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Obesity is reaching epidemic proportions globally and represents a major cause of

comorbidities, mostly related to cardiovascular disease. The autonomic nervous system

(ANS) dysfunction has a two-way relationship with obesity. Indeed, alterations of the

ANS might be involved in the pathogenesis of obesity, acting on different pathways. On

the other hand, the excess weight induces ANS dysfunction, which may be involved

in the haemodynamic and metabolic alterations that increase the cardiovascular risk

of obese individuals, i.e., hypertension, insulin resistance and dyslipidemia. This article

will review current evidence about the role of the ANS in short-term and long-term

regulation of energy homeostasis. Furthermore, an increased sympathetic activity has

been demonstrated in obese patients, particularly in the muscle vasculature and in

the kidneys, possibily contributing to increased cardiovascular risk. Selective leptin

resistance, obstructive sleep apnea syndrome, hyperinsulinemia and low ghrelin levels

are possible mechanisms underlying sympathetic activation in obesity. Weight loss is

able to reverse metabolic and autonomic alterations associated with obesity. Given

the crucial role of autonomic dysfunction in the pathophysiology of obesity and its

cardiovascular complications, vagal nerve modulation and sympathetic inhibition may

serve as therapeutic targets in this condition.

Keywords: autonomic nervous system, obesity, gut hormones, adipose tissue, energy expenditure, weight loss,

vagal nerve stimulation, vagal nerve blockade

INTRODUCTION

Obesity is a challenge for global public health. The worldwide prevalence of obesity has nearly
doubled in the past decades (World Health Organization). Obesity may induce the onset of
other conditions leading to overt cardiovascular disease, such as glucose intolerance, dyslipidemia,
impaired glucose tolerance and type 2 diabetes, hypertension, and kidney failure (Martin-
Rodriguez et al., 2015; Soares et al., 2015).

In this framework, there is a strong need to reach a deeper understanding of the basic
mechanisms coupling energy balance with glucose homeostasis (Flier, 2001; Obici and Rossetti,
2003), in order to develop new treatments able to counteract obesity and thus decrease the
risk of cardiovascular disease. The autonomic nervous system (ANS) plays a major role in the
integrated regulation of food intake, involving satiety signals and energy expenditure: thus ANS
dysregulation might favor body weight gain. Conversely, obesity might trigger alterations in the
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sympathetic regulation of cardiovascular function, thus favoring
the development of cardiovascular complications and events.
This article is aimed at reviewing the role of ANS in the
pathophysiology of obesity, and thus to identify possible
new therapeutic targets for the treatment of obesity and its
complications.

ROLE OF THE ANS IN ENERGY
HOMEOSTASIS

Body weight is regulated by a complex homeostatic system,
whose main components are the modulation of appetite and
satiety and the modulation of energy expenditure and energy
storage in the adipose tissue. This homeostatic system is aimed
at maintaining a stable body weight and requires the existence of
a network of signals conveying information from the periphery
to the central nervous system (CNS), where these signals are
integrated and contribute to long-term and short-term regulation
of body weight (Cummings and Schwartz, 2003). Peripheral
signals involved in energy homeostasis can be classified as short-
acting signals, such as gastric distension and gut hormone release,
which are acutely affected by ingested nutrients and modulating
satiety, and long-acting signals, such as leptin and insulin, which
regulate overall body weight and adiposity.

It is clear that any dysfunction in the pathways involved in
maintaining body weight homeostasis may lead to weight gain
and obesity. The ANS plays a central role in the communication
between the CNS and the gastrointestinal system either in short-
term or in long-term regulation of body weight (Figure 1). Going
into detail, vagal afferents to the brain are crucial for information
transfer from gut hormones and CNS and as a mediator of sense
of satiety after gastric distension.

ANS and Short-Term Regulation of Body
Weight
The main mediators of short-term regulation of body weight
through the sensation of satiety are:

- Gastric distension (mediated by vagal afferents) (Figure 1);
- Gut hormones release. Indeed the gastrointestinal tract, in
addition to its primary role in digestion and adsorption
of nutrients, regulates food ingestion by gut hormones.
Interestingly, part of their action is mediated by vagal afferents.
The action of gut hormones on vagal afferent neurons is now
recognized to be an early step in controlling nutrient delivery
to the intestine by regulating food intake and gastric emptying.
Therefore, gut hormones and vagal afferent neurons have been
considered playing an important role in the pathogenesis of
obesity (Dockray, 2014).

Satiety is a result of neuro-humoral stimuli generated during
food intake, leading to control of meal size and termination
(Woods et al., 1998): thus it is not surprising that an altered
sense of satiety has been involved in the pathogenesis of
obesity. The main hypothalamic areas involved in the control
of both hunger and satiety are the arcuate nucleus (ARC),
the paraventricular nucleus, the dorsomedial and ventromedial

FIGURE 1 | Peripheral signals of satiety and gastric emptying reach the

nucleus of the solitary tract/area postrema complex (NST/AP) via afferent vagal

nerves (red line). The NTS projects to the dorsal motor nucleus (DMN). This

pathway modulates intestinal motility and secretion, glucose production and

pancreatic secretion via efferent vagal nerves (blue line). The suggested site of

action of vagal nerve stimulation (VNS) is indicated by the dotted green lines,

while mechanism of weight loss hypothesized vagal nerve blockade includes

decrease in gastric emptying, increase in gut hormones release and inhibition

of pancreatic esocrine secretion (dotted orange lines).

hypothalamus, and the lateral hypothalamic area. These areas
are influenced by different peripheral signals coming from the
liver and gut, the endocrine pancreas and the adipocytes, which
could act directly on neurons in the CNS or through afferent
neurons. Indeed, the afferent vagal pathways are probably the
most important link between the gut and the brain for satiety
signal modulation (Berthoud, 2008a). Vagal afferent neurons
receive post-ingestive information from the gastrointestinal tract
by mechanoreceptor stimulation (Ikramuddin et al., 2014) in
response to gastric distension, by gut hormone release in
response to nutritional composition of food consumed, and
by direct action of some nutrients, such as short chain fatty
acids (Baskin et al., 1999; Obici et al., 2002; Brown et al., 2006;
Capasso and Izzo, 2008; Shin et al., 2009; Scherer et al., 2011;
Iwasaki et al., 2013). Finally, vagal afferents receive metabolic
information by chemoreceptors located in the hepatoportal
system (Yi et al., 2010; Figure 1). Signals from peripheral
receptors reach via vagal afferents the nucleus of the solitary
tract/area postrema (NTS/AP) complex in the brain stem, which
integrates sensory information from the gastrointestinal tract and
abdominal viscera and taste information from the oral cavity
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(Travers et al., 1987). NTS projects back to the gut via vago-
vagal autonomic reflexes through the dorsal motor nucleus. The
stimulation of this pathway leads to gut responses, including
control of intestinal transit time and motility (i.e., delayed gastric
emptying) (Forster et al., 1990), absorption rate and exposure
of enteroendocrine cells (EECs) to nutrients, with changes in
gastrointestinal hormones and pancreatic secretion, involved in
satiety (Li and Owyang, 1994; Berthoud, 2008b).

