

the low and high doses significantly inhibited the increase of fasting blood glucose

and insulin levels. These inhibitory effects were comparable between the two groups.

Similarly, dietary capsaicin resulted in remarkable improvement in glucose and insulin

tolerance. In addition, neither the low- nor high-capsaicin diet could alter the α-diversity

and β-diversity of the gut microbiota. Taxonomy-based analysis showed that both

the low- and high-capsaicin diets, acting in similar ways, significantly increased the

Firmicutes/Bacteroidetes ratio at the phylum level as well as increased the Roseburia

abundance and decreased the Bacteroides and Parabacteroides abundances at the

genus level. Spearman’s correlation analysis revealed that the Roseburia abundance

was negatively while the Bacteroides and Parabacteroides abundances were positively

correlated to the fasting blood glucose level and area under the curve by the oral glucose

tolerance test. Finally, the low- and high-capsaicin diets significantly increased the fecal

butyrate and plasma total GLP-1 levels, but decreased plasma total ghrelin, TNF-α, IL-1β,

and IL-6 levels as compared with the normal diet.

Conclusions: The beneficial effects of dietary capsaicin on glucose homeostasis are

likely associated with the alterations of specific bacteria at the genus level. These

alterations in bacteria induced by dietary capsaicin contribute to improved glucose
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homeostasis through increasing short-chain fatty acids, regulating gastrointestinal

hormones and inhibiting pro-inflammatory cytokines. However, our results should be

interpreted cautiously due to the lower caloric intake at the initial stage after capsaicin

diet administration.

Keywords: capsaicin, obesity, diabetes, glucose homeostasis, gut microbiota

INTRODUCTION

The use of chili peppers as an integral part of the diet has a long
history and is highly popular worldwide. Capsaicin is the major
bioactive ingredient in chili peppers and plays an important
role in a series of pathophysiological processes via activation
of transient receptor potential vanilloid 1 (TRPV1) receptors.
It has been reported that TRPV1 activation by capsaicin is
involved in the regulations of metabolic disorders (Sun et al.,
2016), cardiovascular disease (Sun et al., 2016), pain (O’Neill
et al., 2012), cancer (Chapa-Oliver and Mejía-Teniente, 2016),
respiratory disease (Banner et al., 2011), and dermatosis (Sharma
et al., 2013). Among these regulations by dietary capsaicin, its
beneficial effects on obesity-related disorders were extensively
documented in experimental studies. In 2007, Zhang et al.
found, for the first time, that dietary capsaicin protects mice
against high-fat diet-induced adipogenesis and obesity by an
increase in cytosolic calcium via activation of TRPV1 channels
(Zhang et al., 2007). Similarly, activation of TRPV1 channels
by dietary capsaicin has been reported to improve visceral fat
remodeling through connexin-43-mediated Ca2+ influx (Chen
et al., 2015). In addition, dietary capsaicin can alleviate obesity-
related glucose intolerance by regulating inflammatory responses
and fatty acid oxidation in obese mice fed with a high-fat diet
(Kang et al., 2010). Accumulating evidence from human studies
also has shown that ingestion of foods containing capsaicin is
inversely associated with the prevalence of obesity and type 2
diabetes (Zsombok, 2013; Sun et al., 2016). However, Okumura
et al. have reported that dietary capsaicin failed to reduce body
weight gain and abdominal white adipose tissue accumulation
in obese diabetic KKAy mice, although the blood glucose levels
were significantly decreased (Okumura et al., 2012). In addition,
by using a TRPV1 knockout mouse model, previous studies
yielded seemingly contradictory findings that TRPV1 exerts
protective (Lee et al., 2015), deleterious (Motter and Ahern,
2008), or no effects (Marshall et al., 2013) on high-fat diet-
induced obesity. Therefore, the effects of dietary capsaicin on
obesity and glucose homeostasis are still controversial, and the
underlying mechanisms remain largely unknown.

The mammalian intestinal tract is colonized by a dense and
complex community of commensal microorganisms referred to
as the gut microbiota. The gut microbiota play a key role in many
physiological and pathological events occurring in their hosts.
The role of the gut microbiota in obesity was initially identified
by the findings that conventionalization of adult germ-free mice
with a normal microbiota harvested from the cecum of healthy
mice led to an increase in body fat content and insulin resistance
(Bäckhed et al., 2004). So far, mounting evidence indicates
the involvement of the gut microbiota in the pathogenesis of

obesity-related disorders through regulating energy metabolism
(Bäckhed et al., 2004; Turnbaugh et al., 2006), fatty acid synthesis
(Bäckhed et al., 2004, 2007; Hwang et al., 2015), gastrointestinal
hormones production (Kimura et al., 2013), and low-grade
inflammation (Cani et al., 2008; Vijay-Kumar et al., 2010; Fei and
Zhao, 2013). In addition, the latest findings suggest that the gut
microbiota represent a potential therapeutic avenue for obesity
and other metabolic disorders. Accordingly, modifications of
the gut microbiota by dietary interventions (Xiao et al., 2014),
prebiotics or probiotics (Delzenne et al., 2011), medication (Shin
et al., 2014), and genetic engineering (Chen et al., 2014) are
effective strategies to inhibit the development of obesity-related
disorders.

