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Aim: The aim of this paper was to determine whether; (1) patella tendon stiffness, (2)
the magnitude of vastus lateralis fascicle lengthening, and (3) eccentric torque correlate
with markers of exercise induced muscle damage.

Method: Combining dynamometry and ultrasonography, patella tendon properties and
vastus lateralis architectural properties were measured pre and during the first of six
sets of 12 maximal voluntary eccentric knee extensions. Maximal isometric torque loss
and creatine kinase activity were measured pre-damage (—48 h), 48, 96, and 168 h
post-damage as markers of exercise-induced muscle damage.

Results: A significant increase in creatine kinase (883 4+ 667 UL) and a significant
reduction in maximal isometric torque loss (21%) was reported post-eccentric
contractions. Change in creatine kinase from pre to peak significantly correlated with
the relative change in vastus lateralis fascicle length during eccentric contractions
(r=0.53, p = 0.02) and with eccentric torque (r = 0.50, p = 0.02). Additionally, creatine
kinase tended to correlate with estimated patella tendon lengthening during eccentric
contractions (p < 0.10). However, creatine kinase did not correlate with resting measures
of patella tendon properties or vastus lateralis properties. Similarly, torque loss did not
correlate with any patella tendon or vastus lateralis properties at rest or during eccentric
contractions.

Conclusion: The current study demonstrates that the extent of fascicle strain during
eccentric contractions correlates with the magnitude of the creatine kinase response.
Although at rest, there is no relationship between patella tendon properties and markers
of muscle damage; during eccentric contractions however, the patella tendon may play
a role in the creatine kinase response following EIMD.

Keywords: creatine kinase, exercise-induced muscle damage, fascicle strain, maximal isometric torque loss,
tendon stiffness

Abbreviations: ANOVA, Analysis of variance; CK, Creatine kinase; EMG, Electromyography; EIMD, Exercise-induced
muscle damage; MVEgg, Maximal voluntary eccentric knee extensions; MVCgg, Maximal voluntary isometric knee extension;
MVCkp, Maximal voluntary isometric knee flexions; OCP, Oral contraceptive pill; ACKpeak, The increase from pre to peak
CK over the 168 h; VL, Vastus lateralis; VLacsa, Vastus lateralis anatomical cross-sectional area.
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INTRODUCTION

Although it is well accepted that unaccustomed eccentric exercise
results in functional and cytoskeletal impairments, referred to
as exercise-induced muscle damage (EIMD), the mechanical
determinants, which govern the severity of EIMD still remains
unclear. Previously, the differences in EIMD have been attributed
to fascicle strain (Lieber and Friden, 1993; Penailillo et al.,
2015; Guilhem et al., 2016), eccentric force (Warren et al., 1993;
Chapman et al, 2008), the elastic properties of the tendon
(although not confirmed experimentally) (Marginson et al.,
2005; Guilhem et al., 2016) and, in women, circulating estrogen
levels (Carter et al., 2001). At present, these aforementioned
determinants have predominately been identified using various
in situ and in vitro conditions, with limited studies investigating
the determinants in vivo (Chapman et al., 2008; Penailillo et al.,
2013; Hoftman et al, 2014; Guilhem et al., 2016). Although
integral to the understanding of EIMD, in vitro experiments
do not include the in series elastic components of the muscle,
often involve single fibers and induce eccentric strains beyond
the physiological range (Butterfield, 2010). Further insight into
the mechanical processes resulting in EIMD in vivo is critical for
health and sport practitioners to understand the metabolic and
structural response to eccentric exercise programs.

Recently, the tendon has been reported to play an important
role during eccentric contractions in vivo and has been shown
to reduce fascicle lengthening (Hicks et al., 2013; Hoffman et al.,
2014) and mediate peak force, peak torque and fascicle velocity
in situ (Roberts and Azizi, 2010). Therefore, in accordance with
Morgan’s (1990) popping sarcomere theory, by attenuating the
degree of fascicle lengthening, the tendon may limit EIMD
(Hoffman et al., 2014). Although previously, Hicks et al. (2016)
reported no significant correlation between resting patella tendon
stiffness and the CK response, the role of tendon stiffness
on functional markers of EIMD, such as torque loss, remains
unknown. Interestingly, Guilhem et al. (2016) proposed that
a more compliant Achilles tendon resulted in shorter fascicle
lengthening and subsequently less damage. A conclusion could
not be drawn however, as their experimental design did not
manipulate tendon stiffness, and pooled male and female
participants, the tendon properties of which are known to differ
significantly (Kubo et al., 2003; Onambélé et al., 2007; Hicks
et al,, 2013). Therefore, to investigate whether tendon stiffness
correlates with markers of EIMD, a range of tendon stiffness’s
need to be investigated whilst controlling for confounding
variables such as sex.

Following the recent insight into the interaction between the
patella tendon and fascicle lengthening during eccentric muscle
contractions in vivo (Hicks et al., 2013), fascicle lengthening has
been investigated as a crucial determinant of EIMD (Hoffman
et al., 2014; Peqailillo et al., 2015; Guilhem et al., 2016). The
majority of these studies however, have been conducted using
submaximal, multi-joint exercise (Hoffman et al., 2014; Penailillo
et al., 2015). Multi-joint movements associated with submaximal
exercise may have obscured the role of fascicle lengthening
on EIMD. During single joint, maximal eccentric contractions
of the plantar flexors in vivo, Guilhem et al. (2016) reported

that maximal fascicle length was correlated with torque loss
and the delayed onset of muscle soreness post EIMD. The
relative contribution of fascicle lengthening to total muscle-
tendon lengthening during eccentric contractions however, is
significantly lower in the plantar flexors (51%, Guilhem et al,,
2016) compared to the VL (89%, Hicks et al., 2013). Therefore,
to further our understanding of the relationship between
fascicle lengthening and EIMD, a muscle group with a higher
contribution of fascicle lengthening to total muscle-tendon unit
lengthening needs investigating.