ANS and Gut Hormones
Cholecystokinin (CCK)
Cholecystokinin (CCK) is an anorectic hormone secreted by
different tissues, including the I-cells of the small intestine (Buffa
et al., 1976), with the main effect of reducing meal size and
duration (Kissileff et al., 2003). Its release pattern suggests that
CCK plays a role in meal termination and early phase satiety
(Burton-Freeman et al., 2002).

CCK binds A-type receptors, found either in the periphery
or in the brain, and B-type receptors, found only in the brain
(Fink et al., 1998). CCK may act directly on the CNS (Blessing,
1997) and/or peripherally via vagal afferent fibers (Corp et al.,
1993; Burdyga et al., 2003). Some authors reported that the
main mechanism trough which CCK regulates food intake is
the inhibition of gastric emptying (Moran and Kinzig, 2004).
Furthermore, Wank (1995) and Granger et al. (1980) CCK
induces gastrointestinal vasodilation acting on CCK-A receptors
placed on abdominal vagal afferents projecting to NTS. This
pathway involves also caudal and rostral ventrolateral medulla
neurons, thus leading to suppression of sympathetic vascular
tone (Sartor and Verberne, 2002, 2006, 2008). The role of
alteration of CCK secretion in obesity is uncertain: indeed,
obese patients exhibit higher CCK plasmatic levels that lean
individuals, either in fasting conditions or after a high-fat meal
(Little et al., 2005).

Peptide YY (PYY)
Peptide YY (PYY) is released by the L-cells of the gastrointestinal
tract, in response to a meal in proportion to calories, and to
luminal content of fatty acids, fibers and bile acid (Adrian
et al., 1985; Onaga et al., 2002). Its actions in the brainstem
and in the gut are mediated by Y1 and Y2 receptors (Yang,
2002). PYY acts mainly via the Y2 receptor (Dumont et al.,
1995), identified on both intestinal vagal afferents and within
the ARC: both pathways may thus be involved in the anorectic
effects of Y2 receptor activation (Fetissov et al., 2004; Koda
et al., 2005). Central and peripheral specific binding sites of
PYY have been identified in NTS/AP and in dorsal motor
nucleus (Parker and Herzog, 1999), as well as in in enterocytes,
myenteric and submucosal neurons (Cox, 2007a,b). PYY release
in the post-prandial period seems to be induced also by the
indirect stimulation of endocrine L-cells through vagal neural
pathways (Fu-Cheng et al., 1997; Lin and Taylor, 2004). In
animal models, PYY release was blocked by atropine, a nicotinic
ganglionic blocker (Lin and Taylor, 2004), while intravenous
administration of bethanechol (a muscarinic cholinergic agonist)
stimulated PYY release (Dumoulin et al., 1995). PYY acts
also as a counterregulatory hormone for ghrelin release via

growth hormone secretagogue receptor, expressed in the nodose
ganglion of vagal nerves (Neary et al., 2003) and in the ARC.
PYY plasma concentrations are lower in obese in comparison
to lean individuals either in the fasting period (Batterham et al.,
2003) or in the post-prandial period (le Roux et al., 2006).
The latter phenomenon could be responsible of impaired satiety
signal in obesity, since PYY infusion reduces caloric intake
both in obese and lean individuals (Batterham et al., 2003).
Experimental data suggest that electrical vagal stimulation may
increase PYY secretion from the isolated ileum in pigs (Sheikh
et al., 1989).

Pancreatic Polypeptide (PP)
Pancreatic Polypeptide (PP) is secreted by cells located at the
periphery of the pancreatic islets, in the esocrine pancreas and
distal gut (Track, 1980; Ekblad and Sundler, 2002) in response to
food intake. PP has inhibitory effects on gastric emptying, and
delays the post-prandial rise in insulin (Schmidt et al., 2005).
The vagal nerve controls both PP basal and post-prandial release.
Surgical or pharmacological vagal blockade causes a marked
reduction in meal-induced PP release in dogs (Niebel et al., 1987)
and humans (Meguro et al., 1995).

The role of PP in obesity pathogenesis is controversial. Some
authors reported a blunted post-prandial PP increase in obese
individuals (Lassmann et al., 1980; Glaser et al., 1988), and no
differences have been reported in circulating PP between obese
subjects and lean individuals (Jorde and Burhol, 1984). However,
since plasma PP concentrations are almost exclusively under
vagal control, they can be used as an indicator of vagal activity in
a number of experimental settings (Schwartz, 1983; Arosio et al.,
2004).

Glucagon-Like Peptide-1 (GLP-1)
Glucagon-like peptide-1 (GLP-1) is an anorectic hormone,
member of the incretin family. It is cleaved from preproglucagon
within the intestine, where it is released by endocrine L-cells of
the distal gut (Wettergren et al., 1997). GLP-1 levels rises post-
prandially in response to a meal and fall in the fasting state.
GLP-1 release is proportional to the calories ingested (Kreymann
et al., 1987; Orskov et al., 1994) and it is particularly responsive
to carbohydrates (Lavin et al., 1998) and fats (Frost et al., 2003).
Some authors have suggested that circulating GLP-1 levels are
reduced in obesity and normalized with weight loss (Verdich
et al., 2001). GLP-1 mediates glucose-dependent insulinotropic
effects in a number of species, including humans (Holst et al.,
1987; Mojsov et al., 1987). Furthermore, it inhibits gastric acid
secretion and gastric emptying (Imeryuz et al., 1997; Edvell and
Lindstrom, 1999; Sheikh, 2013). The effects of GLP-1 on appetite
regulation are mediated by the GLP-1 receptor. GLP-1 receptors
are found not only in peripheral tissues (Bullock et al., 1996) but
also in CNS areas (Kastin et al., 2002) involved in the regulation
of satiety and induction of taste aversion, such as NTS/AP and
ARC (Turton et al., 1996). In animal models GLP-1 actions on
CNS seem to be mediated by afferent vagal fibers (Ronveaux
et al., 2015). Indeed, vagotomy attenuates the satiating effect of
GLP-1 (Nakabayashi et al., 1996; Abbott et al., 2005). Recent
data showed that an intact vagal nerve is necessary for the
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inhibition of food intake by intravenous GLP-1 in human patients
undergoing vagotomy and pyloroplasty (Plamboeck et al., 2013).
Furthermore, some evidence suggest that GLP-1 crosses the
blood brain barrier to act directly on CNS receptors (Kastin et al.,
2002).

