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Distribution entropy (DistEn) is a recently developed measure of complexity that is

used to analyse heart rate variability (HRV) data. Its calculation requires two input

parameters—the embedding dimension m, and the number of bins M which replaces

the tolerance parameter r that is used by the existing approximation entropy (ApEn) and

sample entropy (SampEn) measures. The performance of DistEn can also be affected by

the data length N. In our previous studies, we have analyzed stability and performance of

DistEn with respect to one parameter (m orM) or combination of two parameters (N and

M). However, impact of varying all the three input parameters on DistEn is not yet studied.

Since DistEn is predominantly aimed at analysing short length heart rate variability (HRV)

signal, it is important to comprehensively study the stability, consistency and performance

of the measure using multiple case studies. In this study, we examined the impact

of changing input parameters on DistEn for synthetic and physiological signals. We

also compared the variations of DistEn and performance in distinguishing physiological

(Elderly from Young) and pathological (Healthy from Arrhythmia) conditions with ApEn and

SampEn. The results showed that DistEn values are minimally affected by the variations

of input parameters compared to ApEn and SampEn. DistEn also showed the most

consistent and the best performance in differentiating physiological and pathological

conditions with various of input parameters among reported complexity measures. In

conclusion, DistEn is found to be the best measure for analysing short length HRV time

series.

Keywords: distribution entropy, heart rate variability, short-term analysis, sample entropy, approximate entropy,

aging, arrhythmia

1. INTRODUCTION

Fluctuations in RR intervals is termed heart rate variability (HRV) (Acharya et al., 2006).
Parameters to quantify HRV are important diagnostic markers to determine pathological cardiac
conditions (Estela et al., 1995). HRV is known to change with age, gender, disease and many
such conditions (Huikuri et al., 1999; Sandercock et al., 2005). In order to quantitatively evaluate
HRV, various linear methods have been proposed and shown to be effective. However, these linear
techniques are not sufficient and may fail in capturing important diagnostic information since
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the physiological systems are highly non-linear in nature
(Huikuri et al., 1999; Acharya et al., 2004). Therefore, approaches
that are able to discover the non-linear dynamics within HRV are
required. With such an aim, a couple of entropy measures, e.g.,
approximate entropy (ApEn) and sample entropy (SampEn), that
reflect the complexity or irregularity of HRV have been developed
(Pincus et al., 1991; Richman and Moorman, 2000; Acharya
et al., 2004; Chen et al., 2009). However, these entropy measures
are found to be highly parameter-dependent. Specifically, their
estimations depend on data length N, dimension m (required
in the delay embedding reconstruction process) and tolerance
r (used to determine whether two vectors are similar) (Pincus,
1991; Yentes et al., 2013; Mayer et al., 2014). An incorrect choice
of these parameters may lead to inconsistent results (Castiglioni
and Di Rienzo, 2008; Lu et al., 2008; Liu et al., 2011; Mayer et al.,
2014). Therefore, current entropy-related studies emphasize on
techniques for the optimal selections of entropy parameters,
thereby increasing the accuracy of complexity results (Lu et al.,
2008).

Among the three parameters, the tolerance parameter r is
considered the most critical since a small variation in the choice
of r leads to a large difference in the assessments of complexity
(Castiglioni and Di Rienzo, 2008; Lu et al., 2008; Liu et al.,
2011; Mayer et al., 2014). Thus, failure to make right choice of
r results in highly misleading results and there is no simple and
reliable method for choosing the value of r. In an attempt to
eliminate the use of r from entropy calculations, we have recently
developed a new entropy method named distribution entropy
(DistEn) (Li et al., 2015). Instead of binning all the vectors
into similar and dissimilar categories, DistEn employs directly
the distribution characteristics of the inter-vector distances. It
introduces a bin number parameter M in order to estimate
the empirical probability density function (ePDF). Unlike the
tolerance r in ApEn or SampEn measurement, M is observed to
be less influential on DistEn.

The influence of parameters N andM on DistEn in the case of
logistic time series data is tested in previous studies and results
showed that the variation of DistEn with N andM was negligible
and thereby DistEn can be considered stable with respect to
N and consistent with regard to M (Li et al., 2015). However,
in those experiments either N or M was kept constant while
varying the other. In our previous study (Udhayakumar et al.,
2015), we have investigated the combined effect of N and M on
DistEn and found that a problem-specific selection of N and M
is important to achieve the best classification performance. We
have also found that a random choice of M in DistEn provides
better results than ApEn and SampEn in classifying arrhythmic
subjects from healthy subjects (Karmakar et al., 2015) especially
for short length HRV signal. However, the effect of embedding
dimension m on the performance of DistEn is yet to be analysed
for both synthetic and physiological time-series.

This study focuses on evaluating the combined impact of
data length N, embedding dimension m and number of bins
M on DistEn for both synthetic and physiological time-series.
The complete DistEn space was revealed by varying N, m
and M for each signal. The assessment was performed by
examining the classification performance of DistEn as a feature

for differentiating—(i) different levels of complexity in synthetic
data; (ii) Young vs. Elderly, using RR interval signal; and (iii)
Arrhythmia vs. Healthy, using RR interval signal. In the same
context, performance of DistEn is compared with the earlier
methods of ApEn and SampEn.