Although the existing findings emphasize the indispensable
role of the gut microbiota in obesity and glucose metabolic
disorders, whether the effects of dietary capsaicin on obesity and
glucose homeostasis is mediated by the gut microbiota have not
been fully identified. Therefore, this study aimed to investigate
the potential relationship between the regulation of obesity and
glucose homeostasis by dietary capsaicin and the alterations of
gut microbiota in obese diabetic ob/ob mice.

METHODS

Experimental Animals
The experimental protocols were approved by the Institutional
Animal Care and Use Committee of Peking University People’s
Hospital and were in adherence with the Guide for the Care
and Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85-23, revised 1996).
All efforts were made to minimize animal suffering or discomfort
and reduce the number of animals used.

Male obese diabetic ob/ob mice with a C57BL/6J background
at 4–5 weeks of age were obtained from the Institute of
Laboratory Animal Science, Chinese Academy of Medical
Sciences & Peking Union Medical College. The mice were single-
housed to prevent cross contamination of gut microbiota in
specific pathogen-free animal facilities (maintained at 20–25◦C,
50–55% relative humidity, and a 12/12-h light/dark cycle). They
were provided with access to a laboratory diet and tap water ad
libitum. All mice were allowed to acclimate for at least 1 week
before the experiments.

Experimental Groups and Diet
The ob/ob mice were randomized into the following three
groups: (1) Normal diet group (n = 5): the mice received
standard laboratory chow (Institute of Laboratory Animal
Science, Chinese Academy of Medical Sciences & Peking Union
Medical College); (2) Low-capsaicin diet group (n= 5): the mice
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received standard laboratory chow plus 0.01% capsaicin (Sigma-
Aldrich, St. Louis, MO, USA); (3) High-capsaicin diet group (n
= 5): the mice received standard laboratory chow plus 0.02%
capsaicin (Sigma-Aldrich). All mice were fed for 6 weeks, and
food intake was measured every week. The normal diet had
22.47% of kilocalories from protein, 12.11% of kilocalories from
fat, and 65.42% of kilocalories from carbohydrate, with total
energy content of 3.42 kcal/g. The ingredients of the diet were
crude protein 19.2%, crude fat 4.6%, crude fiber 4.0%, crude ash
6.3%, moisture 8.8%, calcium 1.19%, phosphorus 0.87%, lysine
11.1 g/kg, methionine 4.5 g/kg, cystine 6.4 g/kg, nitrogen free
extract 55.9%. The low-capsaicin diet and high-capsaicin diet
were generated by adding 0.01 and 0.02% capsaicin to the normal
diet, respectively.

Measurement of Obesity Parameters
The obesity parameters including body weight, adiposity index,
and Lee’s obesity index were measured in all mice. The adiposity
index was calculated by the formula [100 × (mesenteric fat
weight + epididymal fat weight + perirenal fat weight) / body
weight]; and Lee’s obesity index was calculated by the formula
[body weight (g)0.33 × 104 / naso-anal length (mm)].

Biochemical Analyses
The fasting blood glucose levels were measured using an
Accu-Chek Active blood glucose meter (Roche Diagnostics,
Mannheim, Germany) by puncturing the tail vein. In addition,
blood samples were collected from the retro-orbital plexus for
determination of plasma insulin using a commercially available
RIA kit (Beijing Furui Biotechnology Co., Ltd., China), according
to the manufacturer’s instructions.

Oral Glucose Tolerance Test (OGTT) and
Insulin Tolerance Test (ITT)
For the OGTT, the mice were administered with an oral glucose
load of 2 g/kg body weight after 16 h of fasting. Before snips,
the tail ends of rats were dipped into Bupivicaine (0.25%) for
local anesthesia to reduce pain. The blood glucose levels were
assessed using samples obtained from the tail vein at 0, 15,
30, 60, 90, and 120 min following the glucose load. The ITT
was performed using a single intraperitoneal injection of insulin
(0.75 IU/kg body weight) after 6 h of fasting. Blood samples
were taken from the tail veins at 0, 15, 30, 60, 90, and 120
min after the insulin injection. Blood glucose concentrations
were measured with a glucose analyzer as described above. The
area under the curve (AUC) for each OGTT and ITT was
calculated through trapezoidal approximation using GraphPad
Prism software (version 6.0, GraphPad Software Inc., La Jolla,
CA, USA) and expressed as a percentage of the normal diet group
(100%).