In addition to high strain (fascicle lengthening), the
production of high torque is another characteristic of eccentric
contractions which has been investigated as a determinant of
EIMD (Lieber and Friden, 1993; Warren et al., 1993; Chapman
et al., 2008; Guilhem et al., 2016). Within the elbow flexors and
plantar flexors both Chapman et al. (2008) and Guilhem et al.
(2016) (respectively) reported no correlation between eccentric
torque and markers of EIMD. Interestingly, within the plantar
flexors, Guilhem et al. (2016) reported a signficant correlation
between negative work performed (fascicle lengthening x
eccentric torque) and torque loss, thus providing tangible
evidence that eccentric torque may contribute to EIMD. The
average eccentric torque reported by Guilhem et al. (2016) (100
N-m) however, is substantially lower than the average eccentric
torque reported within the VL (255 N-m, Hicks et al., 2016).
Therefore, futher investigation into a larger muscle group is
required to gain a greater insight into the potential determinants
of EIMD.

Although fascicle lengthening and eccentric torque have all
been investigated as potential determinants of EIMD in muscle-
tendon complexes (Hoffman et al., 2014; Penailillo et al., 2015;
Guilhem et al., 2016), the mechanical processes which predispose
the degree of EIMD, specifically within the VL, remains unclear.
Furthermore, due to limited research, the relationship between
patella tendon properties and indirect markers of EIMD remains
unknown. Therefore, the aim of this paper was to determine
whether (1) patella tendon stiffness, (2) the amount of VL
fascicle lengthening (strain) and (3) eccentric torque correlate with
markers of EIMD.

MATERIALS AND METHOD

Subjects

Sixteen males (21.1 4 1.6 years of age, 72.0 & 7.5kg and
176 + 6 cm) signed written informed consent to participate in
this study. All participants self-reported as being recreationally
active (undertaking no more than 1 h of “moderate” physical
activity per week) and did not take part in any structured
resistance training. All procedures complied with the Declaration
of Helsinki and ethical approval was obtained through the Ethics
Committee of Manchester Metropolitan University. Exclusion
criteria included any resistance training in the last 6 months,
occupation or lifestyle that required regular heavy lifting or
carrying, any known muscle disorder, the use of dietary
supplements (i.e. vitamin E), and any musculoskeletal injury
in the last 3 months. All inclusion and exclusion criteria were
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determined via a questionnaire prior to inclusion within this
study.

Testing Protocol

Once selected, participants were asked to visit the laboratory
on five different occasions over a period of 9 days. Although
different participants have been used, the design and several
of the measurement techniques within the current study
have been reported previously (Hicks et al, 2013, 2016).
The sessions were as follows: (1) pre-damage (48 h prior to
damage) (2) damage and (3) 48 h, (4) 96 h, and (5) 168 h
post-damage. Pre-damage assessments consisted of mass and
stature (anthropometric measures), 5-6 ml blood sample, patella
tendon moment arm, isokinetic-dynamometer familiarization,
morphological and mechanical measures of the patella tendon
(tendon size and stiffness), VL anatomical cross-sectional area
(VLacsa) and resting architecture, and two maximal isometric
voluntary knee extension torque (MVCgg) measurements at 60,
65, 70, 75, 80 and 90°. Participants performed two practice
MVCkg, at 60° and 70° during the familiarization session.
Mass and stature were measured using digital scales (Seca
model 873, Seca, Germany) and a wall mounted stadiometer
(Harpenden, Holtain Crymych, UK) respectively. The damage
session consisted of eccentric exercise during which the degree
of fascicle lengthening was measured using ultrasound, a 5-6 mL
venous blood sample and MVCkg, torque measurements. 48, 96,
and 168 h session consisted of 5-6 mL blood sample and MVCgg
torque measurements.

All tests were carried out on the self-reported non-dominant
leg, which was defined as the leg that provided stability
during movements which require balance e.g., kicking a ball.
Participants were seated, with a hip angle of 85°, in an
isokinetic-dynamometer (Cybex Norm, Cybex International, N,
USA). Participants were secured in a seated position using
inextensible straps around the hips and shoulders. The isokinetic-
dynamometer axis of rotation was visually aligned with the knee
joint’s center of rotation. The isokinetic-dynamometer settings,
including the anatomical zero, were recorded during pre-damage
and replicated in the following sessions.

