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Tyrosine kinase inhibitors (TKIs) are highly potent cancer therapeutics that have been

linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure,

and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference

with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help

to control critical processes such as survival signaling, energy homeostasis, and

excitation–contraction coupling. However, mechanistic understanding is limited at

present due to the complexities of tyrosine kinase signaling, and the wide range of targets

inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities

that have been reported, discuss potential mechanisms underlying cardiotoxicity, and

describe recent progress in achieving a more systematic understanding of cardiotoxicity

via the use of mechanistic models. In particular, we argue that future advances are likely

to be enabled by studies that combine large-scale experimental measurements with

Quantitative Systems Pharmacology (QSP) models describing biological mechanisms

and dynamics. As such approaches have proven extremely valuable for understanding

and predicting other drug toxicities, it is likely that QSP modeling can be successfully

applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy

for integrating genome-wide expression measurements with models, illustrate initial

advances in applying this approach to cardiotoxicity, and describe challenges that

must be overcome to truly develop a mechanistic and systematic understanding of

cardiotoxicity caused by TKIs.

Keywords: tyrosine kinase inhibitors, quantitative systems pharmacology, mathematical modeling, drug-induced

adverse events

INTRODUCTION

Tyrosine kinase inhibitors (TKIs) constitute a class of cancer therapeutics, many of which are
known to cause cardiotoxicity as a major adverse event. Reported cardiotoxicities include heart
failure, cardiomyopathy, conduction abnormalities, QT prolongation, and myocardial injury. The
most common toxicity is systolic dysfunction or cardiomyopathy, potentially leading to heart
failure, which is most likely mediated through direct toxicity of cardiomyocytes (Albini et al., 2010;
Eschenhagen et al., 2011; Force and Kolaja, 2011; Raschi and De Ponti, 2012; Ewer and Ewer, 2015).
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Trastuzumab, an inhibitor of the HER2 receptor tyrosine
kinase (Slamon et al., 2001; Piccart-Gebhart et al., 2005; Romond
et al., 2005; Force et al., 2007) was both the first monoclonal
antibody TKI given FDA approval (in 1998) and the first
TKI reported to cause cardiotoxicity (Wu et al., 2016). Since
the reports of trastuzumab-induced toxicity, several additional
targeted cancer therapeutics have been classified as cardiotoxic,
observations that have contributed to the emergence of a new
research field, cardio-oncology (Albini et al., 2010; Bellinger et al.,
2015).

Previous studies have shown that TKI-related cardiotoxicity,
as seen with trastuzumab, is mostly due to the targeting
of pathways that are shared between malignancies and
cardiovascular cells (De Keulenaer et al., 2010; Bellinger
et al., 2015). Investigations of these adverse events revealed that
many of the tyrosine kinases targeted by TKIs serve critical
roles in survival and maintenance of cardiomyocytes, leading
to unintended on-target toxicity. At the same time, many
TKIs inhibit multiple kinases simultaneously, which can cause
off-target toxicity (Chen et al., 2008; Force and Kerkelä, 2008;
Force and Kolaja, 2011).

Despite the risk of cardiotoxicity, TKIs are still one of the
highly effective and favored cancer therapeutics on the market
(Eschenhagen et al., 2011; Force and Kolaja, 2011). The success
of drugs such as trastuzumab and imatinib, a small molecule
inhibitor used to treat chronic myeloid leukemia (CML), has
inspired the development of additional TKIs. As of April,
2015, 25 small molecule TKIs have entered the market (Shah
and Morganroth, 2015), with many more under development
(Bellinger et al., 2015). Given the booming research in the
development of TKIs, it would be beneficial to develop a
systematic strategy to: (1) evaluate and predict how new TKIs
will affect signaling networks in cardiomyocytes; and (2) identify
interventions that can reverse and/or mitigate any associated
cardiotoxicity. These questions are well-suited to be addressed
using a quantitative systems pharmacology (QSP) approach
that combines large-scale measurements with mechanism-based
mathematical modeling. The diversity of TKI targets and the
complexity of cellular mechanisms responsible for cardiotoxicity
mean that two drugs with similar targets may operate through
different mechanisms, and the effects of two TKIs with different
targets may converge on a common pathway. Untangling this
type of complexity generally requires computational approaches
that are based on biological mechanisms. Therefore, our aims
in this Perspective are to review the progress that systems
approaches have made in predicting TKI-induced cardiotoxicity
and to offer suggestions for how mathematical modeling can be
applied to elucidate mechanisms and predict potential adverse
events caused by new drugs.