Ghrelin
Ghrelin is an orexigenic hormone, primarily secreted by
endocrine cells in the oxyntic mucosa of the stomach. Ghrelin
stimulates eating behavior and is involved in meal initiation;
ghrelin suppression after a meal is crucial to provide a feedback
signaling to brain and stop food intake (Kojima et al., 1999;
Cummings et al., 2001; Tschop et al., 2001). Thus it is not
surprising that obese individuals, though exhibiting lower fasting
ghrelin levels than lean individuals, lack the physiological ghrelin
suppression in the post-prandial phase: this phenomenon could
lead to increased food consumption and, finally, obesity (English
et al., 2002).

Ghrelin suppression after meals, which is crucial to reduce
caloric intake, is induced by several factors include changes
in plasma insulin, intestinal osmolarity, and enteric neural
signaling, but a key role for vagal signaling has been also
hypothesized (Date et al., 2002; Lee et al., 2002). Indeed in
healthy humans vagal stimulation, achieved by modified sham
feeding technique (in which nutrients are chewed and tasted
but not swallowed) has an inhibitory effect on ghrelin release
comparable to real feeding (Arosio et al., 2004; Heath et al.,
2004).

Ghrelin plays also a role in long-term body weight regulation,
acting as an adiposity signal, communicating the state of energy
stores to the brain. Thus fasting ghrelin levels are reduced in
obese individuals, and increase after weight loss (Cummings,
2006). However, gastric bypass is associated with markedly
suppressed ghrelin levels: this phenomenon possibly favor a
greater weight loss after this surgical procedure (Cummings et al.,
2002).

Insulin
Insulin, beyond its established role in glucose (Obici et al.,
2002) and lipid metabolism (Scherer et al., 2011), is also
involved in satiety pathway acting on CNS. Chronic or acute
intracerebroventricular administration of insulin reduces food
intake and body weight in a variety of species. Insulin receptors
are expressed in the CNS neurons, especially in the ARC
(Plum et al., 2005), and participate in the food intake control
(Baskin et al., 1999; Brown et al., 2006). On the other
hand, insulin could act on its peripheral receptors located
in the nodose ganglion (Iwasaki et al., 2013). Hyperphagia
and obesity could be, at least in part, caused by impaired
response to insulin of nodose ganglion neurons (Iwasaki et al.,
2013).

Chronic hyperinsulinemia is a feature of obesity, aimed
at restoring energy balance and limiting weight gain in a
compensatory fashion. However, it may act as a maladaptive
mechanism, inducing sympathetic overactivity (Landsberg,
1986).

Leptin
Leptin is a hormone released by the white adipose tissue (WAT),
whose main actions are to suppress appetite and to regulate
glucose metabolism (Elmquist et al., 1998; Elias et al., 2000).
However, leptin pathways are involved also in energy expenditure
control, as reviewed below. Leptin plasma levels decrease
during fasting and increase after overfeeding, whereas leptin
administration decreases food intake in animals and humans
(Campfield et al., 1995; Heymsfield et al., 1999). The ARC is the
most important site involved in leptin-related food intake (Satoh
et al., 1997; Haynes, 2000). Within the ARC, two antagonistically
acting neuronal populations, the neuropeptide Y (NPY) and
proopiomelanocortinergic (POMC) neurons, were identified as
immediate downstream targets of leptin. Even though leptin
receptors are expressed on both neuronal populations, leptin
stimulation of NPY neurons decreases their firing and attenuates
food intake, whereas its actions on POMC neurons are opposite
(Pandit et al., 2017).

While genetic syndromes characterized by leptin deficiency
present hyperfagia and obesity (Zhang et al., 1994), most obese
individuals rather have hyperleptinemia (Schwartz et al., 1997),
due to desensitization of its own receptor (Considine et al., 1996).

SNS is involved in regulation of secretory function of
WAT, especially for leptin secretion. Indeed, acute treatment
with catecholamines in in vitro experimental human studies
reduces circulating leptin through β1 and β2 receptors (Scriba
et al., 2000). Furthermore, sympathetic activation induced by
cold exposure induces not only increased metabolic rate and
mobilization of free fatty acids, but also a rapid decrease in
leptin gene expression and plasma leptin levels (Trayhurn et al.,
1995).

ANS and the Long-Term Regulation of
Body Weight
The ANS seems to play a role, though not entirely clear, in energy
expenditure and storage. In humans, the energy is stored mainly
in the WAT under the action of insulin, from where can be
mobilized mainly by activation of SNS. Furthermore, SNS might
increase energy expenditure by acting either on brown adipose
tissue (BAT) thermogenesis or on the cardiovascular system: this
neuronal pathway is modulated by leptin (Pandit et al., 2017)

The Role of SNS in Lipolysis
It is well known that lipolysis in theWAT is regulated by SNS and
insulin, the principal initiator of lipolysis and a potent inhibitor
of lipolysis respectively (Goodridge and Ball, 1965; Prigge and
Grande, 1971). Indeed, sympathetic nerve stimulation results in
fatty acid release (Rosell, 1966), while sympathetic or ganglionic
blockade inhibits lipid mobilization (Gilgen et al., 1962). On the
other hand, adrenal medullary catecholamines have no effects on
lipid mobilization (Takahashi and Shimazu, 1981), confirming
that lipolysis is induced by increased SNS outflow directed to
WAT (Rebuffe-Scrive, 1991). Kreier et al. (2002) hypothesized
also a parasympathetic innervation of WAT in animal models,
possibly modulating insulin-mediated glucose uptake and free
fatty acid metabolism in an anabolic way, thus promoting lipid
accumulation. According to this hypothesis, lipid accumulation
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in obesity could be due either to a decrease in SNS activity
or by an increase in parasympathetic activity (Bartness, 2002).
However, other studies failed to demostrate parasympathetic
innervation in WAT (Giordano et al., 2006).

The Role of SNS in Energy Expenditure
Total energy expenditure is composed of resting metabolic
rate (including cardiorespiratory work and the maintenance
of transmembrane ion gradients at rest), physical activity
and thermogenesis (shivering and non-shivering), and the
termic effect of food. SNS activation induces total energy
expenditure, either increasing cardiorespiratory work or
increasing thermogenesis.