Pyrosequencing of the V4 Region of 16S
rRNA Genes
Total DNA of gut microbiota was isolated from fresh fecal
samples using a FastDNA Spin Kit For Feces (MP). The V4
hypervariable region of 16S rRNA genes was amplified with bar-
coded primers (Forward 515 F: GTGCCAGCMGCCGCGGTAA;

Reverse 806 R: GGACTACHVGGGTWTCTAAT) in a
polymerase chain reaction (PCR) system thermocycler (ABI
GeneAmp R© 9700 system, Applied Biosystems, Foster City,
CA, USA) using the following reaction conditions: initial
denaturation at 95◦C for 5 min, followed by 30 cycles of 95◦C
for 30 s (denaturation), 58◦C for 30 s (annealing), and 72◦C for
25 s (elongation), with a final extension at 72◦C for 7 min. The
products from different samples were mixed at equal ratios for
sequencing using the Illumina HISeq 2500 platform.

Bioinformatics Analyses of Microbiome
Data
Sequence data were analyzed using a combination of the software
programs UPARSE (usearch version 8.0.1517), QIIME (version
1.9.1), and R (version 3.2.3). The poor-quality raw 16S rRNA
reads were filtered out and trimmed by Trimmomatic (version
0.36) with default parameters. The pair-end reads were merged
by PandaSeq (version 2.8; parameter: -t 0.90). All demultiplexed
reads were clustered into operational taxonomic units (OTUs)
at 97% sequence identity using the UPARSE pipeline. The OTU
representative sequences were aligned against to the greengenes
reference template set based on PyNAST (version 1.2.1). The
phylogenetic tree was constructed using FastTree (version 2.1.3)
with the filtered alignment. The Ribosomal Database Project
(RDP) Classifier (version 2.2) was employed for taxonomy
assignment against RDP 16S rRNA training set 9 with a
confidence score ≥0.8. For the alpha-diversity metrics, richness
estimators (e.g., ACE, Chao1) and diversity indices (e.g., Shannon
index, Simpson index) were calculated, and rarefaction plots were
generated with iterations of 10 at each sampling depth of 100 and
increments of 100. For the beta-diversity metrics, the unweighted
and weighted UniFrac distance matrices were calculated and
visualized with Principal Coordinate Analysis (PCoA) analyses
in QIIME.

Measurement of Short-Chain Fatty Acids
Fecal samples from each mouse were suspended and
homogenized in 1 mL deionized water. The pH value of
the suspension was adjusted to 2–3 by adding 5 M hydrochloric
acid, and then kept at room temperature for 10 min with
intermittent shaking. After transferring into a polypropylene
tube, the suspension was centrifuged at 5,000 rpm for 20 min.
2-ethylbutyric acid, which served as the internal standard, was
added into the supernatant at a final concentration of 1 mM. The
short-chain fatty acids was measured on an Agilent 7890A/5975C
GC system (Agilent Technologies, PA, USA) according to the
protocol previously described (Zhao et al., 2006). The levels of
short-chain fatty acids were corrected by the wet weight of fecal
sample.

Measurement of Plasma Gastrointestinal
Hormones and Pro-inflammatory
Cytokines
Plasma samples were obtained from the whole blood collected
after 6 weeks of capsaicin feeding and stored at−80◦C for further
analysis. Levels of total GLP-1 (7–36 and 9–36) (Millipore),
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total ghrelin (Millipore), TNF-α (R&D Systems), IL-1β (R&D
Systems) and IL-6 (R&D Systems) were measured by enzyme-
linked immunosorbent assay according to manufacturer’s
instructions.

Statistical Analyses
Statistical analyses and graphing were performed using
GraphPad Prism software (version 6.0). QIIME, STAMP, and R
packages were used for analyzing or graphing the gut microbiota
profiles. Quantitative data were expressed as means ± standard
deviations (SD) or whisker box plots. Differences among groups
for statistical significance were determined using one-way
analysis of variance (ANOVA) followed by Tukey’s post hoc
test or the Kruskal-Wallis test. Correlations between bacterial
abundance and glucose parameters were assessed by Spearman’s
correlation analysis. A P-value< 0.05 was considered statistically
significant.