TYROSINE KINASE SIGNALING IN
CANCER AND STRATEGIES UNDERLYING
TKIs

The canonical roles of tyrosine kinases are found in mitogenesis
and related processes such as differentiation, metabolism, and

migration. Constitutive activation of tyrosine kinase (TK)
signaling, via either gain-of-function (GOF) mutations or
overexpression due to gene amplification, is found in about
70% of malignancies (Blume-Jensen and Hunter, 2001; Chen
et al., 2008). Well-understood examples include overexpression
of ERBB2 in HER2+ breast cancer (Force et al., 2007) and the
constitutively active oncogenic fusion protein BCR-ABL, which
can cause CML (Force et al., 2007; Chen et al., 2008; Force
and Kolaja, 2011). This dependency of tumor formation and
proliferation on TK signaling led to the rise of TKIs as promising
anti-cancer therapeutics.

Currently, there are two chemical classes of TKIs: (1)
humanized monoclonal antibodies (mAbs) and (2) small
molecule inhibitors (Force et al., 2007; Chen et al., 2008;
Force and Kolaja, 2011). Small molecule TKIs can be further
subcategorized based on whether they compete with ATP for
the binding pocket or interact with other regions of the protein
(Force and Kolaja, 2011). Additionally, TKIs are often identified
by the intended target(s) or the target specificity (Force et al.,
2007; Bellinger et al., 2015; Gharwan and Groninger, 2015). The
most common target groups that are used to classify TKIs include
EGFR/ERBB2 inhibitors, VEGFR inhibitors, ABL inhibitors, and
multi-targeted drugs that are designed to inhibit at least two
different target groups such as VEGFR and ABL (see Table 1

for descriptions of the important cellular signaling proteins
mentioned in the manuscript). Figure 1A shows the currently-
approved TKIs, grouped by the published targets, and indicates
how these classifications frequently overlap.

REPORTED SERIOUS CARDIAC SIDE
EFFECTS OF TKIs

The initial discovery of TKI-induced cardiotoxicity was made
during the groundbreaking clinical trials of trastuzumab, the
first such drug to be marketed (Seidman et al., 2002; De
Keulenaer et al., 2010). However, estimated cardiotoxicities of
3–7% with trastuzumab alone and 25% when the drug was
administered with an anthracycline (Slamon et al., 2001) were
only determined during a post hoc analysis. Similar retrospective
analyses have been performed to estimate that sunitinib causes
left ventricular dysfunction with an incidence of 4–11% (Yeh and
Bickford, 2009; Lenneman and Sawyer, 2016) and the VEGFR
inhibitor bevacizumab induces either cardiomyopathy or heart
failure in 1.5–3% of patients (Yeh and Bickford, 2009). These
examples demonstrate the difficulties associated with identifying
cardiotoxicity during drug development. Because clinical trials
are primarily focused on evaluating efficacy, they often lack
appropriate safety screening measures to identify side effects
(Force et al., 2007).

Overall, of the 30 TKIs currently marketed for use in
the United States, 26 list serious cardiac side effects as
a “black box warning” in their prescription information
(FDA and CDER, 2012; Boehringer Ingelheim International
GmbH, 2014; Gharwan and Groninger, 2015). The cardiac
related black box warnings of TKIs can be categorized
into: cardiomyopathy, arrhythmia, myocardial infarction,
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TABLE 1 | Biological signaling components potentially relevant to toxicity.

Common name Full name Description

EGF Epidermal growth factor Extracellular peptide that signals through autocrine and paracrine mechanisms

Neuregulin1 N/A Extracellular peptide that signals through autocrine and paracrine mechanisms

ERBB2/HER2 Human epidermal growth factor receptor 2 EGFR family receptor tyrosine kinase

ERBB1/EGFR Receptor for EGF EGFR family receptor tyrosine kinase

VEGF Vascular endothelial-derived growth factor Extracellular peptide that signals through autocrine and paracrine mechanisms

VEGFR Receptor for VEGF Receptor tyrosine kinase

PDGF Platelet-derived growth factor Extracellular peptide that signals through autocrine and paracrine mechanisms

PDGFR Receptor for PDGF Receptor tyrosine kinase

ABL1 Abelson murine leukemia viral oncogene homolog 1 cytoplasmic tyrosine kinase

BCR-ABL Fusion protein of ABL1 and Breakpoint cluster region protein (BCR) cytoplasmic fusion tyrosine kinase

Raf-1/c-Raf N/A cytoplasmic serine/threonine kinase

ERK Extracellular signal-related kinase cytoplasmic serine/threonine kinase

JNK c-Jun N-terminal kinase cytoplasmic serine/threonine kinase

PI3K Phosphatidylinositide 3-kinase cytoplasmic lipid kinase

Akt/PKB Also known as Protein Kinase B cytoplasmic serine/threonine kinase

Src/c-Src N/A cytoplasmic tyrosine kinase

AMPK AMP-activated protein kinase cytoplasmic serine/threonine kinase

hypertension, and pericardial effusion, based on the specific
potential adverse events listed in the package insert. In
Figure 1B, which indicates both the adverse events and the
target class for each TKI, we observe no obvious association
between the intended primary target, and the reported cardiac
risks.