It is well known that the SNS plays a pivotal role in both blood
pressure andmetabolic homeostatic control by regulating cardiac
output, peripheral vascular resistance, and heat production,
which account for a large fraction of resting metabolic rate
(Goran, 2000). Indeed, pharmacological adrenergic blockade is
able to reduce resting energy expenditure (Welle et al., 1991;
Monroe et al., 2001; Shibao et al., 2007).

At variance to what was previously thought, BAT is not
present only in children, but also in lean and obese adult humans
(Virtanen et al., 2009). Its main function is to increase energy
expenditure by inducing cold- or diet-stimulated heat production
(van der Lans et al., 2013), and by uncoupling oxidative
phosphorylation from ATP synthesis through the uncoupling
protein-1 in BAT mitochondria (Cannon and Nedergaard,
2004; Saito, 2013). Functional BAT in adults is detectable after
exposure to mild cold (Saito et al., 2009) and its activity is
inversely related to body mass index and body fat percentage
(van Marken Lichtenbelt et al., 2009). Lean subjects increase
energy expenditure in response to mild cold, whereas obese
subjects have a blunted cold-induced thermogenesis (Wijers
et al., 2010).

BAT thermogenesis is regulated by sympathetic nerves. As
previously stated, sympathetic activation results in mobilization
fromWAT of fatty acids, which are then used by BAT to dissipate
energy as heat (Figure 2). As far as sympathetic control is
concerned, patients with surgical unilateral sympathectomy show
a detectable uptake of 18F-f luorodeoxyglucose (18F-FDG) in
BAT by positron emission tomography on the unaffected side, but
not on the side of surgical sympathectomy (Lebron et al., 2010).
Administration of β-adrenergic receptor blockade reduces BAT
18F-FDG uptake (Soderlund et al., 2007) in patients with known
or suspected cancer as well as in a patient with paraganglioma, a
condition characterized by a massively increased metabolic BAT
activity, induced by excess circulating catecholamines (Cheng
et al., 2012). The role of α-receptors and α-blockade is less clear.
In a patient with catecholamine-secreting paraganglioma, BAT
18F-FDG uptake was suppressed after α-blockade (Sondergaard
et al., 2015). The sympathomimetic drug ephedrine activates
BAT in lean but not in obese subjects, though the degree of
activation is substantially lower than observed after cold exposure
(Carey et al., 2013). Conversely, the effect of parasympathetic
nervous system on BAT appears to be indirect. Indeed, in animal
models, the suppression of NE release in BAT, induced by ghrelin
infusion, is abolished after vagotomy (Mano-Otagiri et al., 2009).

FIGURE 2 | Cold- or diet-stimulated sympathetic activation results in

mobilization of free fatty acids (FFA) by white adipose tissue (WAT) and

regulation of brown adipose tissue (BAT) thermogenesis. The principal

substrate for BAT is constituted by fatty acids to increase energy expenditure

inducing heat production. Chronic sympathetic nervous system (SNS)

activation also induces the conversion of “beige” adipose tissue in WAT, which

also contribute to adaptive thermogenesis.

The authors hypothesized that the vagal nerve mediates the
peripheral action of ghrelin, thus inhibiting sympathetic traffic
directed to BAT. The interaction between vagal and BAT activity
was confirmed in patients undergoing vagal nerve stimulation
(VNS) for refractory epilepsy: VNS induced a BAT-mediated
increase in energy expenditure (Vijgen et al., 2013).

Furthermore, chronic sympathetic activation produces a
remarkable induction of uncoupling protein1-positive brown-
like adipocytes in white fat pads, called “beige” adipose tissue,
which also contribute to adaptive thermogenesis and body fat
reduction (Cousin et al., 1992; Inokuma et al., 2006; Figure 2).
In humans it has been suggested that BAT is mostly composed
of beige cells and is inducible in response to appropriate
sympathetic stimulation. In healthy human participants, with
undetectable or low BAT activity, daily 2-h cold exposure at
17◦C for 6 weeks resulted in increased BAT activity. Changes
in BAT activity and body fat content were negatively correlated
(Yoneshiro et al., 2013).

It is important to note that leptin has a crucial role in
regulation of energy expenditure through SNS. Indeed, leptin
has been shown to increase energy expenditure acting both
on the cardiovascular system and BAT thermogenesis via the
hypothalamus (Pandit et al., 2017). The ARC represents the
main site of action of leptin on SNS. In particular, CNS leptin
administration does not affect sympathetic nerve activity after
ARC destruction (Haynes, 2000). However, Fischer showed
that leptin may increase energy expenditure by inducing
a pyrexic increase in body temperature by reducing heat
loss, rather than affecting BAT thermogenesis (Fischer et al.,
2016).
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On the other hand, in animal studies leptin administration in
different CNS areas increases sympathetic outflow to the kidneys,
the adipose tissue, the skeletal muscle vasculature and adrenal
glands (Dunbar et al., 1997; Elmquist et al., 1997; Haynes et al.,
1997), thus causing an increase in energy expenditure (Woods
and Stock, 1996) and in sympathetic vasomotor activity (Marsh
et al., 2003). The latter mechanism is involved in pathogenesis
of obesity –induced hypertension, as explained later (see Section
Sympathetic Overactivity in Obesity).

Taken together, these results suggest that BAT thermogenesis
is an appealing target in obesity treatment. However, while
promising evidence in experimental animals demonstrate that it
is possible to impair BAT thermogenesis (i.e., by beta-adrenergic
blockade), no intervention has so far been able to increase it
(Tupone et al., 2014).

SYMPATHETIC OVERACTIVITY IN OBESITY

An increased SNS activity has been demonstrated in obese
patients, particularly in the muscle vasculature and in the
kidneys, possibily contributing to increased cardiovascular
risk. Though SNS activation is similar in hypertensive and
normotensive obese individuals, sympathetic contribution to
blood pressure via vasoconstriction is greater in the hypertensive
ones, confirming a role for sympathetic activation in the
pathogenesis of obesity-related hypertension. Conversely,
sympathetic overactivity is not effective in favoring energy
expenditure and thus weight loss. Selective leptin resistance,
obstructive sleep apnea syndrome, hyperinsulinemia and low
ghrelin levels are possible mechanisms underlying sympathetic
activation in obesity. Weight loss is able to reverse metabolic and
SNS alterations associated with obesity.