RESULTS

Effects of Dietary Capsaicin on Obesity
Parameters
To investigate whether dietary capsaicin can prevent obesity,
ob/ob mice were fed with a standard chow diet plus different
doses of capsaicin for 6 weeks. The body weights of ob/ob
mice in the normal diet group were gradually increased with
time. However, neither the low-capsaicin diet nor the high-
capsaicin diet was capable of preventing the increase of body
weight in ob/ob mice during the 6-week study (Figure 1A).
Similarly, dietary capsaicin at either the low or high dose also
failed to inhibit the development of obesity, as evidenced by a
similar adiposity index and Lee’s obesity index when compared
with the normal diet at 6 weeks (P > 0.05, Figures 1D,E).

In addition, although both the low- and high-capsaicin diets
led to the marked decreases in food intake and caloric intakes
during the first 2 weeks compared with the normal diet (P
< 0.05), the food and caloric intakes were not significantly
different among the three groups from 3 to 6 weeks (P > 0.05,
Figures 1B,C).

Effects of Dietary Capsaicin on Blood
Glucose and Insulin Levels
To investigate the effect of dietary capsaicin on glucose
homeostasis, fasting blood glucose and insulin levels were first
determined in ob/obmice. In agreement with the changes in body
weight, the fasting blood glucose levels were increased gradually
with time in ob/ob mice fed with a normal diet. Both the low-
capsaicin diet and the high-capsaicin diet significantly inhibited
the increase of fasting blood glucose and insulin levels at 6 weeks
of feeding, and the inhibitory effects were comparable between
the low-capsaicin and high-capsaicin diet groups (P > 0.05,
Figures 2A,B).

Effects of Dietary Capsaicin on Glucose
Tolerance and Insulin Tolerance
To further assess the role of dietary capsaicin in regulating
glucose homeostasis, the OGTT and ITT were performed
in ob/ob mice at 6 weeks. The OGTT showed that the
blood glucose levels were significantly lower in ob/ob mice
fed with a capsaicin diet than in those with a normal diet
at all-time points after glucose load (P < 0.05, Figure 2C).
In addition, the AUC data for the OGTT indicated that
dietary capsaicin resulted in a significantly reduced AUC in
ob/ob mice fed with a capsaicin diet at either a low or a
high dose than in those with a normal diet (P < 0.05),

FIGURE 1 | Effects of dietary capsaicin on obesity parameters. (A) Body weight; (B) total food intake, expressed as grams per mouse per week; (C) total caloric

intake, expressed as kcal per mouse per week; (D) adiposity index, calculated according to the following formula: 100× (mesenteric fat weight + epididymal fat

weight + perirenal fat weight)/body weight; (E) Lee’s obesity index, calculated according to the following formula: body weight (g)0.33 × 104/naso-anal length (mm).

N, normal diet group (n = 5); L, low-capsaicin diet group (n = 5); H, high-capsaicin diet group (n = 5). Data are shown as the mean ± SD; +P < 0.05, analyzed by

one-way ANOVA with Tukey’s post hoc test.
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FIGURE 2 | Effect of dietary capsaicin on glucose homeostasis. (A) Blood glucose; (B) insulin; (C) oral glucose tolerance test (OGTT); (D) area under the curve (AUC)

for the OGTT, expressed as a percentage of the normal diet group (%); (E) insulin tolerance test (ITT); (F) area under the curve (AUC) for the ITT, expressed as a

percentage of the normal diet group (%). N, normal diet group (n = 5); L, low-capsaicin diet group (n = 5); H, high-capsaicin diet group (n = 5). Data are shown as the

mean ± SD; +P < 0.05, analyzed by one-way ANOVA with Tukey’s post hoc test.

indicating a markedly improved glucose tolerance in capsaicin-
treated diabetic mice (Figure 2D). However, no significant
difference was observed in the improvement of glucose tolerance
between the low-capsaicin and high-capsaicin diet groups
(Figures 2C,D). Similar results reflecting the beneficial effect of
dietary capsaicin on glucose homeostasis were also found with
the ITT (Figures 2E,F).

Effect of Dietary Capsaicin on the Gut
Microbiota Structure
To investigate whether dietary capsaicin can lead to specific
alterations in the gut microbiota structure in ob/ob mice,
the fecal samples at 6 weeks after feeding were analyzed.
A total of 792,163 high-quality sequences were obtained
from 15 fecal samples (n = 5 per group, mean 52,811 ±

25,356 sequences per sample, range 17,467−103,159) by high-
throughput pyrosequencing. The high quality sequences were
then delineated into 337 OTUs at a similarity cut-off of 97%.
The observed species and Shannon-Wiener diversity rarefaction

curves reached the saturation phase (Figure 3), showing that the
sequence depth obtained was adequate for all samples, although
additional new phylotypes would possibly be identified by further
sequencing.