MECHANISMS UNDERLYING
CARDIOTOXICITY CAUSED BY TKIs

The initial discovery of TKI-induced cardiotoxicity was met with
surprise due to the fact that cardiomyocytes are non-dividing
and terminally differentiated (Force et al., 2007). Since TKs were
mostly known for their role in proliferation and their association
with cancer, these kinases were not expected to have any essential
role in cardiomyocytes, and toxicity in heart was not anticipated
(Chen et al., 2008; Bellinger et al., 2015). The discovery of TKI-
induced cardiotoxicity, therefore, became a driving force for
uncovering the roles of tyrosine kinases in heart. The research
spurred by these adverse events has allowed us to appreciate that
many of the pathways responsible for proliferation in malignant
cells also play important roles in cardiomyocytes in: (1) survival
signaling; (2) mitochondrial and sarcoplasmic reticulum (SR)
homeostasis; and (3) electrical and contractile function.

Survival Signaling
The role of tyrosine kinases in cardiomyocyte survival signaling
was first discovered through the on-target cardiotoxicity caused
by trastuzumab. Before the cardiotoxicity reports, expression
of trastuzumab’s target, ERBB2, was reported to be low
in cardiomyocytes, and this receptor’s role was unknown
(Bellinger et al., 2015). However, subsequent studies have
discovered that ERBB2 plays an important role in maintaining

cardiomyocyte health, evidenced by the spontaneous dilated
cardiomyopathy that results from ERBB2 knockout (Crone et al.,
2002; De Keulenaer et al., 2010). More specifically, ERBB2 in
cardiomyocytes has been shown to serve as a co-receptor in a
critical cardiomyocyte survival pathway initiated by neuregulin-
1 (Mellor et al., 2011; Bellinger et al., 2015). Neuregulin-1, a
paracrine factor secreted by cardiac endothelial cells, activates
mitogenic pathways through ERBB2 heterodimer formation with
other members of the EGFR family, ERBB3 or ERBB4 (Chen
et al., 2008; De Keulenaer et al., 2010).

Similarly, another EGFR family member, ERBB1, has
also been implicated in cardioprotection and myocyte
survival (Mellor et al., 2011; Bellinger et al., 2015), including
cardiomyocyte defenses against the deleterious consequences
caused by excessive β-adrenergic receptor stimulation (Chen
et al., 2008). This role was based on the finding that an
ERBB1 inhibitor, erlotinib, exacerbates isoproterenol-induced
myocardial injury (Chen et al., 2008). Erlotinib is associated with
cardiotoxicity, including cardiac arrhythmia and myocardial
infarction (Gharwan and Groninger, 2015). One of the
downstream pathways common to signaling through ERBB1
and ERBB2 is the lipid kinase PI3K, which in turn activates
the protein kinase Akt. The PI3K-Akt axis is critical in survival
signaling, and dysregulation of this pathway has been shown to
induce ischemic heart disease, hypertrophy, and heart failure
(Reichelt et al., 2017).

Raf-1, which belongs to the Raf family of serine/threonine
kinases, is another important component of pro-survival
signaling that has been linked to both inherited heart disease
(Dhandapany et al., 2014), and TKI-induced cardiotoxicity.
Specifically, Raf-1 has been identified as a critical component of
cardiotoxicity caused by sorafenib (Force et al., 2007; Chen et al.,
2008), a multi-target TKI used to treat renal and liver cancers.
The inhibition of Raf-1 by sorafenib is thought to block survival
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A B

FIGURE 1 | TKI targets and associated adverse events. (A) Euler diagram of tyrosine kinase inhibitors grouped based on the primary intended target(s). The three

major primary targets are EGFR/ERBB2 (8 TKIs), VEGFR (11 TKIs), and ABL (6 TKIs). The category “Other” comprises five relatively newer TKIs with primary targets in

different categories, such as vemurafenib (B-Raf). Out of 30 approved TKIs, 18 were identified as having intended targets in more than one category. (B) Black box

warnings associated with tyrosine kinase inhibitors are indicated, with closely-related toxicities grouped to ease visualization. Cardiomyopathy category includes:

“cardiac dysfunction,” “congestive heart failure,” “left ventricular dysfunction,” and “cardiomyopathy.” Arrhythmia includes: “prolonged QT interval,” “cardiac

bradyarrhythmia,” and “cardiac arrhythmia.” Pericardial effusion includes both “pericardial/pleural effusion,” and “cardiac tamponade.” Four approved drugs have no

cardiac-associated boxed warning (i.e., no serious cardiac adverse events listed in the drug’s package insert).

signaling through the protein kinase ERK, and concurrently
to disinhibit pro-apoptotic kinases. This dual action of pro-
survival signaling inhibition and apoptotic signaling activation
can culminate in cell death (Force et al., 2007).