Vastus Lateralis Anatomical

Cross-Sectional Area

Using a real-time B-mode ultrasound (AU5 Harmonic, Esaote
Biomedica, Genoa, Italy) VLacsa was measured. To identify 50%
of VL length, the participant laid supine with their leg fully
extended (knee angle 0°), the proximal and distal insertions sites
of the VL were identified using an ultrasound probe (7.5 MHz
linear array probe, 38 mm wide). At 50% VL length, the medial
and lateral border of the VL were identified using the ultrasound.
Using a fabric tape measure, axial sections were marked using
echo absorptive markers every 30 mm from the medial border
to the lateral border of the VL. Using the osseous surface as
an alignment guide, the ultrasound probe was orientated in the
axial-plane, perpendicular to the VL muscle, and steadily moved
over the echo-absorptive markers from the medial to the lateral
edge of the VL. Minimal pressure was applied to the ultrasound
probe to avoid compression of the muscle. The images were

recorded in real time at 25 frames per second (Adobe Premier pro
Version 6, Adobe Systems Software, Ireland). Using capturing
software (Adobe Premier Elements, version 10), individual
images were acquired at each 30 mm interval. Shadows cast by
the echo-absorptive markers allowed the images to be aligned by
the outline of the muscle, thus forming the entire VLacsa in a
single image (Adobe Photoshop Elements, version 10). Digitizing
software (Image] 1.45, National Institutes of Health, USA) was
used to measure VLacsa. This method of calculating VLacsa has
previously been accepted as reliable and valid when compared
to MRI, with a reported interclass correlation between 0.998 and
0.999 and a coefficient of variation of 2.1% (Reeves et al., 2004).

Patella Tendon Length and

Cross-Sectional Area

A real-time B-mode ultrasound (AU5 Harmonic, Esaote
Biomedica, Genoa, Italy) was used to measure patella tendon
cross-sectional area and patella length at a fixed 90° knee angle.
The distance between the apex of the patella and the tibial
tuberosity, marked using sagittal ultrasound images, was taken
as patella tendon length. With the ultrasound probe orientated
in the transverse plane images were captured at 25, 50, and
75% of patella length to measure patella tendon cross-sectional
area. Using image analysis software, the ultrasound images were
later analyzed offline (Image] 1.45, National Institutes of Health,
USA). High reliability for measuring patella tendon length and
patella tendon cross-sectional area was reported within the
current study (CV 0.69 and 3.50% respectively).

Patella Tendon Stiffness

The method for measuring patella tendon stiffness has been
detailed previously (Hicks et al., 2013, 2016). In brief, the
participants were seated in the isokinetic dynamometer, with
the knee angle fixed at 90°, and were instructed to perform
a ramped, isometric MVCgg lasting ~5-6 s. Ultrasound
images of the patella tendon and ramped MVCkg torque were
synchronized using a 10-V square wave signal generator. Ramped
MVCxkg torque was presented on a Macintosh G4 computer
(Apple Computer, Cupertino, CA, USA), via an A/D converter
and subsequently analyzed with the accompanying software
(Acknowledge, Biopac Systems, Santa Barbara, CA). Patella
tendon displacement was measured over two ramped MVCkg,
once with the probe at the distal edge of the patella and the
second with the probe over the tibial tuberosity (Onambélé
et al., 2007). Total patella tendon displacement was calculated as
displacement at the apex of the patella plus the displacement at
the tibial tuberosity (Onambélé et al., 2007). An echo-absorptive
marker was placed on the skin perpendicular to the patella
tendon. The marker cast a shadow on the ultrasound image
delineating the position of the skin and deep tissue. The shadow
acts as a fixed reference point from which, the distance from
an anatomical reference point at the start of the contraction
to the end of the contraction can be measured as tendon
elongation. Ultrasound images were captured, and total patella
tendon displacement was measured at ~10% intervals of the
ramped MVCkg torque output (Onambélé et al., 2007). Patella
tendon forces were calculated as: (MVCkg torque + antagonist
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co-activation torque) / patella tendon moment arm. The methods
used to measure patella tendon moment arm and antagonist co-
activation torque during MVCkg, are described in detail below.

The force—patella tendon elongation curve stemming from
data at every 10% of ramped MVCkg was then fitted with
a second-order polynomial function forced through zero
(Onambélé et al., 2007). The tangential slope at discreet
sections of the curve, relative to MVCkg force, was computed
by differentiating the curve at every 10% force intervals. To
standardize the comparison of tendon stiffness and Young’s
modulus at an absolute load, the slope of the tangential line,
corresponding to the MVCkg force of the weakest participant
(2,972 N-m), was computed for each subject.

Patella Tendon Moment Arm

Patella tendon moment arm was measured at 90° (full
extension = 0°) in the sagittal plane, from a dual-energy X-ray
absorptiometry scan (frame 23.3 x 13.7 cm, Hologic Discovery,
Vertec Scientific Ltd, UK), and subsequently analyzed using a
DICOM image assessment tool (OsiriX DICOM viewer, ver. 4.0,
Pixemo, Switzerland). Patella tendon moment arm length was
determined as the perpendicular distance from the center of the
patella tendon to the tibio-femoral contact point. Dual-energy X-
ray absorptiometry scans have been compared to MRI measures,
demonstrating consistent reliability and validity against this
standard (Erskine et al., 2014).