First, α-diversity analysis, which consisted of community
richness and diversity (richness and evenness), was performed
among the three groups at 6 weeks. No significant differences
were detected in the richness (represented by the Ace and
Chao estimator) or diversity (represented by the Shannon and
Simpson index) among the three groups (Figures 4A–D). These
results indicated that both the low- and high-capsaicin diets
failed to alter the α-diversity. Next, β-diversity analysis was
performed based on the unweighted and weighted UniFrac
distance-based PCoA. Similarly, no separate clustering pattern
among the three groups was found in relation to the low- and
high-capsaicin diets by either unweighted or weighted UniFrac
PCoA analysis (Figures 4E,F). These results indicated that the
overall gut microbiota structure of ob/ob mice remained stable
during dietary capsaicin intervention.
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FIGURE 3 | Rarefaction curves of observed species and Shannon-Wiener diversity for all samples. (A) Rarefaction curves of observed species from fecal samples of

individual mice fed with a normal diet (red), low-capsaicin diet (green), or high-capsaicin diet (blue). (B) Rarefaction curves of Shannon-Wiener diversity from fecal

samples of individual mice fed with a normal diet (red), low-capsaicin diet (green), or high-capsaicin diet (blue).

FIGURE 4 | Effect of dietary capsaicin on the gut microbiota structure. (A) Ace estimator, (B) Chao estimator, (C) Shannon index, (D) Simpson index, (E) unweighted

UniFrac distance-based principal coordinate analysis (PCoA), (F) weighted PCoA. N, normal diet group (n = 5); L, low-capsaicin diet group (n = 5); H, high-capsaicin

diet group (n = 5). Data are shown as box and whisker plots. The box indicates the interquartile range (IQR, 75th to 25th percentiles of the data), and the mean value

is shown as a line within the box; whiskers extend to the most extreme value within 1.5 × IQR, and outliers are shown as black dots. The results were analyzed by

one-way ANOVA with Tukey’s post hoc test or the Kruskal–Wallis test.
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Effect of Dietary Capsaicin on the Gut
Microbiota Composition
To further determine the relationship between dietary capsaicin
and the gut microbiota composition in the regulation of glucose
homeostasis, taxonomy-based analysis was performed at the
phylum and genus levels. At the phylum level, both the low-
and high-capsaicin diets significantly increased the relative
abundance of Firmicutes but decreased the relative abundance
of Bacteroidetes. Accordingly, the ratio between Firmicutes
and Bacteroidetes, a widely used marker of gut dysbiosis,
was significantly higher in ob/ob mice subjected to dietary
capsaicin intervention than a normal diet (Figures 5A,B). At
the genus level, both low- and high-capsaicin-treated ob/ob
mice showed enriching effects on Roseburia abundance and
inhibiting effects on Bacteroides and Parabacteroides abundances
(Figures 5C–E). In addition, the effects of dietary capsaicin on
the gut microbiota composition at the phylum and genus levels
showed no significant differences between the low-capsaicin and
high-capsaicin diet groups (Figures 5B–E).

Correlations between the Glucose
Parameters and the Gut Microbiota
Abundance
To assess whether dietary capsaicin-induced glucose homeostasis
improvement is associated with alterations of the gut microbiota
in ob/ob mice, Spearman correlation analysis was performed to

determine the correlations between the glucose parameters and
the bacterial abundance at the genus level. The analysis revealed
a strong negative correlation between the fasting blood glucose
level and the abundance of Roseburia (r =−0.9000, P < 0.0001),
and positive correlations between the fasting blood glucose level
and the abundances of Bacteroides (r = 0.8607, P < 0.0001) and
Parabacteroides (r = 0.6250, P = 0.0127) (Figures 6A–C). In
addition, similar findings were found in the correlations between
the AUC of the OGTT and the abundances of Roseburia (r =

−0.7143, P = 0.0028), Bacteroides (r = 0.6964, P = 0.0039), and
Parabacteroides (r = 0.6214, P = 0.0134) (Figures 6D–F).