Sarcoplasmic Reticulum and Mitochondrial
Homeostasis
In addition to pro-survival signaling, TKs are known to be
closely linked to processes that maintain the health and function
of cardiomyocytes through mitochondrial and SR homeostasis
(Force and Kolaja, 2011). Mitochondria are responsible for
matching the cellular supply of ATP with the energetic demand
whereas the SR functions to both modulate the quantity of Ca2+

released with each heartbeat and to control the processing of
many critical proteins.

When TKI-induced toxicity involves mitochondrial or SR
function, the processes seem to be closely linked. Specifically,
mitochondrial dysfunction resulting from TKI treatment can
lead to membrane permeabilization and the release of reactive
oxidative species to the cytoplasm. This oxidative stress can in
turn lead to SR dysfunction through both altered Ca2+ release
and the activation of signaling pathways that may ultimately lead
to apoptosis (Groenendyk et al., 2010).

Cardiotoxicity caused by imatinib, a multi-targeted ABL
inhibitor, has been proposed to follow this precise mechanism
(Kerkelä et al., 2006; Force et al., 2007; Mellor et al., 2011). The
on-target effect of imatinib has been linked to the disturbance
of SR homeostasis via inhibition of an ABL isoform that is

localized in the SR. This can eventually initiate apoptosis through
JNK activation. Consistent with this hypothesis, postmortem
histological examinations of patients treated with imatinib have
revealed dilated SR structures, and experiments in isolated
cardiomyocytes shown that imatinib can induce mitochondrial
membrane potential collapse (Kerkelä et al., 2006).

Another example of interference with SR and mitochondrial
homeostasis is cardiotoxicity caused by themulti-kinase inhibitor
sunitinib. Sunitinib has been reported to cause ATP depletion
in cardiomyocytes through an off-target effect involving AMP-
activated protein kinase, or AMPK (Force et al., 2007). The
unintentional inhibition of AMPK is thought to activate energy-
consuming processes, including protein translation and lipid
biosynthesis, which can deplete ATP. Given the tremendous
energetic demands of the contracting cardiomyocyte, the
improper activation of ATP-consuming processes can be highly
toxic (Dyck and Lopaschuk, 2006; Zhang et al., 2008).

Excitation and Contraction
TKI-induced cardiotoxicity can also manifest itself as altered
excitation or contraction of cardiac myocytes. These detrimental
effects can occur through: (1) direct or indirect modulation
of cardiac ionic currents, resulting in pro-arrhythmic electrical
activity (Chen et al., 2008; Ghatalia et al., 2015); or (2) structural
remodeling that leads to altered myocyte contraction.

TKIs can induce electrophysiological abnormalities directly,
via block of ion channels, or indirectly, by altered intracellular
signaling that leads to a decrease in K+ currents. Because K+
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currents repolarize the cell membrane during action potentials,
either direct or indirect reductions of K+ currents can prolong
electrocardiographic QT intervals and increase arrhythmia risk.
TKIs that are known to block the most relevant K+ channel
(Kv11.1), encoded by the gene traditionally known as hERG
(subsequently renamed KCNH2), include crizotinib, sunitinib,
and nilotinib. These drugs have been shown to block the
channel in vitro and to prolong action potentials in human
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-
CMs) (Doherty et al., 2013). Indirect reductions in K+ current
may possibly be mediated by Src, a tyrosine kinase that can
augment current carried by Kv11.1 (Schlichter et al., 2014). Thus,
dasatinib and bosutinib, which are dual inhibitors of ABL and Src,
can potentially cause reduced K+ current and QT prolongation
(Xu et al., 2009; Gharwan and Groninger, 2015).

Src may also be an important part of the mechanism by
which TKIs can induce cellular structural remodeling and
impaired contraction. In cardiomyocytes, Src is important for
both the organization of sarcomeres and the formation of focal
adhesions that connect adjacent cells (Kuramochi et al., 2006).
In mice, genetic studies have shown that spontaneous cardiac
chamber dilation and disorganization of myofibrils can result
from knocking out any of several enzymes in the Src pathway
(Peng et al., 2006). Thus, TKIs that inhibit Src may disrupt
cardiac contraction by interfering with Src’s role in maintaining
myocyte structure.