Patterns of SNS Activation in Obesity
It is well known that excess weight is associated with ANS
dysfunction, and particularly with increased sympathetic traffic.
Landsberg was the first researcher speculating that increased SNS
activity in response to weight gain is an adaptive mechanism
to increase resting energy expenditure and promote restoration
of the antecedent weight (Landsberg, 1986, 2001), while other
authors suggested that prolonged sympathetic overactivity might
induce weight gain, due to reduced capacity to dissipate excessive
calories, mediated by downregulation of β adrenoceptors (van
Baak, 2001; Feldstein and Julius, 2009; Figure 3). On the other
hand, some authors suggested that a reduced sympathetic activity
is rather implied in obesity pathogenesis, inducing a lower
rate of thermogenesis and a positive energy balance (Bray,
1991). However, several studies conducted with sophisticated
techniques supported the Landsberg’s hypothesis of SNS
overactivity in obese individuals, with or without hypertension
(Landsberg, 1986).

It is important to underline that obesity causes a selective
and differentiated increase in sympathetic activity rather
than generalized SNS activation. This crucial issue has been
investigated by techniques such as microneurography, which
allows recording directly spontaneous efferent activity of post-
ganglionic SNS fibers controlling muscle vascular tone (Vallbo

FIGURE 3 | Mechanisms responsible for the occurrence of sympathetic

activation in obesity-related hypertension. Prolonged sympathetic nervous

system (SNS) overactivity might induce weight gain, due to downregulation of

beta-adrenoceptors, thus reducing the capacity to dissipate excessive

calories.

et al., 2004), and regional NE spillover, which is crucial
in order to investigate organs like heart and kidney, whose
efferent nerve traffic is not directly recordable in humans.
Several studies highlighted that obesity is characterized by SNS
overactivity directed to the muscle vasculature by means of
microneurography (Grassi et al., 1995, 2004; Alvarez et al., 2004).
In obese individuals, increasedMSNA is obtained by recruitment
of additional nervous fibers, as demonstrated by single fiber
recordings, at variance to the increased firing frequency observed
in essential hypertension (Lambert et al., 2007). MSNA values,
although increased in both central and peripheral obesity, are
greater in individuals with an abdominal or central distribution
of body fat (Grassi et al., 2004), particularly with visceral obesity
(Alvarez et al., 2004). Several reflex abnormalities were shown
in obesity, such as impaired baroreflex sensitivity (Grassi et al.,
1995), central chemoreflex hypersensitivity (Narkiewicz et al.,
1999a) and blunted muscle metaboreflex (Negrao et al., 2001);
conversely, MSNA responses to mental stress and cold pressure
test were similar in obese and in lean subjects (Kuniyoshi et al.,
2003).

Furthermore, an increased adrenergic tone in the renal district
was also demonstrated, while the sympathetic outflow to the
heart is not elevated or even reduced, as demonstrated by
cardiac norepinephrine spillover (Esler et al., 2006). It has been
hypothesized that cardiac sympathetic tone is reduced in human
obesity in response to volume overload (Messerli et al., 1983), in
part induced also by sodium retention mediated by high renal
SNS activity (DiBona, 1992). An altered autonomic modulation
of heart rate has been also demonstrated by the technique of
spectral analysis of heart rate variability (Hirsch et al., 1991;
Tonhajzerova et al., 2008), with conflicting findings (Matsumoto
et al., 1999; Antelmi et al., 2004).

An impaired autonomic regulation in the post-prandial phase
has also been suggested. As mentioned above, SNS inhibition
is the physiological response to fasting, in order to limit
weight loss during starvation (Young and Landsberg, 1977),
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while food ingestion, particularly of carbohydrate-rich food,
induces an increase in SNS activity (Young and Landsberg,
1977; Welle, 1995). This physiological response is blunted in
obese individuals in comparison to lean individuals, though
energy expenditure was similar and no correlation between SNS
activity and the thermic effect of the food has been demonstrated
(Tentolouris et al., 2003). The blunted post-prandial increase in
sympathetic tone, demonstrated also in adult obese individuals
(Xu et al., 2014) may thus represent a mechanism of inhibition of
post-prandial thermogenesis, thus favoring weight gain, though
conflicting data exist (Emdin et al., 2001). However, these results
do not allow drawing firm conclusions, since only autonomic
modulation of heart rate has been explored, which may not
represent sympathetic traffic directed to the adipose tissue.

Finally, it is important to note that sympathetic overactivity
characterizing obesity has deleterious cardiovascular
consequences, including the development of hypertension,
but it is not effective in increasing energy expenditure and
favoring weight loss as expected (see Section Role the ANS in
Energy Homeostasis). Indeed, acute ganglionic blockade (Shibao
et al., 2007), did not change energy expenditure in individuals
with central obesity, supporting the Landsberg’s hypothesis
of sympathetic activation in obesity as a compensatory
but ineffective strategy induced by weight gain. However,
preliminary data suggest that contribution of SNS after gastric
bypass might be very small: this fact might make more difficult
to maintain weight loss after surgery (Curry et al., 2013).

Mechanisms of Sympathetic Activation in
Obesity and Obesity-Related Hypertension
Adrenergic activation plays an important role in
pathophysiological mechanisms underlying the development,
maintenance, and progression of essential hypertension (Grassi
et al., 2015) and is suspected to contribute in particular to the
development of hypertension in obese humans (Hall et al., 2012).
Julius et al. first proposed that increased sympathetic activity in
hypertension was the primary defect leading to insulin resistance
and weight gain in obese adults (Julius et al., 2000). In young
overweight individuals, SNS activity is directly related to the
degree of cardiac, renal, and vascular dysfunction, suggesting
that sympathetic neural drive may be a major player in CV risk
development (Lambert et al., 2010).

Mechanisms underlying obesity-related hypertension are not
fully understood. Indeed, a great importance has been given
to activation of renal sympathetic nerves, causing sodium
retention, increased renin secretion, and impaired renal-
pressure natriuresis (Hall et al., 2012). Though renal NE
spillover is similar in normotensive and hypertensive obese
individuals, an exaggerated effect of SNS activation has been
reported. Indeed Shibao and coauthors demonstrated that after
ganglionic blockade with trimethaphan, hypertensive obese
patients exhibited a greater BP fall than the normotensive ones
(Shibao et al., 2007). Central mechanisms may be relevant in
obesity-related hypertension and include activation of leptin
and POMC pathway, and obstructive sleep apnea syndrome,
with activation of chemoreceptor-mediated reflexes related to

intermittent hypoxia (Figure 3). Furthermore, among peripheral
mechanisms of sympathetic activation, hyperinsulinemia might
play a role.