Effects of Dietary Capsaicin on
Short-Chain Fatty Acids, Gastrointestinal
Hormones, and Pro-inflammatory
Cytokines
To observe the potential mechanisms underlying the improved
glucose homeostasis by dietary capsaicin, the levels of fecal short-
chain fatty acids, plasma gastrointestinal hormones and plasma
pro-inflammatory cytokines were measured in ob/ob mice after
6 weeks of capsaicin feeding. Analysis of short-chain fatty acids
showed that both the low- and high-capsaicin diets significantly
increased the fecal butyrate level (P < 0.05, Figure 7A), but
did not affect the fecal acetate and propionate levels (P > 0.05,
Figure 7A), as compared with the normal diet. In addition, the
plasma total GLP-1 level was higher, and the plasma total ghrelin,

FIGURE 5 | Effect of dietary capsaicin on the gut microbiota composition. (A) Changes in the taxonomic composition of the gut microbiota at the phylum level; (B) the

Firmicutes/Bacteroidetes ratio; (C) the abundance of Roseburia; (D) the abundance of Bacteroides; (E) the abundance of Parabacteroides. N, normal diet group (n =

5); L, low-capsaicin diet group (n = 5); H, high-capsaicin diet group (n = 5). Data are shown as box and whisker plots. The box indicates the interquartile range (IQR,

75th to 25th percentiles of the data), and the mean value is shown as a line within the box; whiskers extend to the most extreme value within 1.5 × IQR, and outliers

are shown as crosses. The results were analyzed by one-way ANOVA with Tukey’s post hoc test or the Kruskal–Wallis test, +P < 0.05.
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FIGURE 6 | Correlations between the glucose parameters and the gut microbiota abundance. (A–C): Correlations of the blood glucose level with the abundance of

Roseburia (A), Bacteroides (B), and Parabacteroides (C). (D–F) Correlations of the area under the curve (AUC) for the oral glucose tolerance test (OGTT) with the

abundance of Roseburia (D), Bacteroides (E), and Parabacteroides (F). The data were analyzed by Spearman correlation analysis.

FIGURE 7 | Effects of dietary capsaicin on short-chain fatty acids, gastrointestinal hormones, and pro-inflammatory cytokines. (A) Fecal short-chain fatty acid levels;

(B) plasma total GLP-l level; (C) plasma total ghrelin level; (D) plasma TNF-α level; (E) plasma IL-1β level; (F) plasma IL-6 level. N, normal diet group (n = 5); L,

low-capsaicin diet group (n = 5); H, high-capsaicin diet group (n = 5). Data are shown as the mean ± SD; +P < 0.05. The data analyzed by one-way ANOVA with

Tukey’s post hoc test.

TNF-α, IL-1β, and IL-6 levels were lower in ob/ob mice fed with
the low- or high- capsaicin diet than those with the normal diet
(P < 0.05, Figures 7B–F).

DISCUSSION

Using a classic animal model simulating human obesity-related
type 2 diabetes, this study provided novel evidence that dietary

capsaicin significantly prevented the increases of fasting glucose
and insulin as well as markedly alleviated impaired glucose
tolerance and insulin resistance in obese diabetic ob/ob mice.
However, it failed to affect the obesity phenotypes including
body weight, Lee’s obesity index, and the adiposity index.
The mechanisms underlying these beneficial effects of dietary
capsaicin on glucose homeostasis are likely associated with
alterations in the gut microbiota composition, as evidenced by an
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increased abundance of Roseburia and a decreased abundances
of Bacteroides and Parabacteroides. In addition, these altered
bacteria at the genus level induced by dietary capsaicin contribute
to improved glucose homeostasis by increasing short-chain fatty
acids, regulating gastrointestinal hormones and inhibiting pro-
inflammatory cytokines. To the best of our knowledge, these
findings, for the first time, indicate the potential therapeutic
role of dietary capsaicin in improving glucose homeostasis by
regulating the gut microbiota in an obese diabetic animal model.