COMPLEXITIES OF TKI-INDUCED
CARDIOTOXICITY AND THE NEED FOR A
SYSTEMS APPROACH

From survival and homeostasis to contractile function, tyrosine
kinases perform a wide variety of important roles in the
health and function of cardiomyocytes. Although considerable
progress has been made to decipher the roles of individual
TKs, the breadth of the different mechanisms involved makes
it difficult to draw general conclusions about TKI-induced
cardiotoxicity. Moreover, even when some mechanistic details
have been uncovered, our understanding is primarily qualitative,
and biological mechanisms cannot usually be connected to
factors such as dosing and the physiological characteristics of
individual patients. Given the past success of TKIs as cancer
therapeutics and the drive to develop additional TKIs, it would
be beneficial to develop a systematic strategy to: (1) evaluate the
potential cardiotoxicity of new TKIs; (2) predict the mostly likely
mechanisms involved; and (3) suggest strategies for mitigating
and/or reversing toxicity. Systems approaches that perform large-
scale measurements and quantitatively compare responses to
multiple drugs are likely to be extremely useful for understanding
the common and distinct features of cardiotoxicity caused by
diverse TKIs.

A common approach in systems-level pharmacology studies
is to utilize a cell based, high-throughput drug screening assay.
Although cardiovascular pharmacology has traditionally not
been well-suited for high throughput studies, the development of
hiPSC-CMs has expanded the possibilities. For instance, a recent
study described the development of a comprehensive assay that

evaluated cellular effects of TKIs in hiPSC-CMs (Sharma et al.,
2017). Using hiPSC lines from 13 individuals, the investigators
examined how 21 FDA-approved small molecule TKIs affected
cell viability, contractility, and gene expression. By integrating the
results with literature-reported TKI serum levels in patients, the
authors developed a novel cardiac safety index for TKIs (Sharma
et al., 2017).

Although this study represents a significantmilestone in that it
integrates cutting edge technologies such as deep sequencing and
high-throughput imaging, room for improvement nonetheless
remains. Specifically, the experiments performed in this study
represent snapshots of cell state after TKI treatment, and the data
can therefore provide only limited insight into the dynamics of
toxicity development. Moreover, experiments performed using
individual drugs cannot predict how either a second drug or a
circulating hormone (e.g., adrenaline, angiotensin) might either
exacerbate or protect against cardiotoxicity. Although it is of
course possible to expand the assay to treat cells with drug pairs
and/or add relevant physiological stimuli, it is not clear a priori
which additional perturbations might be informative or relevant.
Finally, even when unambiguous results are seen in cellular high-
throughput assays, the mechanistic details often remain hidden.
It would therefore be helpful to couple such high-throughput
measurements with integrative computational analyses that can
potentially overcome these limitations.

MECHANISTIC MATHEMATICAL
MODELING TO IMPROVE TOXICITY
TESTING

One way to address the aforementioned limitations is to use
mathematical models that mechanistically describe biological
dynamics. When the processes simulated by these models
overlap with toxicity mechanisms, the simulations can be used
to generate testable predictions, to guide experimental studies,
and ultimately to make decisions about new drugs based on
a quantitative understanding of benefits and risks. In this
context, models that describe biological mechanisms through
differential equations are frequently referred to as QSP models
(Leil and Bertz, 2014; Gadkar et al., 2016). Although precise
definitions remain a matter of debate, QSP models are generally
distinguished from both purely empirical, statistical approaches
such as computing a risk score for a drug based on a series
of measurements (Kramer et al., 2013; Mistry et al., 2015),
and pharmacokinetic models that can predict the effects of
dosing on cardiotoxicity (van Hasselt et al., 2012) but generally
offer only limited mechanistic insight. Although QSP models
have been exploited to understand cardiotoxicity caused by
anthracyclines (de Oliveira et al., 2016), the application of QSP
to TKI-induced cardiotoxicity is still in its early stages. Given the
recent development of QSPmodeling, it is instructive to consider
examples in which mechanistic models have been successfully
applied to the study of adverse events, in particular drug-induced
liver injury (DILI) (Huang et al., 2013; Shoda et al., 2014; Yang
et al., 2015), and drug-induced arrhythmias (Moreno et al., 2011;
Sarkar and Sobie, 2011; Britton et al., 2013; Cummins et al., 2014;
Grandi and Maleckar, 2016; Yang et al., 2016). Specifically, we
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emphasize how mechanistic models can be integrated with large
in vitro data sets, as these studies may provide an important
blueprint for future research on cardiotoxicity caused by kinase
inhibitors.