Leptin
As already mentioned, leptin has central sympathoexcitatory
effects, demonstrated in a number of experimental studies
(Haynes et al., 1999; Lim et al., 2013). Indeed, obese mice
with leptin or leptin-receptor deficiency showed no increase in
arterial pressure (Mark et al., 1999). The sympathoexcitatory
and hypertensive effect of leptin seems to be mediated by
melanocortin-4 receptor (MC4R) (Tallam et al., 2005). These
findings were confirmed also in MC4R deficient humans, who
show a low prevalence of hypertension, despite the presence of
severe obesity (Greenfield et al., 2009).

Based on this piece of evidence, Mark et al. suggested that
some forms of obesity may be characterized by a “selective
leptin resistance,” limited to its favorable metabolic effects
(satiety and weight loss), while its sympathoexcitatory effects
on the cardiovascular system are maintained (Correia et al.,
2002; Mark et al., 2002; Rahmouni et al., 2005). In humans,
a number of studies confirmed the association between leptin
and hypertension. Human leptin deficiency was associated with
early-onset morbid obesity and metabolic syndrome without
SNS activation or hypertension (Ozata et al., 1999). Conversely,
higher leptin levels in obese hypertensive in comparison to
obese normotensive individuals have been reported (Kunz et al.,
2000; Golan et al., 2002). Furthermore, in the Copenhagen City
Heart Study increased plasma leptin levels predicted the risk of
developing hypertension (Asferg et al., 2010). However, acute of
chronic administration of leptin in humans failed to induce a
sustained BP or SNS activity increase, thus the role of leptin in
causing sympathetic activation in obesity still need to be fully
clarified (Mark, 2013).

Obstructive Sleep Apnea Syndrome (OSAS)
OSAS is a condition characterized by repetitive episodes of upper
airway narrowing or occlusion, causing chronic intermittent
hypoxia and sleep fragmentation (Dempsey et al., 2010).
Obesity is a major risk factor for OSAS, which in turn
may induce BP increase not only during nighttime but also
during daytime (Brooks et al., 1997). The role of OSAS as a
determinant of sympathetic overactivity has been reported not
only in obese (Somers et al., 1995; Narkiewicz et al., 1998)
but also in lean subjects (Grassi et al., 2005). Interestingly,
some authors suggest that obesity per se is not associated to
increased sympathetic traffic to the muscle vasculature, but
this alteration is present only when obesity is accompanied by
OSAS (Narkiewicz et al., 1998). Mechanisms of hypertension
development during OSAS include sympathetic activation due to
chemoreflex activation, secondary to repetitive hypoxic episodes
at nighttime, but also alterations in vascular function and
structure caused by oxidative stress and inflammation (Bruno
et al., 2013). A sustained reduction in MSNA was demonstrated
in normotensive patients with OSAS after both 6 and 12 months
of continuous positive airway pressure therapy (Narkiewicz et al.,
1999b).
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Insulin
Some authors suggest that chronic hyperinsulinemia may act
as a maladaptive mechanism, inducing SNS overactivity in
obesity (Landsberg, 1986, 2001). However, this hypothesis
has not been supported by later studies. Indeed, insulin
administration has a direct vasodilatory effect during acute
euglycemic hyperinsulinemic clamp: thus the increase in MSNA
and norepinephrine levels reported in healthy individuals and
hypertensive patients may be a consequence of baroreflex
activation (Rowe et al., 1981; Anderson et al., 1991, 1992).
However, a modest increase in BP was observed in healthy
individuals when supraphysiological insulin concentrations are
obtained (Rowe et al., 1981). Interestingly, in elderly subjects
with normal BP, acute elevations of plasma insulin during
hyperinsulinemic/euglycemic clamp caused vasoconstriction,
accompanied by a blunted increase in norepinephrine and
heart rate, as compared to young individuals, while no
changes in BP were observed in either group. The authors
suggested that the insulin-induced vasoconstriction is not due
to exaggerated insulin-induced sympathetic activation but rather
to a reduction in the vasodilator action of insulin (Hausberg
et al., 1997). Despite hyperinsulinemia, intracerebroventricular
administration of insulin antagonists did not affect renal
sympathetic nerve activity in experimental animals, adding to the
evidence that insulin does not promote obesity hypertension by
chronically stimulating the SNS (Lim et al., 2013).

Ghrelin
Beyond its established role in appetite regulation, ghrelin has
beneficial effects on blood pressure (BP) and cardiovascular
function (Virdis et al., 2016), possibly modulating ANS activity.
In experimental animals, intracerebral infusion of ghrelin
reduced BP; however, it is still not clear whether this effect was
mediated by modulation of sympathetic traffic (Matsumura et al.,
2002; Prior et al., 2014). Lambert et al. investigated the effects of
supraphysiological doses of intravenous ghrelin in lean and obese
individuals. Ghrelin did not influence SNS activity controlling
resting calf vascular tone; however, ghrelin infusion blunted BP
and muscle sympathetic nerve activity (MSNA) responses to
acutemental stress after short-term ghrelin infusion either in lean
or obese individuals (Lambert et al., 2011).

Effect of Weight Loss on the SNS
Several studies have shown that sympathetic activation reported
in obese subjects is reversed by weight loss (Muscelli et al., 1998;
Nault et al., 2007; Perugini et al., 2010). This topic is extensively
reviewed elsewhere (Lambert et al., 2015). Straznicky reported
a marked sympathoinhibition secondary to diet-induced weight
loss, evaluated byMSNA andwhole-body plasma norepinephrine
spillover rate (Straznicky et al., 2005). However, bariatric surgery
is the most effective treatment for obesity, allowing to achieve
up to 70% of excess weight loss (Buchwald et al., 2004).
It is also well known that bariatric surgery improves the
main defects responsible for obesity-associated hyperglycaemia,
namely insulin resistance and beta-cell dysfunction (Ferrannini,
1998; Nannipieri et al., 2011). Few data explored the role of
bariatric surgery in reduction of SNS activity. Pontiroli et al.

showed a restoration of sympathovagal balance evaluated by
heart rate variability in 24 subjects with severe obesity 6 months
after gastric banding (Pontiroli et al., 2013), while Lips et al.
showed an improvement in heart rate variability, although
explored only in the time domain, after 3 months very low-
calorie diet or gastric bypass (Lips et al., 2013). However,
these two studies, using spectral analysis of RR interval, did
not provide a measure of sympathetic activity. In 23 severely
obese, non-diabetic, individuals,MSNAwasmeasured before and
after 10% weight loss induced by laparoscopic adjustable gastric
band. Noteworthy, a significant reduction in BP, MSNA, fasting
insulin and creatinine clearance was found, whereas cardiac
and sympathetic baroreflex sensitivity were improved (Lambert
et al., 2014). Seravalle et al. evaluated the effect of weight loss
secondary to sleeve gastrectomy or caloric-restricted diet on the
ANS. Six months after surgery, waist circumference, leptin levels
and MSNA were reduced in the surgery group, which persisted
12 months after surgery (Seravalle et al., 2014). Conversely,
insulin sensitivity, evaluated by Homeostatic Model Assessment
(HOMA) index, was reduced after 6 months, but returned to
pre-surgery values after 12 months, suggesting that sympathetic
deactivation induced by weight loss might not influence insulin
sensitivity (Seravalle et al., 2014). However, this conclusion is
limited by the fact that HOMA index is a rough index of insulin
sensitivity; furthermore, since it is derived from fasting insulin
and glucose levels, it is related to hepatic insulin sensitivity rather
than peripheral insulin sensitivity, which is conceivably more
influenced by changes in sympathetic tone.