2. DATA AND METHODS

2.1. Data and Subjects
Synthetic data based on logistic time-series and physiological
data extracted the Physionet fantasia, MIT-BIH arrhythmia, and
MIT-BIH normal sinus rhythm databases were used in this study.
Data in Physionet databases are fully anonymized and thus can be
used without IRB approval.

Synthetic data—Logistic time series at two different levels of
complexity were used for the study. Two sets of signals with an
increasing order of complexity were named as “Periodic” and
“Chaotic.” In order to eliminate random factors, we generated
10 realizations (corresponding to different initial values) of the
same type using the logistic map given by xn+1 = axn(1 − xn).
The constant a was set at 3.5 (or 4) with an initial value randomly
chosen between 0.1 and 0.2 in order to generate a “Periodic” and
“Chaotic” level signal respectively. Although larger number of
realizations is better for eliminating random factors, we believe
10 realizations are well enough for this study since the domain
of initial values were restricted in a small range. We only used
logistic map to produce time-series with chaotic and periodic
regimes since it has been the simplest and most widely used
synthetic data examples to demonstrate entropy level variations
(Kaplan et al., 1990; Pincus, 1991; Xie et al., 2008; Chen et al.,
2009; Li et al., 2015). All synthetic signals are generated using
MATLAB R2014b.

Physiologic data—RR interval data of twenty healthy
“Young” (21–34 years old) and twenty healthy “Elderly” (68–
85 years old) subjects were obtained from the Fantasia module
of the PhysioNet database (Goldberger et al., 2000). Each
data corresponds to a 120 min recording of the subject’s
electrocardiogram (ECG) when in continuous supine resting,
sampled at a frequency of 250 Hz. Each group of subjects has an
equal number of men and women. Each RR interval is computed
by an automated algorithm from annotated heartbeats of subjects
(Iyengar et al., 1996) . After extraction of RR series of all subjects
from the database, each signal segment was selected from the
beginning by varying length from 50 to 1,000 beats (total 8
different lengths—50, 100, 200, 300, 400, 500, 750, and 1,000 beats
corresponding to average time durations of 0.78, 1.60, 3.23, 4.88,
6.52, 8.17, 12.30, and 16.44 min, respectively) for each subject.

RR interval time-series of “Arrhythmia” and “Healthy”
subjects were obtained from the MIT-BIH module of the
PhysioNet database (Goldberger et al., 2000). The Arrhythmia
Database contains 48 ECG recordings obtained from 47 subjects
(Moody and Mark, 2001). The subjects included 25 men aged 32
to 89 years and 22 women aged 23 to 89 years. The recordings
were digitized at 360 samples per second per channel with 11-
bit resolution over a 10 mV range. Each beat of every record
was then annotated independently using a slope sensitive QRS
detector (Moody and Mark, 2001). From this, the RR interval
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FIGURE 1 | Variation of Approximate entropy (ApEn) for Synthetic signal (“Chaotic” and “Periodic” ) varying parameters N and r for (A) m = 2, (B) m = 3, (C) m = 4,

and (D) m = 5.

was then computed for each subject. The Normal sinus rhythm
database contains 18 long-term ECG recordings of subjects who
were found to have no significant arrhythmia; they include 5men,
aged 26 to 45, and 13 women, aged 20 to 50. After extraction of
RR series of all subjects from the database, each signal segment
was selected from the beginning by varying length from 50 to
1,000 beats (total 8 different lengths as mentioned in previous
paragraph, which corresponds to average time durations of 0.69,
1.34, 2.67, 3.98, 5.23, 6.16, 9.89, and 13.24 min, respectively ) for
each subject.

2.2. Entropy Measures
In this study, we compared the characteristics and performance
of DistEn as a entropy measure with ApEn and SampEn. The
reason that ApEn and SampEn were used for comparison was
because DistEn was initially proposed to address the dependence
of the existing ApEn and SampEnmethods on tolerance r.

2.2.1. Approximate Entropy (ApEn)
ApEn is an approximation of the conditional probability (Pincus,
1991; Pincus and Goldberger, 1994) of two segments matching at
a length ofm+1 if theymatch atm. The embedding dimensionm
is the length of compared segments of the input time series and

r is the threshold of distance, which is fixed to match segments
when they are compared with each other. Let a time series of
length N be defined as

{

x(n) : 1 ≤ n ≤ N
}

. For a given value of
the embedding dimension m and tolerance r, ApEn is calculated
using following steps:

1. Form (N −m+ 1) vectors of lengthm each, given by

{

Xm
i : 1 ≤ i ≤ (N −m+ 1)

}

where

Xm
i =

{

x(i+ k) : 0 ≤ k ≤ m− 1
}

(1)

2. Take each Xm
i vector of step 1 as a template vector and find its

distance from every vector of Xm
j , where the distance is given

by

dmij = {max|Xm
i − Xm

j |: 1 ≤ j ≤ (N −m+ 1)} (2)

3. Then we define

8m(r) =
1

N −m+ 1

∑N−m+1

[i= 1]
lnCm

i (r) (3)

where, Cm
i (r) is the probability of a vector X

m
j to lie within a

distance r of the vector Xm
i
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FIGURE 2 | Variation of Sample entropy (SampEn) for Synthetic signal (“Chaotic” and “Periodic” ) varying parameters N and r for (A) m = 2, (B) m = 3, (C) m = 4,

and (D) m = 5.