Antagonist Co-activation Torque

To determine co-activation during the ramped MVCkg,
electromyography (EMG) of the bicep femoris was measured.
Ultrasound, in the axial plane, was used to confirm that the
placement of two biopolar electrodes (Ambu, Neuroline 720,
Denmark) was in the mid-sagittal line at 25% of bicep femoris
muscle length (distal end = 0%). To reduce skin impedance
below 5,000 €2, the skin was shaved, gently abraded and cleansed
with an alcohol wipe prior to electrode placement. The electrodes
were placed in a bipolar configuration with a constant inter-
electrode distance of 20 mm. A reference electrode (Ambu, Blue
Sensor, Denmark) was placed on the lateral tibial condyle. The
raw EMG signal was amplified (x2000) and filtered (through
low and high band pass filters of 10 and 500 Hz respectively),
with a common mode rejection ratio of 110 dB (50 Hz) and
sampling frequency of 2,000 Hz. Participants performed two
maximal voluntary isometric knee flexions (MVCgp) at 90°.
The participants were instructed to perform the contractions
as rapidly and as forcefully as possible. The participants were
instructed to relax once a 2 s plateau on the dynamometer screen
had been observed. Ramped MVCkg torque and bicep femoris
EMG were recorded in real time and synchronized using a 10-
V square wave signal generator. The root mean square of the
bicep femoris EMG signal, was calculated 500 ms either side of
instantaneous MVCgr peak torque. The baseline signal noise was
calculated as the root mean square over 1 s and removed from
the measured electromyography during MVCgr and MVCgg. At
every 10% of ramped MVCkg, torque the root mean square of the
bicep femoris EMG was taken over 250 ms. Therefore, using the
aforementioned methods, knee flexor co-activation torque was

calculated as described by Onambélé et al. (2007);

BFrRMsMVCgg

KF Coactivation =

> - MVCkr Torque

Where, BFrps = root mean square of the bicep femoris EMG,
MVCkg = maximal isometric voluntary knee extension torque,
MVCkr = maximal isometric voluntary knee flexion torque.

It must be noted that several assumptions have been made for
the calculation of co-activation. Firstly, it has been assumed that
the bicep femoris is representative of the entire hamstring muscle
group (Carolan and Cafarelli, 1992) and secondly, in accordance
with previous literature (Lippold, 1952), it is assumed that
the relationship between bicep femoris electromyography and
MVCkgr torque is linear. Finally, inline with previous research
(Onambélé et al., 2007), hamstring co-activation torque was
calculated solely from the bicep femoris, which due to not
calculating semitendinosus and semimembranosus co-activation
torque, may result in an under represented total hamstring
co-activation.

Patella Tendon Stress/Strain Relationship
Patella tendon stress was calculated by dividing patella tendon
force (N) by patella tendon cross-sectional area (mm?). Patella
tendon strain (%) was calculated as the ratio between total patella
tendon displacement to patella tendon length.

Young’s Modulus

Young’s modulus was calculated by dividing patella tendon
length (mm) by patella tendon cross-sectional area (mm?), then
multiplying the answer by patella tendon stiffness.

Maximal Isometric Voluntary Knee

Extensor Torque Measurements

At six different knee angles (60, 65, 70, 75, 80, and 90° (full
extension = 0°)) participants were instructed to perform two
MVCkg lasting ~2 s with 90 s rest between contractions. Torque
was presented, in real time, on a Macintosh G4 computer (Apple
Computer, Cupertino, CA, USA), via an A/D converter (Biopac
Systems, Santa Barbara, CA). Torque measurements were later
analyzed offline with the accompanying software (Acknowledge,
version 3.9.2). The highest torque produced at each angle was
taken as MVCkg peak torque. During pre-damage the angle at
which the highest MVCkg, torque was produced was recorded as
optimal knee angle. To calculate loss of MVCkg, torque following
eccentric exercise, MVCkg were repeated at the knee angle
determined as optimal during pre-damage, 1-h post eccentric
exercise (to reduce any fatigue effect) and 48, 96, and 168 h post
eccentric exercise.

“Damaging” Eccentric Exercise

Prior to eccentric exercise, a warm-up of four isokinetic
concentric knee extensions and knee flexions were carried out,
ensuring a progressive increase in effort (with the last contraction
being maximal). For the eccentric exercise, the knee extension
range of motion was set at 20-90° (0° = full extension).
Participants performed 12 maximal eccentric voluntary knee
extensions (MVEgg) repetitions at 30°-s~1, for six sets. During
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the concentric phase the leg was passively returned to 20° at
an angular velocity of 60°s™!. Participants had to remain seated
during their 2 min rest between each set. Verbal encouragement
and visual feedback was continuously provided throughout the
protocol. MVEgg torque measurements were later analyzed
offline. For each set, peak MVEkg torque was determined as the
highest torque out of the 12 repetitions.

Change in Vastus Lateralis Fascicle Length

during the Eccentric Protocol

To measure VL fascicle length during MVEkg, the ultrasound
probe (7.5 MHz linear array probe, 38 mm wide) was held in
position by the experimenter at 50% of VL muscle length in the
mid-sagittal plane of the non-dominant leg. To provide a visual
reference point for the internal structures, an echo-absorptive
marker was fixed onto the skin at 50% of VL muscle length.
When measuring fascicle lengthening from 20° to 90° knee angle
during MVEkg, pilot data reported the probe to move a negligible
0.02 £ 0.05 cm proximally, and therefore was not considered
further in calculations for the present study. VL fascicle length
was determined as the linear distance along the fascicle as it ran
from the deep to the superficial aponeurosis. A hypo-allergenic
ultrasound gel (Parker, Park Laboratories Inc., Fairfield, UK) was
used to enhance acoustic coupling between the skin and the
ultrasound probe.