An example of the success of QSP models for toxicity
applications can be found in the development of DILIsym R©, a
mathematical model and software package used for predicting
DILI. DILIsym R© comprises multiple sub-models describing
relevant biological processes involved in hepatotoxicity such as
drug distribution in the liver, bile acid homeostasis, reactive
metabolite generation and disposition, oxidative stress, immune
responses, and the hepatocyte life cycle (Woodhead et al.,
2017). The value of this approach was recently demonstrated
in studies that examined differences in hepatotoxicity between
acetaminophen and its less toxic isomer 3′-hydroxyacetnilide.
Although the former drug can cause toxicity across many species,
the latter has been shown to cause DILI in humans and rats,
but not in mice. Using the mechanistic DILIsym R© model, a
testable hypothesis was generated in which the amount of reactive
metabolite produced from each isomer was identified as an
important contributor to the observed species differences, and
this prediction was confirmed experimentally in a later study
(Kyriakides et al., 2016). In addition to the consortium that has
developed the DILIsym R© package, other groups have gained
important insight into DILI through mathematical modeling
(Smith et al., 2016; Blais et al., 2017; Thiel et al., 2017).

To understand and predict drug-induced arrhythmias, e.g.,
Torsades de Pointes (TdP), the Comprehensive in vitro
Proarrhythmia Assay (CiPA) initiative is highly relevant. This
effort, part of the FDA’s Critical Path Initiative, aims to improve
the accuracy and cost effectiveness of screening for TdP risk.
Whereas current in vitro methods for predicting TdP risk focus
almost exclusively on block of Kv11.1 (i.e., the hERG channel), an
approach that is often inadequate, CiPA intends to both assess
how drugs block multiple ion channels and to combine these
measurements with recordings in hiPSC-CMs and mechanistic
simulations (Sager et al., 2014; Fermini et al., 2016). A couple
of recently-published studies highlight the value that is gained
by utilizing QSP models. Lancaster and Sobie, for example, used
models of human ventricular myocytes to simulate physiological
changes caused by 67 unique drugs, some that are known to
cause TdP, and others that are apparently safe. In addition to
providing a classificationmodel that was superior to Kv11.1 block
alone, the simulations provided testable predictions about the
most informative assays to perform in cellular experiments and
the specific ion transport pathways that, when affected by a drug,
may contribute to TdP risk (Lancaster and Sobie, 2016). More
recently, Li et al. showed that incorporating the kinetics of Kv11.1
block into simulations provides superior identification of TdP
risk than simply considering steady-state block measurements
(i.e., an IC50-value), and the study suggested an experimental
protocol for measuring drug block kinetics (Li et al., 2017).

The examples of both DILI and drug-induced TdP
demonstrate the value that can be added when mechanistic
modeling is used to address toxicity. The simulations can
uncover the reasons for counterintuitive results, such as drugs
that block Kv11.1 but are nonetheless safe (Kramer et al., 2013;
Lancaster and Sobie, 2016; Li et al., 2017), or drugs that only

cause hepatotoxicity in some species (Kyriakides et al., 2016;
Smith et al., 2016; Blais et al., 2017; Thiel et al., 2017; Woodhead
et al., 2017). The simulations can also suggest the prioritization
of experiments that are most likely to provide additional insight.

INITIAL EFFORTS TO USE QSP
APPROACHES TO UNDERSTAND
TKI-INDUCED CARDIOTOXICITY

TKI-induced cardiotoxicity is a problem that seems well-suited to
a QSP approach because tyrosine kinase signaling encompasses
large, complex networks with numerous feedback loops, and
understanding how a drug alters TK cascades is therefore
extremely complicated. Although mechanistic modeling to
predict TKI-induced cardiotoxicity is much less well-developed
than for DILI or TdP, efforts that may yield breakthroughs in the
next few years are currently underway.

As noted above, an important recent study by Sharma et al.
(2017) derived a “toxicity index” by examining effects of TKIs
in hiPSC-CMs through several assays. Although the large-scale
nature of this study justifies the “systems” label, and the toxicity
index is a quantitative risk score, it’s important to emphasize
that QSP modeling, which can provide mechanistic insight and
actionable predictions, is complementary to a high-throughput,
data-driven strategy such as that used in this study (Sharma et al.,
2017).

Another notable recent effort is a study by Shin et al. (2014).
These investigators combined experimental measurements with
simulations to uncover mechanisms by which high and sustained
doses of the β-adrenergic receptor agonist isoproterenol could
increase myocyte susceptibility to apoptosis (Shin et al., 2014).
This study is an important example of how simulations often
generate novel experimentally-testable predictions, and the work
can potentially be extended to examine TKI-induced toxicity.