4. The above steps are repeated for m+1, resulting in 8m+1(r)
from which ApEn is defined as

ApEn = 8m(r)− 8m+1(r) (4)

In this study, we usedm = 2, 3, 4, 5 and r = 0.1∗SD to 1∗SDwith
a step size of 0.1 ∗ SD to calculate ApEn for all signals, where SD
denotes standard deviation of the signal. For ease of calculation
and visualization, each RR time-series was normalized to unitary
variance before calculating ApEn.

2.2.2. Sample Entropy (SampEn)
SampEn is a modified version of ApEn to find the irregularity of a
given signal (Richman and Moorman, 2000). Here, self matches
between vectors are avoided from the calculation and the same
number of template vectors are used inm andm+ 1 dimensions.
For a given time series data of length N, sample entropy is
calculated as

SampEn = ln
8m(r)

8m+1(r)
(5)

where

8m(r) =
1

N −m

N−m
∑

i= 1

Cm
i (r) (6)

Cm
i (r) being the probability of a vector X

m
j to lie within a distance

r of the vector Xm
i ,1 ≤ j ≤ (N −m), j 6= i.

Similar to ApEn, we used m = 2, 3, 4, 5 and r = 0.1 ∗ SD
to 1 ∗ SD with a step size of 0.1 ∗ SD to calculate SampEn for
all signals, where SD denotes standard deviation of the signal.
For ease of calculation and visualization, each RR time-series was
normalized to unitary variance before calculating SampEn.

2.2.3. Distribution Entropy (DistEn)
DistEn is initially developed from SampEn with an aim of
improving the inconsistency and minimizing the dependence on
input parameters. The novelty behind DistEn is the assumption
that the inconsistency and parameter-dependence of SampEn-
based measures come from the incomplete assessment of
the distribution of inter-vector distances, and that they can
be eliminated by taking full advantages of the distribution
property (Li et al., 2015). By quantifying the Shannon entropy of
the probability density of inter-vector distances—an assessment
that completely and globally quantifies the distribution property,
the so-developed DistEn displayed improved performance as we
expected (Li et al., 2015).

For a given time series data of lengthN, embedding dimension
m and bin number M the distribution entropy is calculated as
follows.
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FIGURE 3 | Variation of Distribution entropy (DistEn) for Synthetic signal (“Chaotic” and “Periodic”) varying parameters N and M for (A) m = 2, (B) m = 3, (C) m = 4

and (D) m = 5.

1. Form (N −m) vectors of lengthm each, given by

{

Xm
i : 1 ≤ i ≤ (N −m)

}

where

Xm
i =

{

x(i+ k) : 0 ≤ k ≤ m− 1
}

2. Take each Xm
i vector of step 1 as a template vector and find its

distance from vector Xm
j , where the distance is given by

dmij = {max|Xm
i − Xm

j |: 1 ≤ j ≤ (N −m), j 6= i}

A distance matrix D of size (N −m) ∗ (N −m− 1) is formed
by repeating this calculation for all ith template vectors, where
1 ≤ i ≤ (N −m).

3. The elements of distance matrix D are now divided into
M number of equally spaced bins and the corresponding
histogram is obtained.

4. Now, at each bin t of the histogram, its probability is estimated

as pt =
count in bin t

total number of elements in matrix D
; 1 ≤ t ≤ M.

5. By the definition of Shannon entropy, the normalized DistEn
of a given time series x(i), is defined by the expression

DistEn(m,M) =

M
−1

log2(M)

∑

pt log2(pt)

t = 1

,where pt is the

probability of each bin in the histogram.

In this study, we used m = 2, 3, 4, 5 and M =

50, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000 to calculate
DistEn for all signals.

2.3. Statistics
In our study, we used area under the ROC curve (AUC) to test the
efficiency of DistEn as a feature to distinguish signals of different
levels of complexity (synthetic) and RR time series belonging to
different classes (physiologic). The AUC is the probability that
a classifier ranks a randomly chosen instance X higher than a
randomly chosen instance Y , X and Y being samples taken from
two independent populations. An AUC value of 0.5 indicates that
the distributions of the features are similar in the two groups
with no discriminatory power. Conversely, an AUC value of 1.0
means that the distribution of the features of the two groups do
not overlap at all. The AUC value was approximated numerically
using the trapezoidal rules (Hanley and McNeil, 1982) where the
larger the AUC value, the better the discriminatory performance.
MATLAB R2014b Statistics toolbox was used to perform all
statistical operations.