Numerous studies have investigated the effects of dietary
capsaicin on obesity and glucose homeostasis. Among these
studies, dietary capsaicin has been recognized to exert a beneficial
effect on preventing obesity and to improve glucose homeostasis
by activation of TRPV1 (Zhang et al., 2007; Kang et al., 2010;
Chen et al., 2015). Similar results also have been found in
high-fat diet-induced obese mice subjected to topical application
of capsaicin cream (Lee et al., 2013) as well as in a Zucker
diabetic fatty rat model of systemic sensory nerve desensitization
by subcutaneous injection of high-dose capsaicin (Gram et al.,
2005). However, our study showed that dietary capsaicin only
improved glucose homeostasis but did not inhibit obesity-
related phenotypes in obese diabetic ob/ob mice. Our results are
consistent with the findings from a study performed in obese
diabetic KKAy mice fed with capsaicin (Gram et al., 2005).
The reasons that can account for these conflicting results are
as follows: (1) Dietary capsaicin is likely to exert anti-obesity
and antihyperglycemic effects in both dose- and time-dependent
manners. A number of animal studies have indicated that the
inhibitory effect of capsaicin on obesity relies on a sufficient
dose exceeding 10 mg/kg body weight or 0.01% capsaicin in
the diet and a lasting administration period of 5–6 weeks
(Zhang et al., 2007; Kawabata et al., 2009; Kang et al., 2010;
Okumura et al., 2012; Chen et al., 2015; Márquez-Ibarra et al.,
2016). In addition, the capsaicin dose that can improve glucose
homeostasis was lower than that that can inhibit obesity, and
the improvement of glucose homeostasis occurs prior to the
inhibition of obesity (Okumura et al., 2012). In this study, dietary
capsaicin failed to improve obesity, probably due to the short
capsaicin feeding time and/or the low capsaicin dose. (2) The
anti-obesity and antihyperglycemic effects of dietary capsaicin
may depend on the obese diabetic animal models used in the
studies. According to previous evidence, the beneficial roles of
dietary capsaicin in regulating obesity and glucose homeostasis
have been consistently reported in high-fat diet-induced obesity
models (Zhang et al., 2007; Kang et al., 2010; Chen et al.,
2015). Nevertheless, our and another study (Okumura et al.,
2012) were carried out in spontaneous obese diabetic models
with genetic mutations (ob/ob mice or KKAy mice), which
demonstrated that dietary capsaicin only improved glucose
homeostasis without affecting the obesity-related phenotypes.
Clearly, the pathogenesis and features of genetic diabetic models
are substantially different from those of dietary models.

Numerous studies have demonstrated that many dietary
components are able to inhibit obesity and/or improve glucose
homeostasis by regulating the gut microbiota. However, few
studies have reported the effects of dietary capsaicin on the
gut microbiota in the presence of obesity. Baboota et al. found
that the oral administration of capsaicin (2 mg/kg, po) for 3

months could inhibit obesity-related phenotypes by enriching
the abundances of gut Prevotella, Lactobacillus, and Akkermansia
in high-fat diet-fed mice, according to quantitative PCR data
(Baboota et al., 2014). Moreover, Hochkogler et al. reported
that a 12-week intervention with daily intake of 0.15mg of
nonivamide, a TRPV1 agonist, prevented dietary-induced body
fat gain in moderately overweight subjects, but fecal microbiome
read outs were not affected (Hochkogler et al., 2016). In addition,
Kang et al. investigated the effects of both a low-capsaicin diet
(5 mg/d) and a high-capsaicin diet (10 mg/d) for 2 weeks
on the gut microbiota using 16S rRNA gene sequencing in
healthy subjects. The results showed that dietary capsaicin did
not affect the taxonomic α- and β-diversity but increased the
Firmicutes/Bacteroidetes ratio and Faecalibacterium abundance;
however, there were no changes in plasma glucose and insulin
levels, body mass index, or the waist-hip ratio during the study
period (Kang et al., 2016). Similarly, our study also showed
that neither a low-capsaicin diet (0.01%) nor a high- capsaicin
diet (0.02%) altered the α- and β-diversity; but capsaicin at
both doses resulted in marked changes in the gut microbiota
composition including an increased Firmicutes/Bacteroidetes
ratio and Roseburia abundance as well as a decreased abundances
of Bacteroides and Parabacteroides.

The Firmicutes/Bacteroidetes ratio in the stool is a gauge
of the overall gut microbiota balance. It has been reported
that an increase in the Firmicutes/Bacteroidetes ratio is
associated with obesity and a worsened glucose tolerance.
On the contrary, a growing number of studies have shown
that no significant differences exist in the abundances of
Firmicutes and Bacteroidetes between lean and obese individuals
(Zhang et al., 2009; Schwiertz et al., 2010; Jumpertz et al.,
2011). Also, Zhang et al. found that despite an increased
Firmicutes/Bacteroidetes ratio, both berberine and metformin
inhibited obesity and improved glucose homeostasis in high-fat
diet-induced mice (Zhang X. et al., 2015). Therefore, whether
the antihyperglycemic effect of dietary capsaicin contributes
to an altered Firmicutes/Bacteroidetes ratio needs further
investigation. In addition, previous studies have revealed that
alterations of specific bacteria at the genus level are involved in
the regulation of glucose homeostasis. The increased abundance
of Roseburia (Neyrinck et al., 2012; Ryan et al., 2014) is positively
correlated while the decreased abundances of Bacteroides (Dao
et al., 2011; Dewulf et al., 2012; Ryan et al., 2014) and
Parabacteroides (Dao et al., 2011) were negatively correlated
with improved glucose homeostasis when subjected to definite
interventions. The above-mentioned gut microbiota changes
may increase the production of short-chain fatty acids and inhibit
inflammatory responses in the gut. Thus, we believe that the
beneficial effects of dietary capsaicin on glucose homeostasis are
likely associated with specific microbial changes at the genus
level. In contrast, another study found an opposite change in
the abundances of Bacteroides and Parabacteroides at the genus
level that contributed to improvement of glucose homeostasis
(Sung et al., 2017). These conflicting findings in definitemicrobial
changes could be attributed to different diet interventions, animal
species, and/or diabetic models among the various studies.