To fill current gaps in knowledge and obtain new mechanistic
insight, the Drug Toxicity Signature Generation (DToxS) Center
at Mount Sinai has initiated a large-scale project to advance
cellular assays and computational approaches that can improve
our understanding of TKI-induced cardiotoxicity. One aspect
of this project involves employing QSP models that describe
biological processes potentially involved in this cardiotoxicity.
We outline here an approach by which whole transcriptome
expression assays can be integrated with mechanistic models
to classify drugs and generate novel, experimentally-testable
predictions.

For this part of the analysis, the project has designed
a standard experimental protocol (DtoxS—Drug Toxicity
Signature Generation Center—SOP, https://martip03.u.hpc.
mssm.edu/sop.php) that captures early effects of drugs,
as reflected in gene expression changes. The experiments
treat cultured cardiomyocyte-derived cells with potentially
cardiotoxic TKIs as well as drugs from different classes that
are presumably safe. After 48 h, mRNA is harvested, and
sequencing is performed to quantify drug-induced changes in
gene expression (compared with vehicle-treated controls). Data
are released at the DToxS website and can be freely-downloaded
(DtoxS—Drug Toxicity Signature Generation Center—Data
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A B C D

E F

FIGURE 2 | Computational pipeline for integrating gene expression data with QSP models to enable understanding of TKI-induced cardiotoxicity. The pipeline starts

with (A) mRNAseq data generated from drug treated cells. Using the mRNAseq data, parameters in the QSP model are altered to reflect changes in cell state after

48 h of drug treatment. Specifically, parameters describing maximal activity of model species are scaled based on the changes in gene expression (drug-treated vs.

untreated cells). (B) The QSP model (Ryall et al., 2012) is composed of ordinary differential equations (ODEs) that describe activation and inactivation of cellular

signaling dynamics. Simulations are performed to predict how drug-induced changes in gene expression will influence both basal signaling activity and how cells

respond to stimuli. For instance, example simulation results in (C) show BNP activity, before, and after stimulation with isoproterenol (a β-adrenergic receptor agonist),

in both untreated cells, and cells that have been exposed to two different TKIs for 48 h. These time course simulations predict drug-specific changes, such as an

increase in BNP signaling after nilotinib treatment (top) compared with a decrease after dasatinib treatment (bottom). From these time courses, summary statistics (D)

are collected from steady-state levels of BNP under two conditions (À basal activity and Á stimulus). (E) Using this pipeline, steady state changes in seven model

outputs were computed and summed to generate a metric that we termed the “hypertrophy index.” This provides a summary statistic of the overall hypertrophic risk of

a drug under different conditions (e.g., basal activity, left, and isoproterenol stimulation, right). (F) Hypertrophy indices computed, under three different conditions, from

data obtained in a single cell line after treatment with 24 TKIs, and six non-TKIs (control drugs that are presumed to not cause cardiotoxicity). Each circle represents an

individual drug, the line indicates the mean value for each group under basal activity (left), isoproterenol stimulation (middle), and endothelin-1 stimulation (right).

& Resources, https://martip03.u.hpc.mssm.edu/data.php). The
pipeline for integrating these released data with mechanistic
mathematical models is shown in Figure 2, top. Changes in
mRNA levels in drug treated cells (Figure 2A) can be translated
into parameter alterations in models that describe processes
potentially relevant to the toxicity (Figure 2B), and simulations
are then performed with these models. This workflow assumes
that before overt toxicity is induced, drugs can alter the cellular
state in relatively subtle ways. Mechanistic simulations may then
allow one to predict how this drug-induced altered cellular state
influences the response to various physiological stimuli.

For example, results shown here are obtained with a
QSP model that describes signaling events relevant to cardiac
hypertrophy through a system of 106 ordinary differential
equations, each one describing activity of a signaling component
(Ryall et al., 2012). This model was chosen for initial simulations
because the progression to heart failure due to pathological

remodeling often includes a transient induction of hypertrophy.
In addition, many known TKI targets (e.g., ERBB2, Raf-1) and
critical nodes in cardiac survival signaling (e.g., PI3K, Akt,
and ERK) are included. Using this model, simulations were
performed to predict how drug-induced network alterations
affected 7 hypertrophy biomarkers (the model’s “outputs”),
under conditions meant to simulate a variety of physiological
or pharmacological stimuli (e.g., stretch, angiotensin, EGF,
phenylephrine). For instance, time courses in Figure 2C show
simulated normalized levels of Brain Natriuretic Peptide (BNP)
under six conditions: before and after isoproterenol stimulation,
and in three groups of cells: untreated (control), nilotinib-treated,
and dasatinib-treated. BNP is an appropriate output to consider
because it is both measured in patients with hypertrophy and
heart failure and has been shown to be relevant for drug-induced
cardiotoxicity (Nousiainen et al., 2002; Sandri et al., 2005;
Skovgaard et al., 2014).
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These example simulation results, summarized in Figure 2D,
suggest that nilotinib leads to increases in BNP, both before
and after isoproterenol, whereas dasatinib may reduce the
upregulation of BNP that isoproterenol normally causes. The
hypertrophy index, a summary statistic, condenses results
by summing drug-induced changes across seven biomarkers
in response to different stimuli applied in the model. The
hypertrophy index confirms the impression from the simulated
time courses, namely a pro-hypertrophic response to nilotinib
contrasted with a slight anti-hypertrophic response to dasatinib
(Figure 2E).