3. RESULTS

The results of this study are divided into two subsections to
summarize—(i) the effect of parameters on entropy values;
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FIGURE 4 | Variation of Approximate entropy (ApEn) for physiological signal (Elderly and Young subjects) varying parameters N and r for (A) m = 2, (B) m = 3, (C)

m = 4, and (D) m = 5.

and (ii) the performance of the entropy measurements
in distinguishing various synthetic signals and physiological
conditions.

3.1. Entropy Values with Varying
Parameters
3.1.1. Synthetic Signal
The variation of mean values of ApEn, SampEn and DistEn
by varying N , m and r (for ApEn and SampEn) or M (for
DistEn) for “Periodic” and “Chaotic” synthetic signals are shown
in Figures 1–3, respectively. ApEn values of both “Periodic” and
“Chaotic” signals were rapidly changing at low values of tolerance
r (Figure 1). For smaller data length, such rapid variations
resulted in lower mean ApEn value of “Chaotic” signal than
“Periodic.” These characteristics ofApEn values remained similar
for all embedding dimensions m = [2, 5] used in this study.
Moreover, with increasing m values the range of data length N
and tolerance r also increased for which mean ApEn values were
unstable (Figure 1). Although average SampEn values varied with
variation of parameters N, r and m, the value of “Periodic”
signal always remained smaller than “Chaotic” signal (Figure 2).
Moreover, the variation was more pronounced for “Chaotic”

signal than “Periodic.” In contrast to ApEn, SampEn showed
more variation with respect to tolerance r than the data length
N for synthetic signal. In addition, similar to ApEn, the variation
in SampEn values especially for “Chaotic” signal increased with
increasing embedding dimension m. Similar to SampEn, average
DistEn value was always lower in “Periodic” signal than “Chaotic”
(Figure 3). However, in contrast to SampEn characteristics the
variation in average DistEn values were more pronounced in
“Periodic” signal than “Chaotic.” For the “Periodic” signal,
DistEn values were affected by variations in bin number M for
all values of data length N. On the other hand, for “Chaotic”
signal although there was subtle variation in DistEn value, it
was mostly due to changes in data length N rather than bin
number M. Therefore, in general, the influence of N is more
pronounced than the influence ofM on DistEn of synthetic data.
In addition, these characteristics of DistEn remained similar over
all embedding dimensionsm = [2, 5].

3.1.2. Physiological Signal
Variation of average ApEn, SampEn and DistEn values with
varying parameter values for HRV signals of Young and Elderly
population were shown in Figures 4–6, respectively. For ApEn
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FIGURE 5 | Variation of Sample entropy (SampEn) for physiological signal (Elderly and Young subjects) varying parameters N and r for (A) m = 2, (B) m = 3, (C)

m = 4, and (D) m = 5.

and SampEn, effect of parameter r (tolerance) was predominantly
higher than that of data length N for all embedding dimensions
m, which was quantified as the average variance across r and N
as shown in Table 1 (Columns 1 and 2 of ApEn and SampEn
measures). It is obvious that σN is less than σr/m for all embedding
dimensions, thus the variations of ApEn and SampEn values
across different r-values are larger than those across different N
values. However, in contrast to ApEn, SampEn was undefined
for smaller data length either for Young or Elderly population.
This undefined SampEn region increased with decreased N,
decreased r and increased m (Figure 5). Table 2 (Column “Case
study 1:Elderly and Young subjects”) showed the ranges of N
and r that resulted in valid SampEn values for each embedding
dimension m. It is obvious that with increasing m, higher r
values were required for shorter data length (N) to obtain valid
SampEn values. This indicates that the SampEn surface is sparser
compared to both ApEn and DistEn, since they are both defined
for all values ofN and r orM. The variation ofDistEn values with
change ofM was higher than variation of N, which indicates that
the effect of bin numberM on DistEn values for both Elderly and
Young subjects were higher than that of N (Figure 6). Table 1
supported this observation quantitatively where the σN was lesser
than σr/m for all embedding dimensions (see columns 1 and 2

for DistEn measure). This is opposite to the behavior observed
for Synthetic signal and this pattern remained similar over all
embedding dimensionsm = [2, 5] (Figure 6).

The variation of average entropy (ApEn, SampEn and
DistEn) values with varying parameter values for Healthy and
Arrhythmia population were shown in Figures 7–9, respectively.
Similar to the previous case study (Young and Elderly
population), SampEn was the only entropy measure that was
undefined for different combinations of N, m and r, especially
at lower N, r and higher m (Table 2- Column “Case study 2:
Healthy and Arrhythmia subjects”). In addition, variation of
entropy values was higher with respect to the change of r than
that ofm for bothApEn and SampEn (Columns 3 and 4 ofTable 1
for ApEn and SampEn measures). On the other hand, although
DistEn values changed with varying N and M, the changes were
relatively small for both of them (Table 1). Moreover, in contrast
to ApEn, there was no crossover in SampEn andDistEn values for
any combination of N,m and r orM.