SNS activity after gastric bypass surgery seem to be lower
than those of obese individuals and thus might blunt energy
expenditure, with negative consequences for weight maintenance
(Curry et al., 2013). We do not know whether different
interventions, i.e., sleeve gastrectomy might lead to the same
phenomenon.

Finally, it is important to note that the surgical procedure
per se might have a direct impact on the autonomic innervation
of the gastrointestinal tract. During surgery, sleeve gastrectomy
and Roux-en-Y gastric bypass (RYGB) may damage the gastric
branches of the vagal nerve in a different manner. Infact in the
sleeve gastrectomy the stomach is cut longitudinally, damaging
the very distal branches of the gastric vagal nerve, while in the
RYGB the stomach is cut transversely, resulting in a damage of
the gastric vagal branches very close to their origin from the
esophageal plexus (Ballsmider et al., 2015). Thus, it is conceivable
that the effects of bariatric surgery on brain-gut axys may
be influenced by the surgically-induced anatomical alterations,
which may affect the integrity of vagal innervation between the
hindbrain feeding centers and the gastrointestinal tract.

THE ANS AS A THERAPEUTIC TARGET IN
OBESITY

Based on the physiopatological background above described, it
is clear the modulation of ANS may induce weight loss and/or
reduce cardiovascular risk in obese patients. VNS, achieved
by implantable or transcutaneous devices, has been associated
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with a significant weight loss in small, non-randomized pilot
studies. Vagal nerve blockade yelded either neutral or positive
effects in term of weight loss in small sham-controlled studies,
but even in this case further evidence is needed. Sympathetic
inhibition accompanied weight loss achieved by diet or surgery.
Interventions targeting SNS are able to improve cardiometabolic
profile in obese individuals.

Vagal Modulation
Since vagal afferents convey to the CNS the gastric distension
signal and satiety signals evoked by gut hormones, it is not
surprising that vagal stimulation has been proposed as a weight
loss intervention. Several studies, carried out in obese animals,
showed that VNS suppressed food intake and weight gain.
Bugajski et al. suggested that VNS, achieved by implantable
electronic devices, mimics activation of gastric mechanoceptors
and jejunal chemoceptors, thus resulting in decreased food intake
and weight loss in obese rats (Bugajski et al., 2007; Figure 1). The
limitations of this study are the monolateral VNS and the use of
constant voltage stimulation (Bugajski et al., 2007). Bilateral VNS
with constant current stimulation induced stable weight loss in
obese minipigs (Val-Laillet et al., 2010). Furthermore, patients
treated with vagal stimulation for severe depression experienced a
relevant weight loss (Pardo et al., 2007) (Table 1). However, this
approach is limited by its high cost and invasiveness, potential
need for reintervention for mechanical failure and/or battery re-
placement, and side effects (Ventureyra, 2000). More recently,
transcutaneous auricular VNS (taVNS) has been proposed to
treat disorders such as epilepsy (Miro et al., 2015) and depression,
drawing inspiration from auricular acupuncture of traditional
chinese medicine (Rong et al., 2016). The rationale for using
taVNS is that anatomical studies showed that the ear is the

only place on the surface of the human body where afferent
vagal nerve distribution is present (Wang et al., 2014). Indeed,
a branch of the vagal nerve provides sensory innervation of the
“cymba conchae” of the external ear (Peuker and Filler, 2002).
Thus, the direct stimulation of the afferent vagal nerve fibers on
the ear may produce similar effects as classic VNS without the
burden of surgical intervention (Henry, 2002). Indeed, cymba
conchae stimulation of auricolar vagal branch activated the
NTS and other vagal projections within the brainstem and
forebrain in healthy adults (Frangos et al., 2015). Furthermore,
in a pilot randomized clinical trial, Huang et al reported an
improvement of in the 2-h glucose tolerance and systolic BP in
after a 12-week treatment with taVNS in comparison with sham
technique (Huang et al., 2014) (Table 1). Finally, taVNS is able
to acutely reduce MSNA and shift cardiac autonomic function
toward parasympathetic predominance in healthy volunteers
(Clancy et al., 2014). These promising findings suggest that in
obese and glucose-intolerant individuals, taVNS may not only
restore insulin resistance and secretion, but also counteract
obesity-related autonomic dysfunction (Lambert et al., 2010;
Seravalle et al., 2014) and thus play a role in reducing its
cardiovascular burden.

On the other hand, gastric emptying is under the control of
vagal efferent fibers. Vagotomy, in experimental animals (Smith
et al., 1983) as well as in humans (Kral, 1978) is able to
delay gastric emptying and impair gastric accommodation to
food, thus inducing weight loss. Since pancreatic secretion is
under vagal control, interruption of vagal efferent fibers induces
malabsorption (Camilleri et al., 2008). Furthermore, vagotomy
in rats prevents the physiological ghrelin increase in fasting
conditions (Williams et al., 2003). Thus, intermittent electric
stimulation of vagal fibers, inducing blockade of the neural

TABLE 1 | Human studies investigating the role of VNS in weight loss and glucose control.

Study Population VNS duration Clinical endpoint Results

Pardo et al., 2007 14 patients with resistant depression 6–12 months Change in level of depression

and weight loss

Mean weight loss—7 kg; BMI

change—2 kg/m2

Huang et al., 2014 70 IGT subjects randomly assigned to the

taVNS group or sham taVNS group 30 IGT

controls without device

6–12 weeks 2-h plasma glucose levels (2hPG)

OGTT at 6 weeks and 12 weeks.

Reduction in 2 hPG in taVNS vs sham

taVNS p = 0.004

TABLE 2 | Human studies investigating the role of vagal nerve blockade (VBLOC) in weight loss, glucose control and caloric intake.