During the first set (out of six) of MVEgg contractions,
ultrasound images were recorded onto a PC, in real time, at 25
frames per second (Adobe Premier pro Version 6). Only the
first set was analyzed due to Guilhem et al. (2016) reporting no
significant effect of eccentric set number on fascicle lengthening.
A 10-V square wave signal generator was used to synchronize
the ultrasound images with the torque acquisition. Three MVEgg
contractions were chosen at random from the first set of
12 repetitions for architectural analysis. Using frame capture
software (Adobe Premier Elements, version 10) the ultrasound
image corresponding to every 10°, from 20° to 90° was acquired
for offline analysis. Movement of the shadow casted by the echo-
absorptive marker would act as an indicator that the probe
had moved during the MVEkg therefore if any movement was
observed, the contraction was discarded and another repetition
was chosen for analysis.

Using digitizing software (Image] 1.45, National Institutes of
Health, USA), VL fascicle length was analyzed offline at every
10°. Fascicle length was measured from the visible insertion of
the fiber from the deep into the superficial aponeurosis (Reeves
and Narici, 2003). Where the fascicle extended longer than
the ultrasound image (frame width 3.50 cm and height 4.15
cm), linear continuation of the fascicle and aponeurosis was
assumed. Within the VL, a 2-7% error is associated with the
linear extrapolation method when used to calculate VL fascicle
length (e.g., measured at 11.3 cm) at a knee angle of 120° (Finni
et al., 2003). Furthermore, using a 40 and 38 mm probe width
respectively, Guilhem et al. (2011) and Hicks et al. (2013) both
report high reliability when measuring VL fascicle lengthening
during MVEkg. In agreement with previous research, the current
study reported high reliability when measuring VL fascicle

lengthening during MVEgg (ICC 0.99 and CV 2.95%). In order
to reduce any error associated with the estimation of VL fascicle
length, an average of three fascicles across the image was
taken (Guilhem et al., 2011). Fascicle length during eccentric
contractions was measured at every 10° knee angle (range 20°-
90°, 0° = full extension) throughout the MVEkg. Change in
fascicle length is presented as fascicle length at a knee angle of
90° made relative to fascicle length measured at a knee angle of
20°; hereafter termed “relative fascicle lengthening” and reported
as a percentage change from starting length at 20°.

Vastus Lateralis Total Muscle-tendon Unit

Excursion

In order to estimate the total VL muscle-tendon unit elongation,
the tendon excursion method was adopted (Spoor et al., 1990);
whereby the patella tendon moment arm at 90° knee angle was
multiplied by the change in knee angle (70°, 1.22 rad) during the
MVEkg.

Blood Samples

To measure CK levels a 21-gauge needle was inserted into the
antecubital vein of the forearm, and 5-6 mL of blood was
drawn into a serum collection tube. The sample was allowed
to clot whilst on crushed ice for 60 min and then centrifuged
at 4,500 rpm at 0°C for 10 min. Using a 200-1,000 pl pipette
(Eppendorf, USA), the resulting serum sample was separated
into three aliquots (~500 pl each) and stored in Eppendorf tubes
at —20°C until later CK analysis. Creatine kinase activity was
measured using colorimetry at 340 nm optical density (BioTek
EL x 800 96 well Microplate Reader), with enzyme activity
calculations carried out using a generic software (Gen5, version
2.0). Each sample was run in duplicate using an EnzyChromTM
CK Assay Kit (BioAssay Systems, Hayward, CA, sensitivity 5 U/L,
intra-assay variability <5%, data from the manufacturer). An
average of the two readings was taken as the enzyme activity
at each experimental phase. Throughout this manuscript CK
activity is reported in two ways: absolute values and peak CK
above baseline values (i.e., the change from pre to peak CK over
the 168 h (ACKpeak))-

Statistics

The statistical software package SPSS (v.19, Chicago, IL) for
Windows and Microsoft Excel were used to run statistical
analysis. To check for parametricity, the Levene’s and Shapiro-
Wilk tests were used to assess the variance and normality of the
data respectively. A one way repeated measures ANOVA (time, 5
levels) was used for CK and MV Ckg, torque loss. The greenhouse-
Geisser correction factor was applied if the assumption of
sphericity was violated. If a significant main effect was reported,
a pairwise comparison, with a bonferroni correction, was used
to identify which time point was significantly different to
pre-damage. A one way repeated measures ANOVA (sets, 6
levels) was used to investigate MVEkg torque during the EIMD
protocol. T-tests were used to compare the increase from pre,
to peak CK (ACKpeux) and pre, to to peak MVCkg torque
loss. Linear correlations (Pearson r) were used to determine
whether ACKj,e,i or absolute and relative MVCkg torque loss,
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correlated with either muscle properties, tendon properties,
fascicle lengthening or MVEgg torque. Data is presented as mean
+ standard deviation. Statistical significance was accepted at
p < 0.05.

RESULTS

Pre-damage Vastus Lateralis and Patella

Tendon Properties

Muscle architecture and tendon properties, assessed at the “pre-
damage phase,” are presented in Table 1. Resting patella tendon
length and patella tendon cross-sectional area was 57.8 4= 6.0 mm
and 78.1 # 26.1 mm? respectively. Patella tendon moment arm
at 90" knee angle was 4.33 £ 0.34cm. To account for varying
maximal MVCkg torque during ramped MVCgg (195.6 + 36.8
N-m), the patella tendon force (2,972 N) corresponding to the
highest MVCgg torque (127.2 N-m) of the weakest participant
was used to calculate standardized force level patella tendon
stiffness (1,213 4 436 N-mm ™!, Figure 1) and Young’s modulus
(1,030 4 591 MPa).