3.2. Performance by Varying Parameters
Table 3 summarized the performance of the three entropy
measures for classifying i) Elderly from Young and ii) Healthy
(Normal Sinus Rhythm) from Arrhythmia subjects. For “Case
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FIGURE 6 | Variation of Distribution entropy (DistEn) for physiological signal (Elderly and Young subjects) varying parameters N and M for (A) m = 2, (B) m = 3, (C)

m = 4 and (D) m = 5.

TABLE 1 | Average variance across data length (N) and tolerarance (r - for ApEn

and SampEn) or bin number (M for DistEn) for all embedding dimension (m) to

quantify the sensitivity of each entropy measure with respect to their parameters.

Complexity

measure

Embedding

dimension m

Young Elderly Healthy Arrhythmia

σN σr/M σN σr/M σN σr/M σN σr/M

ApEn 2 3.11 5.91 1.70 5.88 1.58 4.55 2.60 5.38

3 1.75 2.80 1.06 2.21 1.00 1.83 1.68 2.03

4 1.24 2.27 0.73 1.33 0.74 1.12 1.04 1.53

5 0.89 1.94 0.53 0.98 0.55 0.78 0.73 1.25

SampEn 2 0.14 27.52 0.32 24.87 3.84 15.80 0.83 23.51

3 0.32 18.03 0.23 13.82 2.84 11.08 0.60 12.11

4 0.31 8.51 0.33 7.57 1.62 4.38 0.47 5.09

5 0.28 5.66 0.31 5.64 0.88 3.06 0.48 4.14

DistEn 2 0.04 0.98 0.03 0.81 0.08 0.48 0.05 0.38

3 0.04 1.00 0.03 0.84 0.08 0.49 0.07 0.41

4 0.04 1.02 0.03 0.86 0.09 0.50 0.09 0.42

5 0.05 1.04 0.03 0.87 0.10 0.50 0.11 0.43

This is a quantitative summary of variations shown in Figures 4–9. σN , Average variance

measured accross data length (N); σr/M, Average variance measured across tolerance (r)

or bin numbers (M) (tolerance for ApEn and SampEn, bin number for DistEn). Values of

σN and σr/M presented in this table are multiplied by 102 for removing leading zeros.

study 1” (Elderly vs. Young) the change in average AUC was
maximum for ApEn (0.72, 0.68) and minimum for DistEn (0.80,
0.79) with respect to embedding dimension m. Similarly, change
in median AUC was also minimum for DistEn (0.81, 0.79)
along with SampEn (0.75,0.73). However, the standard deviation
(SD) and inter-quartile range of DistEn was the lowest for
each embedding dimension m among all entropy measures. In
addition, DistEn showed the highest average and median AUC
values for each embedding dimension m, which indicate that
DistEn is a better measure to distinguish Elderly from Young
subjects than SampEn and ApEn. For “Case study 2” (Healthy
vs. Arrhythmia), although the average AUC value of ApEn and
SampEn changed with the variations of embedding dimension
m, it remained constant for DistEn. Similarly, the median AUC
values of DistEn also remained same (0.92) over the variations of
embedding dimension. Interestingly, although SampEn showed
the lowest SD of AUC values for each embedding dimension
m, the inter-quartile range was the lowest for DistEn. Since
performance of SampEn was calculated only for the range of
parameters defined in Table 2, this reduced number of AUC
values might lead to such small SD values. Similar to ”Case
Study 1," DistEn was also found to be the best measure for
distinguishing Healthy from Arrhythmia subjects (average and
median AUC values were 0.88 and 0.92, respectively).
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TABLE 2 | Range of parameter values for which Sample entropy (SampEn)

measure are defined for both case studies (Case study 1: Elderly and Young

subjects, Case study 2: Healthy and Arrhythmia subjects).