Study Population VBLOC

duration

Clinical endpoint Results

Camilleri et al., 2008 31 obese subjects 6 months % excess weight loss

(%EWL) and caloric intake

EWL 14.2% vs. baseline (p < 0.001)

Caloric intake decreased by 30%

(p < 0.01)

EMPOWER study Sarr

et al., 2012

192 obese subjects with VBLOC 102 obese

subjects with device with a lower charge

delivery

12 months % excess weight loss

(%EWL)

EWL 17 ± 2% in VBLOC vs. 16 ± 2% in

device with a lower charge delivery

(p = ns)

Shikora et al., 2013 26 obese subjects with type 2 diabetes with

VBLOC

12 months % excess weight loss

(%EWL) and glucose control

EWL 25 ± 4% (p < 0.0001) and mean

HbA1c reduction −1 ± 0.2% (p < 0.02)

vs. baseline

ReCharge study Ikramuddin

et al., 2014

162 morbid obese subjects with VBLOC 77

morbid obese subjects with sham device

12 months % excess weight loss

(%EWL)

EWL 24,4% in VBLOC vs. 15,9% in sham

device (p = 0.002)
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transmission, has been tested as a novel weight-loss intervention
(Table 2).

The EMPOWER study evaluated the effects of intermittent,
bilateral blockade of bilateral subdiaphragmatic vagal nerves to
stop both ascending and descending neural traffic, speculating
its involvement in satiety, reduced food intake and weight loss
in morbid obese individuals (Figure 1). However, despite the
solid scientific background linking vagal activity and obesity,
extensively described in the previous sections, the EMPOWER
study yelded negative results: vagal blockade induced a similar
weight loss than the control group, which had the same device
with a lower charge delivery; interestingly, weight loss was related
to device use time in both groups, suggesting that what was
supposed to be a sham therapy was active as well (Sarr et al.,
2012). This hypothesis is confirmed by the ReCharge study, in
which vagal nerve blockade was obtained by using a device that
delivered at least 12 h of therapy per day and was compared a
sham control device that had no possibility of delivering therapy.
Individuals undergoing vagal blockade therapy achieved a greater
weight loss than the sham control group, although the pre-
established efficacy outcomes were not achieved (Ikramuddin
et al., 2014) (Table 2).

Sympathetic Modulation
Given the above-described role of SNS in the pathophysiology
of obesity and its cardiovascular consequences, SNS inhibition is
considered a potential therapeutic target in obesity. As reviewed
above, it is important to underline that interventions aimed at
inducing weight loss by diet or surgery are able to achieve a
significant reduction in SNS tone, in particular in the muscle
vasculature (Lambert et al., 2015).

Indeed, a number of mechanistic studies demonstrated that
acute pharmacologic ganglionic blockade by trimetaphan is able
to reduce blood pressure (Shibao et al., 2007), to improve insulin
sensitivity (Gamboa et al., 2014) and to reverse endothelial
function (Gamboa et al., 2016) in obesity, in particular if
associated with hypertension. However, ganglionic blockers
cannot be used chronically, given their unfavorable profile in
terms of adverse effects.

A significant antihypertensive effect of a combined α and
ß-blockade has been reported in dietary mediated obesity in
dogs consuming high fat diets (Hall et al., 2001) and in obese
individuals in which a greater reduction in BP in comparison to
lean subjects was reported after 1 month of treatment (Wofford
et al., 2001). Adrenergic blockade produced a significantly greater
decrease in BP in obese than in lean patients with hypertension
(Wofford et al., 2001), in line to the results reported with
ganglionic blockade (Shibao et al., 2007). A study suggested
also that the use of a BP-lowering central sympatholytic drug,
moxonidine, might induce a small but significant weight loss,
together with a reduction in blood pressure, triglycerides and
fasting blood glucose (Chazova and Schlaich, 2013), though
another study failed to demonstrate any impact on insulin
sensitivity (Masajtis-Zagajewska et al., 2010). In contrast, β-
blockers may exert negative or neutral effects on body weight
and lipid and glucose profile (Lambert et al., 2015). However,
some authors suggest that β-blockers may be first-choice drug in

the treatment of hypertension in young adults, which is mainly
linked to sympathetic overactivity due to overweight and obesity
(Cruickshank, 2017).

In the past decade, great interest has been placed in device-
based therapies targeting SNS for the treatment of refractory
hypertension, such as renal denervation and baroceptor
activating therapy (Bruno et al., 2013). Given the presence
of sympathetic activation in obesity and its possible role in
pathogenesis of obesity-associated hypertension, as described
above, it may be expected that sympathetic inhibition might have
a relevant impact in obese patients. Indeed, renal denervation
seems able to restore insulin sensitivity in obese dogs (Iyer et al.,
2016) but not in obese hypertensive mice (Asirvatham-Jeyaraj
et al., 2016). Bilateral renal denervation greatly attenuated
sodium retention and hypertension in obese dogs fed a high-fat
diet (Kassab et al., 1995).

Glucose tolerance and glycemic control was significantly
improved 3 and 6 months after renal denervation in 10 patients
with resistant hypertension and OSAS: in this study, BP, but not
BMI, was significantly reduced (Witkowski et al., 2011). This
finding was confirmed in a larger cohort of resistant hypertensive
patients, in whom renal denervation induced a reduction in
blood fasting glucose, insulin, and HOMA-IR after 3 months
(Mahfoud et al., 2011). However, the BP-lowering effect of such
procedures has been recently questioned; furthermore, obese
patients seem to benefit less of renal denervation in terms of BP
reduction (Id et al., 2016).

CONCLUSIONS

In conclusion, obesity is accompanied by increased morbidity
and mortality, mostly related to cardiovascular disease, and
represents a major issue for global healthcare. Thus, the
study of mechanisms underlying its pathogenesis is crucial
to identify novel targets for its treatment. The ANS plays a
major role in the integrated short-term regulation of weight,
modulating the satiety signal and energy expenditure. The
afferent vagal pathways are probably the most important
link between the gut and the brain and interact in a
complex way with gut hormones. SNS has the physiological
function of increasing lipolysis and energy expenditure, through
sympathetic innervation in white and brown adipose tissue;
thus it is abnormally activated in obesity in a compensatory
but ineffective fashion. Sympathetic activation may favor
the development of hypertension and organ damage in
obesity and lead to overt cardiovascular disease. Though
preliminary clinical trials exploring autonomic modulation as
a treatment for obesity yelded contrasting results, mechanistic
and physiopathological studies strongly support this therapeutic
strategy as an appealing and promising approach for obesity
treatment.
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