Maximal Eccentric Voluntary Knee
Extension Torque during the Eccentric

Protocol

MVEkg torque was not significantly different throughout the six
sets (p = 0.868). During EIMD, average MVEkg peak torque
(calculated over the six sets) was 255 & 51 N-m. Peak MVEg
torque was 97 & 16% of “pre-damage” MVCkg, torque.

Vastus Lateralis Fascicle Lengthening

during Eccentric protocol

A significant change in fascicle length from 20° knee angle
(7.06 £ 0.43 cm) to 90° knee angle (11.3 £ 0.20 cm) was seen
(4.20 £ 0.82cm, p = 0.0004) during MVEgg. The change in
VL fascicle length relative to fascicle length at knee angle of 20°
was equivalent to a 59.4 £ 12.0% increase in fascicle lengthening
during MVEkg.

Estimated Vastus Lateralis Excursion

Based on the tendon moment arm excursion, the estimated
increase in VL muscle-tendon unit length from 20 to 90° knee
angle was 5.29 = 0.41 cm during MVEkg.

Creatine Kinase Levels
Creatine kinase significantly increased from pre-damage to 96 h
(136 £ 114 U/L, 796 & 723 U/L respectively, p = 0.014) but there
was no significant difference at 1 (430 £ 104 U/L, p = 0.167), 48
(425 + 82 U/L, p = 0.051) and 168 h (281 = 58, p = 0.774) post
EIMD.

Compared to pre-damage, relative CK was significantly higher
at every time point post EIMD (1 p = 0.004, 48 p = 0.004, 96
p = 0.002 and 168 h p = 0.007, Figure 2). ACKpeqi (peak CK
value—the pre CK values) was 883 £ 667 UL equating to an 885%
increase in CK from pre-damage.

Maximal Isometric Voluntary Knee

Extensor Torque Loss

MVCkg torque significantly decreased from pre-damage
(264 +35N-m), 1h (209 + 42 N-m, p = 0.0004) and 48h
(221.0 £ 48.4 N-m, p = 0.004) post EIMD, but had returned
to pre-damage by 96 (256 & 14 N-m, p = 1.00) and 168h
post damage (270 & 13 N-m, p = 1.00). When made relative
to pre-damage, a signiﬁcant reduction in MVCgg torque
loss remained 1h (p = 0.0004) and 48h (p = 0.005) post
EIMD, but was not significantly different at any other time
point (Figure 3). There was a significant rightward shift
in the optimal MVCkg knee angle, from pre-damage to
post EIMD (mean, 77 £+ 9°, and 85 £ 7°, respectively,
p=10.002).

Correlations between markers of

Exercise-Induced Muscle Damage

Linear correlations between the markers of muscle damage and
VL and tendon patella tendon properties pre-damage and during
EIMD are presented in Table 1.

ACKpeqx did not correlate with any resting patella tendon or
VL properties (Table 1). During EIMD, ACKj,,x demonstrated
a correlation trend with change in fascicle length, however
when fascicle length was made relative to fascicle length at 20°
knee angle a significant correlation was identified (Figure 4).
Additionally, during EIMD, a correlation trend (p < 0.10) was
reported between ACKpeq and estimated tendon lengthening.
Finally, ACKjeqi significantly correlated with MVEkg torque
and negative work (relative fascicle lengthening multiplied my
MVEkg torque).

MVCkg torque loss did not correlate with any resting
patella tendon or VL properties (Table1). During EIMD
MVCkg torque loss displayed a correlation trend with estimated
tendon elongation however, no significant correlation was
reported with any patella tendon or VL properties. When
made relative to pre-damage MVCkg torque loss did not
correlate with any resting patella tendon or VL properties
(Table 1).

DISCUSSION

The aim of the current study was to determine whether (1) patella
tendon stiffness, (2) the amount of VL fascicle lengthening (strain),
and (3) eccentric torque correlate with markers of EIMD. The
current study reports three main findings; (1) During EIMD,
VL relative fascicle lengthening, MVEgg torque and negative
work correlated significantly with ACKpeqr, (2) Patella tendon
properties did not correlate with ACKj,eq or MVCkg torque loss.
(3) There was no significant correlations reported with MVCgg
torque loss. Within the current study, the VL was considered
a surrogate of the quadriceps. Although there is currently no
measure to quantify the individual muscle damage within the
quadriceps, previous studies have reported VL to be a reliable
surrogate for predicting force output for the quadriceps (Alkner
et al., 2000; Moreau et al., 2010).
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TABLE 1 | Correlations between VL and patella tendon properties during rest and EIMD with ACKpgak and absolute and relative MVCgg torque loss.