Embedding

dimension

Defined range of N and r

Case study 1: Elderly and

Young subjects

Case study 2: Healthy and

Arrhythmia subjects

m = 2 N = 50; for 0.3 ≤ r ≤ 1 N = 50; for 0.3 ≤ r ≤ 1

N = 100, 200; for 0.2 ≤ r ≤ 1 N = 100; for 0.2 ≤ r ≤ 1

300 ≤ N ≤ 1,000; for 0.1 ≤ r ≤ 1 200 ≤ N ≤ 1,000; for 0.1 ≤ r ≤ 1

m = 3 N = 50; for 0.4 ≤ r ≤ 1 N = 100, 200; for 0.3 ≤ r ≤ 1

N = 100; for 0.3 ≤ r ≤ 1 300 ≤ N ≤ 500; for 0.2 ≤ r ≤ 1

200 ≤ N ≤ 500; for 0.2 ≤ r ≤ 1 N = 750, 1,000; for 0.1 ≤ r ≤ 1

N = 750, 1,000; for 0.1 ≤ r ≤ 1

m = 4 N = 50; for 0.6 ≤ r ≤ 1 N = 50; for 0.6 ≤ r ≤ 1

N = 100; for 0.5 ≤ r ≤ 1 N = 100; for 0.4 ≤ r ≤ 1

N = 200; for 0.4 ≤ r ≤ 1 N = 200, 300; for 0.3 ≤ r ≤ 1

300 ≤ N ≤ 500; for 0.3 ≤ r ≤ 1 400 ≤ N ≤ 1,000; for 0.2 ≤ r ≤ 1

N = 750, 1,000; for 0.2 ≤ r ≤ 1

m = 5 N = 100; for 0.6 ≤ r ≤ 1 N = 50; for 0.7 ≤ r ≤ 1

N = 200; for 0.4 ≤ r ≤ 1 N = 100; for 0.5 ≤ r ≤ 1

300 ≤ N ≤ 750; for 0.3 ≤ r ≤ 1 N = 200; for 0.4 ≤ r ≤ 1

N = 1,000; for 0.2 ≤ r ≤ 1 300 ≤ N ≤ 500; for 0.3 ≤ r ≤ 1

N = 750, 1,000; for 0.2 ≤ r ≤ 1

Table 4 showed the best performance obtained for each
entropymeasure by varying parametersm and r/M for minimum
(50 beats) and maximum (1,000 beats) data lengths. It is obvious
that DistEn outperformed ApEn and SampEn for minimum data
length (50 beats) in both case studies (AUC for DistEn (0.82,
0.94), ApEn (0.75, 0.67) and SampEn (0.75, 0.66)). In contrast to
minimum data length,DistEn showed a comparable performance
in both case studies for maximum data length (1,000 beats)
(Table 4).

4. DISCUSSION

Several studies have shown that HRV is capable of tracking
cardiovascular disease development (Thayer et al., 2010),
assessing mental disorders (Kemp and Quintana, 2013),
and reflecting autonomic dysregulation (Sgoifo et al.,
2015). The recent emergence of wearable devices and
mobile applications further promotes the development
of this translational field by offering the opportunity for
continuous and long-time monitoring of HRV (Walsh et al.,
2014). To achieve this goal, the quantification methods
should be able to accept short or even extremely short
HRV series as input without (or minimally) affecting the
results.

Distribution entropy (DistEn) has been shown to be a reliable
measure of complexity for short length HRV time series (Li et al.,
2015; Udhayakumar et al., 2015). DistEn takes full advantage
of the state space representation of the original HRV series,
by measuring the probability distribution from all inter-vector
distances, to alleviate the problem that traditional measures,

e.g., approximate entropy (ApEn) and sample entropy (SampEn),
suffer for short length signal (Li et al., 2015). The fact that
time series with different dynamics have different distribution
profiles, suggests the distribution property probably intrinsic
and provides a rationale for DistEn to employ the probability
density function of the distances as a media for complexity
analysis (Li et al., 2015). Performance of DistEn has been
tested by surrogate data analysis, simulation models, and real
experimental data (Li et al., 2015; Udhayakumar et al., 2015).
DistEn introduced another parameter—M (bin number used
to estimate the empirical probability density) to replace r
(threshold value)—in ApEn and SampEn calculation. We have
shown using both benchmark data and real HRV series that
the selection of M is not as critical as r (Li et al., 2015;
Udhayakumar et al., 2015). We have also proved that DistEn
remains relatively stable with extremely short series whereas the
two traditional measures fail. In addition to M and N, there is
yet another parameter—m (embedding dimension)—that needs
to be considered in order to fully span theDistEn space. Together,
they may have some combined impacts on DistEn performance,
which has not yet been determined and that motivated our
current study.

Intriguingly, the results are as what we expected:

• DistEn varied less with different combinations of
m, M, and N as compared with ApEn and SampEn
(Figures 3, 6, 9).

• For even very small data lengths, N, DistEn still could result
in reasonable values rather than invalid or extreme values
(Table 2).

• DistEn performed the best among the three in differentiating
Elderly subjects from Young, or differentiating Arrhythmia
subjects from Healthy (Table 3).

• Performance of DistEn is minimally affected by the input
parameters compared to ApEn and SampEn in both case
studies (Table 3).

• The best performance of DistEn is always the highest among
the three entropy parameters in differentiating Elderly subjects
from Young, or differentiating Arrhythmia subjects from
Healthy for shortest data length and comparable for longest
data length (Table 4).

In brief, the main findings of this study proved the stability
and consistency of DistEn with variations of input parameters.
DistEn also showed better performance in distinguishing healthy
“Young” from “Elderly” and “Healthy” from “Arrhythmic”
subjects than that with other popular entropy measures ApEn
and SampEn. The results of this study showed that average AUC
of DistEn varied least with change of embedding dimension
(compared to ApEn and SampEn). Also, the average AUC
of DistEn remained the highest among those of the studied
entropy measures. This indicates that DistEn is the best
feature and the performance is minimally affected by the
choice of entropy measurement parameters. In addition, low
inter-quartile range (IQR) of AUC value of DistEn further
establishes the findings that the performance of DistEn is
least affected by choice of parameters compared to ApEn and
SampEn.
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FIGURE 7 | Variation of Approximate Entropy (ApEn) for physiological signal (Healthy and Arrhythmia) varying parameters N and r for (A) m = 2, (B) m = 3, (C) m = 4,

and (D) m = 5.