We speculate that the mechanisms underlying the effect of
dietary capsaicin on the gut microbiota composition involve
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the following aspects. The gut is extensively innervated by
TRPV1-expressing primary afferent sensory nerves (Clapham,
2003; Nilius et al., 2007; Allais et al., 2017). TRPV1 is an
important sensory transducer, which plays a key role in the
regulation of intestinal tract function (Clapham, 2003; Nilius
et al., 2007; Allais et al., 2017). In addition, activation of
TRPV1 on the intestinal tract by dietary capsaicin leads to
altered intestinal sensitivity and excitability as well as the
local release of neuropeptides, including calcitonin gene-related
peptide and substance P (Clapham, 2003; Nilius et al., 2007;
Allais et al., 2017). Altered intestinal sensitivity and excitability
are probably implicated in the maintenance of gut microbiota
homeostasis (Wiles et al., 2016; Tap et al., 2017). Moreover,
bacteria can sense specific neurotransmitters, neuropeptides, and
neurohormones with their membrane proteins acting as specific
sensors (Sperandio et al., 2003; Lyte, 2004; Holzer, 2016). The
local release of neuropeptides can also regulate the structure
and composition of the gut microbiota by changing the immune
and inflammatory conditions in the intestinal tract. Indirect
evidence also shows that both calcitonin gene-related peptide
and substance P are crucial regulators of cutaneous microbiota
homeostasis (N’Diaye et al., 2017).

A wealth of studies found that the regulation of gut microbiota
on obesity-related disorders was related to short-chain fatty
acid synthesis (Bäckhed et al., 2004, 2007; Hwang et al., 2015),
gastrointestinal hormones production (Kimura et al., 2013) and
systemic low-grade inflammation (Cani et al., 2008; Vijay-Kumar
et al., 2010; Fei and Zhao, 2013). Our present study showed
that dietary capsaicin led to the increase of Roseburia abundance
and the decrease of Bacteroides and Parabacteroides abundances.
In addition, dietary capsaicin also significantly increased the
fecal butyrate and plasma total GLP-1 levels, but decreased
plasma total ghrelin, TNF-α, IL-1β, and IL-6 levels. Roseburia
serves as one of butyrate-producing bacteria species (Machiels
et al., 2014; Zhang J. et al., 2015; Rivière et al., 2016), and
butyrate promotes GLP-1 hormone secretion (Lin et al., 2012;
Yadav et al., 2013) and suppresses systemic inflammation (Russo
et al., 2012; Singh et al., 2014). Thus, we speculated that dietary
capsaicin might induce some specific bacteria in obese diabetic
ob/ob mice, which contributed to its antihyperglycemic effects by
regulating short-chain fatty acids, gastrointestinal hormones and
pro-inflammatory cytokines.

This study has some limitations. First, the results should be
cautiously interpreted due to the relatively small sample size
and short intervention period. Second, metagenomic analysis

was not used to analyze the alterations in the gut microbiota
structure and functions comprehensively. Third, fecal microbiota
transplantation or depletion was not performed to further
explore the role of the gut microbiota in dietary capsaicin-
mediated glucose homeostasis improvement. Four, dietary
capsaicin led to reduced caloric intake in the first 2 weeks as
compared with normal diet due to the decrease of palatability, the
difference in caloric intake was likely to be a potential confounder
in our results.

CONCLUSIONS

In summary, this study found that capsaicin intake led to
significant improvement of glucose homeostasis in obese diabetic
ob/ob mice, although it had no inhibitory effects on obesity-
related phenotypes. The beneficial effect of dietary capsaicin
on glucose homeostasis is likely related to the increased
abundance of Roseburia and the decreased abundances of
Bacteroides and Parabacteroides at the genus level, and which
contribute to the improvement of glucose homeostasis by
increasing short-chain fatty acids, regulating gastrointestinal
hormones and inhibiting pro-inflammatory cytokines. These
results offer a novel insight that alterations in the gut
microbiota composition may be the potential mechanism
underlying the antihyperglycemic effect of dietary capsaicin.
However, our results should be interpreted cautiously due to
the lower caloric intake at the initial stage after capsaicin diet
administration.
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