Mean + SD ACKpeak (U/L) MVCkE torque loss (NM) MVCkg torque loss (%)
Pearson’ r p-value Pearson’ r p-value Pearson’ r p-value
RESTING MEASURES
VL muscle length (cm) 32.8 £ 2.1 0.28 0.15 0.1 0.35 —0.06 0.41
VL acsa (cm?2) 253 £ 4.2 0.36 0.092 0.22 0.21 0.16 0.27
Fascicle length (20°) 71+04 —0.21 0.23 0.16 0.27 0.01 0.49
Maximal tendon stiffness (N~mm‘1) 1,450 + 554 0.33 0.11 -0.29 0.14 -0.27 0.16
Maximal Youngs’s modulus (MPa) 1,065 + 511 0.22 0.21 -0.19 0.24 -0.18 0.25
Relative tendon stiffness (N-mm‘w) 1,214 £ 436 0.13 0.31 —0.29 0.14 -0.22 0.21
Relative Young’s modulus (MPa) 890 + 394 0.07 0.39 —-0.19 0.24 —-0.15 0.29
DURING EIMD
Tendon elongation (cm) 114+£1.2 —0.41 0.062 -0.35 0.092 -0.22 0.21
Average MVEKg (Nm) 255 + 51 0.50 0.02* -0.02 0.47 —-0.20 0.23
Change in fascicle length (cm) 42+ 0.9 0.41 0.062 0.33 0.10 0.19 0.24
Relative change in fascicle length (%) 59.4 +£12.0 0.53 0.02* 0.29 0.14 0.18 0.25
Negative work 0.6 +£0.2 0.50 0.03* 0.07 0.39 0.02 0.47

MVCye, Maximal voluntary isometric knee extension; ACKpeak, Increase from pre CK to peak CK over the 168h post EIMD; MVEke, Maximal voluntary eccentric knee extension.

*Denotes a significant correlation (p < 0.05). @Denotes a correlation trend (p < 0.10).
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FIGURE 1 | Patella tendon force-displacement relationship in males. Values are presented as mean =+ standard deviation.

Patella Tendon Stiffness

Following previous observations of muscle-tendon interactions
during eccentric contractions (Roberts and Azizi, 2010; Hicks
et al., 2013), it has been suggested that tendon properties may
contribute to the magnitude of EIMD (Hicks et al, 2013;
Penailillo et al., 2015; Guilhem et al., 2016). For example, a

more compliant tendon (Patella and Achilles respectively) has
been reported to attenuate fascicle lengthening and reduce peak
forces and torques during eccentric contractions (Hicks et al.,
2013; Roberts and Konow, 2013). Despite the tendon gaining a
reputation as a “mechanical buffer” during EIMD, in agreement
with our previous work (Hicks et al, 2013), the current
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study reported no significant correlation between patella tendon
stiffness and ACKpar. In addition we report no significant
relationship between patella tendon properties and MVCkg
torque loss (Table 1). Our current findings therefore suggest that
patella tendon mechanical characteristic do not correlate with
markers of EIMD within the VL. Further research into tendons
displaying different mechanical characteristics compared to the
patella tendon, for example the Achilles tendon, is required to
support the findings of the current study.

Patella Tendon Lengthening during EIMD
In-line with previous research, patella tendon stiffness was
measured during an isometric contraction (Reeves et al., 2003;
Onambeélé et al., 2007); however, tendon stiffness may only be
meaningful if it is measured during the eccentric contraction.
Therefore, to estimate the contribution of the patella tendon
during the eccentric protocol within the current study, the
total excursion of the VL muscle-tendon unit was estimated
using the tendon excursion method (Spoor et al., 1990). In
brief, based on the measured patella tendon moment arm at
a 90° knee angle and a 70° change in knee angle during
MVEkg (equivalent to the change in knee angle during the
eccentric contraction from 20 to 90°), the total estimated muscle-
tendon unit lengthening was 529 £ 0.41 cm. Therefore, by
subtracting the measured degree of VL fascicle lengthening
(420 £ 0.82 cm) during the eccentric protocol from the
estimated total muscle-tendon unit lengthening, patella tendon
lengthening can be estimated as 1.09 cm. Therefore, using the
aforementioned equation, estimated patella tendon lengthening
during the eccentric protocol demonstrated a correlation trend
with both MVCkg torque loss and ACKpeqx, such that patella
tendon lengthening can explain (taken from the r?) ~12% and
~17% of MVCkg torque loss and ACKpeqr within the current
study. In agreement with the current study, despite relative
Achilles tendon lengthening being greater than patella tendon
lengthening (1.99 and 1.09 cm respectively), Guilhem et al.
(2016) reported a correlation trend between Achilles tendon
lengthening during eccentric contractions and MVC torque loss.
These findings highlight that although tendon stiffness properties
measured during an isometric contraction do not correlate with
markers of EIMD, the degree of patella tendon lengthening
during the eccentric contraction may be more important.

Fascicle Lengthening during Exercise

Induced Muscle Damage
In accordance with the popping sarcomere theory, the degree
of fascicle lengthening has previously been investigated as a
determinant of EIMD (Lieber and Friden, 1993; Penailillo et al.,
2015; Guilhem et al., 2016; Hicks et al., 2016). The present study
shows in vivo that the relative change in VL fascicle length during
eccentric loading is significantly correlated with ACKpeqy. It must
be noted however, that CK is an indirect marker of EIMD and
it is difficult to determine whether an increase in CK represents
a change in cell membrane permeability or structural damage
(Heled et al., 2007).