From results, it is obvious that DistEn showed the best
performance (maximum AUC value for any combination of
parameters) for minimum data lengths (Table 4). Although the
differences in margins among the best performances for “Case
study 1” are small, these performances of ApEn and SampEn
are obtained with very high tolerance r values (0.9 and 1),
which fall outside the range of traditionally recommended range
(between 0.1 and 0.25). On the other hand, for longest data length
(1,000 beats) the best performance of DistEn is comparable with
ApEn and SampEn. This further suggests that existing entropy
measures fail in short-length data, although they show good
performance for long-length data. However, similar to short
length data, most of these performances of ApEn and SampEn
are obtained at very large tolerance values (0.8 and 1) except
“Case study 2” of SampEn, where tolerance value (r = 0.3)
remains within the traditional range. These results further prove
that performance of ApEn and SampEn is highly sensitive and
inconsistent with varying parameters compared to DistEn.

Findings of this study shows that higher tolerance (r) values
are needed for obtaining SampEn values for short length
signal, which is aligned with previously reported findings (Xie
et al., 2008; Li et al., 2015). The minimum r value for
obtaining SampEn value also increases with increasing value

of embedding dimension m (Table 2). The SampEn measure
becomes undefined for tolerance values for which none of the
vector matches with any of the template vectors i.e., φm(r) = 0
or φm+1(r) = 0. This indicates that lenient tolerance value
is necessary for measuring SampEn of short length signal. In
contrast to SampEn, both ApEn and DistEn remain defined for
all data lengths. The ApEnmeasure is defined for any data length
and tolerance value, since it considers self-matching of template
vectors i.e., the probability of a vector to lie with in a distance
r of the template vector is always greater than zero (Cm

i (r) > 0

or Cm+1
i (r) > 0 ). On the other hand, since DistEn measure

uses all distances between each pair of vectors in state-space to
generate the probability distribution, it is always defined for any
data length.

In the case of Synthetic signals, although subtle variations
were present in the values, all three measures used in this
study (ApEn, SampEn, and DistEn) were able to perfectly
distinguish (AUC = 1) "Chaotic" signal from "Periodic" signal
for all combination of parameters. However, such consistency in
performance was not found for physiological signal where the
signal is neither periodic nor chaotic. In particular, for short
length signal the performance of ApEn and SampEn was worse
compared to DistEn. However, both ApEn and SampEn showed
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FIGURE 8 | Variation of Sample Entropy (SampEn) for physiological signal (Healthy and Arrhythmia) varying parameters N and r for (A) m = 2, (B) m = 3, (C) m = 4,

and (D) m = 5.

better or comparable performance with DistEn in case of larger
data length (N = 1,000). This indicates that the consistency and
performance of ApEn and SampEn are highly affected by the
choice of parameters especially for physiological signal analysis.

The calculation over the inter-vector distances in DistEn
algorithm may essentially account for its improvement.
Specifically, by estimating the probability density of all inter-
vector distances, the amount of used information in DistEn is
strikingly increased from the order of N to N2. When N is small,
the estimation of the probability of only “similar vectors” inApEn
and SampEn will become severely unreliable (due to inadequate
information of the “similar vectors” though ApEn and SampEn
indeed also calculate all the inter-vector distances), whereas
DistEn will not be affected significantly with the increased
information. In a previous study, we also proved that the use
of the probability density rather than the probability of only
“similar vectors” is theoretically reasonable (Li et al., 2015). With
this study, we further confirmed our previous hypothesis that
the performance of complexity estimates could be improved by
globally quantifying the inter-vector distances in the state-space
(Li et al., 2015).

Given the methodological discrepancies between DistEn and
comparedmeasures (ApEn and SampEn), it is reasonable to recall

the existing questions—what is complexity and how can it be
measured. Although until most recently, they remain being the
source of many scientific arguments (Mitchell, 2009), researchers
have proposed some measurements to estimate complexity from
different scenarios, the irregularity of time-series which can be
quantified by ApEn and SampEn included. However, a high
irregularity level may not necessarily be indicative of a high
complexity; instead, the irregularity increases with the degree
of randomness (Costa et al., 2002). In our previous work (Li
et al., 2015), we tried to propose a concept that the "spatial
structure", instead of only the conditional probability of similar
vectors that have been used in ApEn and SampEn, might be
an indicative feature of complexity. We applied the empirical
probability density function (ePDF) of inter-vector distances to
characterize this spatial structure in DistEn measure and found
that time-series with different dynamics had distinctly different
ePDFs: (i) a time-series with chaotic regime is accompanied
by dispersedly distributed inter-vector distances; and (ii) the
distribution becomes concentrative for periodic time-series.
Based on this concept, periodic time-series are not always
accompanied with a DistEn of 0 since they could indicate
different distribution patterns in term of the spatial structure
and consequently, it could be reasonable to offer them different
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FIGURE 9 | Variation of Distribution Entropy (DistEn) for physiological signal (Healthy and Arrhythmia) varying parameters N and M for (A) m = 2, (B) m = 3, (C)

m = 4, and (D) m = 5.