By simulating responses to stimuli, using gene expression
changes induced by all drugs, patterns begin to emerge.
Specifically, in myocytes that are not exposed to a physiological
stimulus, TKIs and non-TKIs cause similar changes in
hypertrophy biomarkers (Figure 2F). However, simulations
predict that when TKI-treated myocytes are also exposed
to isoproterenol or endothelin-1, agonists that are used
experimentally to induce hypertrophy (Ichikawa et al., 1996;
Yamazaki et al., 1996; Shohet et al., 2004; Ryall et al., 2012),
the pro-hypertrophic response is exaggerated compared with
non-TKI-treated cells.

These preliminary simulation results indicate the potential
strengths of combining large scale measurements with
mechanism-based mathematical models. First the simulations
do not simply describe existing data—they can predict how
drug-treated cells will respond to an additional stimulus that
has not yet been applied experimentally. These predictions
can be subsequently tested. Second, the simulation approach
does not merely generate qualitative predictions; because the
quantitative models predict that some drugs and/or stimuli
may cause large effects whereas others cause only minor effects,
this provides a means to prioritize experimental tests and use
resources efficiently. Third, when clear differences are observed,
for instance between individual drugs or between drug classes,
the simulations predict the mechanisms responsible for the
differences.

FUTURE DIRECTIONS

Although the preliminary simulation results shown here are
encouraging, they also hint at the future research that must be
performed to fully realize the potential of this approach. First,
although the simulations predict how drug-induced changes
in gene expression may influence both baseline signaling and
cellular responses to stimuli, they do not describe direct
inhibition of kinase activity by drugs, which is of course the
more traditional and straightforward method for simulating
drug effects. We excluded these effects from initial simulations
because many TKI targets are not included in the model, but
future work will expand the model by systematically adding drug
targets based on published protein-protein interaction databases
(Warde-Farley et al., 2010) and large-scale kinase inhibition
assays (Anastassiadis et al., 2011; Davis et al., 2011). For such
work, a promising way to expand the model will be to use large-
scale, data-driven network identification algorithms (Thiagarajan
et al., 2017) that can provide an unbiased approach for identifying
potential off-targets.

A second important extension of the work will be to
simulate additional biological processes potentially involved in
cardiotoxicity. For instance, cell death via apoptosis, which
may be important in the development of toxicity caused
by some TKIs, has been described mathematically by many
previous models (Schleich and Lavrik, 2013; Shin et al.,
2014). Once these are tuned to reflect apoptotic signaling
in cardiac myocytes, the models can be integrated with the
experimental gene expression data to generate novel predictions.
Similarly, models describing mitochondrial function, including
the production of reactive oxygen species (Aon and Cortassa,
2012; Bazil et al., 2016; Wacquier et al., 2016), and the
coupling of electrical excitation, and contractile function
(Rice et al., 2008; Tewari et al., 2016), are also likely
to be relevant. Finally, once a number of QSP models,
describing additional processes, have been added, further
secondary analyses can be performed. These include sensitivity
analysis to identify the most important nodes in each model
(Sobie, 2009), systematic simulations to potential targets for
toxicity mitigation or reversal, and effects of combination
therapy.

CONCLUSIONS

Here, we have discussed contemporary challenges in
understanding TKI-induced cardiotoxicity and have illustrated
how a QSP approach can be used to address unresolved
questions and improve understanding. Previous successes
of QSP in illuminating and predicting other forms of drug
toxicity, including hepatotoxicity and drug-induced arrhythmia,
demonstrate its potential utility for other drug toxicities. The
initial results presented here show how mechanistic models can
be integrated with “omics” measurements such as mRNA-seq,
generating simulations that can suggest underlying mechanisms
and help in prioritizing costly experiments. In the coming years,
future work along these lines can be used to develop strategies
to mitigate or reverse TKI-induced cardiotoxicity, thereby
contributing to the development of therapeutic regimens that are
both effective and safe.
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