Contrary to previous research investigating the plantar flexors
(Guilhem et al, 2016), the current study did not find a
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FIGURE 2 | Relative change in creatine kinase from pre-damage (—48 h),
following exercise-induced muscle damage. *Significantly higher than
pre-damage p < 0.01.
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FIGURE 3 | Relative change in maximal voluntary isometric knee extension
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*o < 0.001, *p < 0.01.

significant correlation between relative VL fascicle lengthening
and MVCkg torque loss. These discrepancies occurred despite
the contribution of relative fascicle lengthening to total muscle-
tendon unit lengthening being greater within the VL compared
to the plantar flexors [4.20 cm (79%) and 2.31 cm (51%) Guilhem
etal., 2016, respectively]. It is accepted that EIMD is significantly
higher at longer compared to shorter muscle lengths (Newham
etal., 1988), the aforementioned discrepancies may be attributed
to the current study limiting fascicle lengthening to a 90° knee
angle, due to the constraints of safely performing MVEkg,
whereas within the plantar flexors EIMD was performed closer
to the plantar flexors end range of motion (Guilhem et al., 2016).
Therefore, future studies need to measure fascicle lengthening
through a volitional range of motion at the knee, to determine
if total fascicle lengthening correlates with MVCkg torque loss.
Within the current study, a 38 mm probe was used to measure
fascicle lengthening during the eccentric contractions. Fascicle
length at 90° reached nearly three times the probe length thus
resulted in a large proportion of the fascicle being estimated
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by the linear extrapolation method. Although, previous research
(Guilhem et al., 2011; Hicks et al., 2013) that used similar probe
lengths to the current study, have concluded this method as
reliable, it must be recognized that future studies may require a
wider probe (50 mm) to reduce the estimated proportion of the
fascicle during eccentric contractions.

Eccentric Torque during EIMD

In addition to strain, it has previously been reported that
eccentric torque is a determinant of EIMD (Nosaka and
Sakamoto, 2001). In agreement with previous in vivo research
(Chapman et al., 2008; Guilhem et al., 2016) the current study
reported no direct correlation between MVEkg torque and
MVCkg torque loss. It must be noted that MVEkg torque made
relative to pre-damage MVCkg torque within the current study
and previous studies (Chapman et al,, 2008; Guilhem et al,
2016) (97, ~77, and 94% respectively) is below the suggested
yield strength of muscle fibers as identified within animal
studies (>113%, Warren et al., 1993). Therefore, the insignificant
correlation between MVEkg torque and MVCkg torque loss
within the current and previous research (Chapman et al., 2008;
Guilhem et al., 2016) may be attributed to low MVEkg torque
to MVCkg torque ratio. In the present study, this low ratio of
eccentric to isometric torque, would be expected given the low
lengthening velocity used (30°-s~!; Onambele et al., 2004). Tt
could be suggested that within the current study participants
were not contracting maximally (even at these lower eccentric
speeds), using electrical stimulation to elicit higher eccentric
torques may have altered the recruitment pattern (Crameri et al.,
2007) and potentially masked any protective mechanism of the
muscle on EIMD. Therefore, by not using electrical stimulation,
the current study has reported data using an eccentric torque
achieved during voluntary maximal effort. Additionally, it must

be acknowledged that due to short recovery between repetitions
within the current study, the occurrence of fatigue during the
eccentric protocol may have reduced the MVEgg torque to
MVCkg torque ratio. Although it is difficult to separate the
occurrence of fatigue and EIMD, due to no significant reduction
in MVEgg torque from set one to set six, the current study can be
confident that fatigue did not affect MVEgg torque production.

Although independently fascicle lengthening and MVEgg
torque did not correlate with MVCgg torque loss within
the current study, Guilhem et al. (2016) reported a stronger
significant correlation when negative work, which encompassed
fascicle lengthening beyond slack length multiplied by MVEkg
torque, was calculated. Within the current study however there
was no significant correlation between negative work (relative
fascicle lengthening multiplied my MVEkg torque, Table 1) and
MVCkg torque loss. However, further investigation into higher
MVEKg torque to MVCkg torque ratios and a full volitional range
of motion at the knee to elicit maximal fascicle lengthening is
required.

To the authors’ knowledge, the current study is the first
study to report a significant correlation between MVEkg
torque and ACK,k. Furthermore, unsurprisingly, due to CK
demonstrating a significant relationship with both relative
fascicle lengthening and MVEgg torque, calculating negative
work performed (relative fascicle length multiplied by relative
MVEkg torque, Table1) significantly correlated with CK.
Although the CK response post EIMD is accepted as an indirect
marker of muscle damage, it is unclear whether CK is a
true representation of muscle function and the magnitude of
damage or whether it reflects a change in the cell membranes
permeability to intramuscular proteins (Friden and Lieber, 2001;
Heled et al., 2007). Therefore, the significant correlation between
CK and both fascicle lengthening and MVEkg torque within
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the current study, may support a relationship between cell
membrane permeability and the occurrence of EIMD, rather
than the quantitative severity of EIMD per se. Additionally,
no significant correlation between MVCkg torque loss, which
is regarded as a structural and functional marker of EIMD
(Clarkson and Hubal, 2002), and fascicle lengthening or MVEkg
torque further supports the notion that CK may be representative
as a qualitative measure of EIMD. Future studies are required
to use direct marker of muscle damage (e.g., biopsies and Z-
line streaming) or a non-invasive alternative (e.g., elastography
Yanagisawa et al., 2015, length-tension relationship Hoffman
et al, 2014) to determine whether fascicle lengthening is a
determinant of structural EIMD. Furthermore, due to a MVEgg
torque correlating with CK and not MVCkg, torque loss, despite
low MVEgg torque, suggests that CK may be sensitive to lower
MVEkg torques. Therefore, with the caveats associated with CK
in mind, to confirm whether MVEgg torque correlates with
MVCkg torque loss and thus EIMD, greater MVEkg torques or
smaller muscle groups need to be investigated.

CONCLUSION

To conclude, the current study highlights the potential
mechanistic role of tendinous and fascicle lengthening during
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