TABLE 3 | Comparison of classification performance of ApEn, SampEn and DistEn for two case studies.

Embedding dimension Complexity measure Elderly vs. Young Healthy vs. Arrhythmia

Mean(SD) Median (1st -3rd) Mean(SD) Median (1st -3rd)

m = 2 ApEn 0.72(0.08) 0.74(0.68− 0.78) 0.75(0.10) 0.77(0.68− 0.83)

SampEn 0.72(0.07) 0.73(0.68− 0.77) 0.74(0.08) 0.77(0.71− 0.79)

DistEn 0.80(0.05) 0.81(0.76− 0.84) 0.88(0.11) 0.92(0.89− 0.93)

m = 3 ApEn 0.71(0.11) 0.72(0.63− 0.80) 0.69(0.12) 0.72(0.57− 0.79)

SampEn 0.74(0.06) 0.75(0.70− 0.80) 0.74(0.07) 0.76(0.72− 0.79)

DistEn 0.80(0.05) 0.79(0.76− 0.84) 0.88(0.11) 0.92(0.90− 0.93)

m = 4 ApEn 0.69(0.10) 0.70(0.61− 0.78) 0.66(0.12) 0.66(0.56− 0.77)

SampEn 0.74(0.07) 0.74(0.68− 0.80) 0.75(0.07) 0.77(0.73− 0.79)

DistEn 0.79(0.05) 0.80(0.76− 0.83) 0.88(0.11) 0.92(0.90− 0.93)

m = 5 ApEn 0.68(0.09) 0.69(0.60− 0.76) 0.65(0.10) 0.62(0.57− 0.74)

SampEn 0.73(0.06) 0.74(0.69− 0.80) 0.76(0.05) 0.76(0.74− 0.78)

DistEn 0.79(0.05) 0.79(0.76− 0.82) 0.88(0.10) 0.92(0.91− 0.93)

Performances measured for each embedding dimension m. Mean, average AUC value; SD, standard deviation of AUC values; Median, median AUC value; 1st, AUC value at 25th

percentile; and 3rd, AUC value at 75th percentile.

complexity levels. The correlation of DistEn with Lyapunov
exponent (LE) for a series of logistic maps has been studied to
show that DistEn correlates with LE or KS entropy in a chaotic

system. We have also studied the correlation between DistEn
and SampEn. The results shows that the correlation between
DistEn and LE is higher than DistEn and SampEn (Figure S3 in
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TABLE 4 | Combination of parameters (r/M,m) that shows best classification

performances (AUCmax ) of ApEn, SampEn and DistEn with minimum (50 beats)

and maximum (1,000 beats) data lengths for two case studies used in this study.

Data

length N

Complexity

measure

Elderly vs. Young

r/M,m(AUCmax)

Healthy vs. Arrhythmia

r/M,m(AUCmax)

50 ApEn 1, 2(0.75) 0.9, 5(0.67)

SampEn 1, 2(0.75) 1, 2(0.66)

DistEn 100, 4(0.82) 200, 2(0.94)

1000 ApEn 0.8, 3(0.85) 1, 2(0.92)

SampEn 0.8, 3(0.84) 0.3, 2(0.87)

DistEn 2000, 5(0.82) 400, 5(0.93)

Supplementary Material). In addition, since DistEn was initially
developed with the aim of solving the parameter- and length-
dependence of ApEn and SampEn, we restricted the comparisons
to only ApEn and SampEn in the current study. However, other
measures, e.g., Lyapunov exponent, fractal dimension, recurrent
quantification analysis based measures, and moment statistics,
may also potentially be comparative algorithms. Although the
study reported synthetic signal generated using logistic map
with chaotic and periodic regimes, performance of DistEn in
distinguish other chaotic and random behaviors are shown in
Figures S1, S2 (Supplementary Material). Finally, it should be
noted that the method we have applied to assess the distribution
property—the estimation of empirical probability density—is
exactly the first trial in order to prove our initial assumption,
that is, complexity of time series can be more robustly assessed by
taking full advantages of the distribution property of inter-vector
distances (Li et al., 2015). The current study has given us chance
to understand more about the performance of DistEn and its

possible limitations, e.g., how estimation of empirical probability
density affects the outcome. Further exploration in this regard
should be warranted to improve the DistEnmeasurement.

The complexity or irregularity in HRV is a long established
bio-marker to evaluate health status (Lipsitz and Goldberger,
1992) and the recent studies with HRV measurement has
shown the capacity of predicting the future health status using
it (Van Gestel et al., 2011; Hsiung et al., 2015). This study analyses
the comprehensive characteristics of different entropy measures
for short-length HRV series, which will be of significant help
in selecting appropriate entropy measure and its parameters for
future applications.
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