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Composed by a molecule of adenine and a molecule of ribose, adenosine is a paradigm

of recyclable nucleoside with a multiplicity of functions that occupies a privileged position

in themetabolic and regulatory contexts. Adenosine is formed continuously in intracellular

and extracellular locations of all tissues. Extracellular adenosine is a signaling molecule,

able to modulate a vast range of physiologic responses in many cells and organs,

including digestive organs. The adenosine A1, A2A, A2B, and A3 receptors are P1

purinergic receptors, G protein-coupled proteins implicated in tissue protection. This

review is focused on gastric acid secretion, a process centered on the parietal cell of the

stomach, which contains large amounts of H+/K+-ATPase, the proton pump responsible

for proton extrusion during acid secretion. Gastric acid secretion is regulated by an

extensive collection of neural stimuli and endocrine and paracrine agents, which act either

directly at membrane receptors of the parietal cell or indirectly through other regulatory

cells of the gastric mucosa, as well as mechanic and chemic stimuli. In this review, after

briefly introducing these points, we condense the current body of knowledge about the

modulating action of adenosine on the pathophysiology of gastric acid secretion and

update its significance based on recent findings in gastric mucosa and parietal cells in

humans and animal models.

Keywords: extracellular adenosine, enteric nervous system, purinergic signaling, gastric acid secretion regulation,

gastric mucosa

INTRODUCTION

Adenosine is a purine nucleoside widely found in nature. It is a component of the nucleotides ATP,
ADP, AMP, of the cyclic nucleotide cAMP, of the nucleotide polymer RNA in all its forms and of
the redox coenzymes NAD+, NADP+, and FAD, all of which are critic molecules for (unicellular
and multicellular) life. However, in the extracellular space adenosine is a signaling molecule, able
to bind to and activate four different G protein-coupled receptors (GPCRs) designated A1, A2A,
A2B, and A3 (Fredholm et al., 2001a). Receptors for adenosine are expressed across species and by
virtually all tissues (Burnstock, 2007; Fredholm and Verkhratsky, 2010). The gastrointestinal tract

Abbreviations: ACh, acetylcholine; ADA, adenosine deaminase; ADP, adenosine 5′-diphosphate; AMP, adenosine

5′-monophosphate; ATP, adenosine 5′-triphosphate; CaMKII, calcium/calmodulin-dependent protein kinase II; cAMP,

cyclic adenosine 5′-monophosphate; CCK, cholecystokinin; CNS, central nervous system; CNT, concentrative nucleoside

transporter; ECL, enterochromaffin-like; ENS, enteric nervous system; ENT, equilibrative nucleoside transporter; GPCR,

G protein-coupled receptor; NECA, 5′-N-ethylcarboxamideadenosine; PACAP, pituitary adenylate cyclase activating

polypeptide; PKA, protein kinase A; PKC, protein kinase C; SLC, solute carrier; SST, somatostatin; UDP, uridine

5′-diphosphate; UTP, uridine 5′-triphosphate.
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is an adenosine target but, whereas a role for adenosine in
dampening intestinal inflammation is rather well established
(reviewed, among others, by Ye and Rajendran, 2009; Colgan and
Eltzschig, 2012; Borea et al., 2016) and the precise localization
of adenosine receptors in the human small and large intestine
is known (Antonioli et al., 2008; Christofi, 2008), the body of
evidence concerning the impact of adenosine on one of the
most important tasks of the stomach, i.e., acid secretion, is yet
fragmentary and inconclusive.

The stomach fulfills important tasks in the mechanic and
chemic digestion of food. The acidic gastric juice acts as a barrier
against ingested pathogens and makes enzymatic digestion
possible. During digestion the pH of the gastric lumen reaches
values of 1–2, which requires specialized cells to produce and
secrete great amounts of hydrochloric acid. Those cells are called
parietal cells and are mainly located in the oxyntic mucosa.
Stomach is equipped with protective measures to ensure that
its mucosa is not damaged by acid. Mucous cells of the neck
of gastric glands secrete protective mucus and surface cells
secrete bicarbonate. That generates an alkalinemucus barrier that
protects mucosal surface while gastric contents remain acidic. On
the other hand, gastric acid secretion must be tightly regulated.
Several cells of gastric mucosa including gastrin-secreting (G),
enterochromaffin-like (ECL), and somatostain-producing (D)
cells plus neuronal and mechanic stimulation participate in a
regulatory network that ultimately controls acid secretion by
parietal cells. An imbalance in protective mechanisms or in acid
secretion regulation can lead to hyposecretion or hypersecretion
of acid or diseases like gastroesophageal reflux disease, which
has an estimated prevalence of about 20% in Europe and South
and North America that can reach up to 33% in the Middle East
(El-Serag et al., 2014).

The human stomach is organized into two functional areas:
the oxyntic area (fundus and corpus or body), where most of the
parietal cells reside, and the antrum or pyloric area, containing
most of the gastrin-secreting G cells as well as mixed-type glands
positive for both parietal and G cells (Choi et al., 2014).

After summarizing the most studied regulatory pathways of
acid secretion, the current reviewwill mainly focus on the sources
and action mechanisms of extracellular adenosine. Furthermore,
it puts together the body of evidence that exists about the role
of adenosine in acid secretion regulation, pinpointing seemingly
paradoxical actions in different study models.

ACID SECRETION AND ITS REGULATION

Parietal cells are highly specialized epithelial cells, with
distinctive morphologic features that support their acid-secreting
function. In resting state, the apical plasma membrane presents
small invaginations or canaliculi that project throughout the
cell interior and interconnect. Cytoplasm contains abundant
membrane structures called tubulovesicles rich in H+/K+-
ATPase, the proton pump responsible for proton extrusion
during acid secretion (Duman et al., 2002). Tubulovesicles
fuse with the apical plasma membrane upon activation of acid
secretion, and so themorphology of the cell undergoes a dramatic

change, with enlarged canaliculi and longer microvilli (Forte
et al., 1977; Forte and Yao, 1996).

H+/K+-ATPase exchanges an intracellular hydrogen ion for
an extracellular potassium ion, consuming ATP in the process.
H+/K+-ATPase can generate a gradient of 6 pH units. Sustained
proton extrusion requires two other ion transport processes to
occur in the apical plasma membrane of parietal cells. One
of them is chloride secretion, which is necessary to maintain
electroneutrality during acid secretion. The precise identity of
the chloride ion pathway has not been established yet, and at
least three candidates are considered: cystic fibrosis conductance
regulator (Sidani et al., 2007), chloride channel protein 2
(Malinowska et al., 1995; Hori et al., 2004), and solute carrier
(SLC) 26A9 (Xu et al., 2008). The other one is potassium
recycling, necessary to avoid luminal potassium depletion,
which would impair H+/K+-ATPase activity (Heitzmann
and Warth, 2007). Potassium must leak into the lumen
through channels or transporters, but the exact pathway
potassium takes has not been elucidated. Candidates include
the voltage-gated potassium channel KCNQ1 (Heitzmann
and Warth, 2007), several inward-rectifier potassium channel
(Kir) family members (Malinowska et al., 2004; Kaufhold
et al., 2008) and K-2Cl cotransporter KCC4 (Fujii et al.,
2009).

Basolateral ion transport is also required in acid secretion.
Those processes compensate for apically secreted ions and
maintain intracellular pH by secreting bicarbonate ions to the
extracellular fluid. More information on this matter can be found
in other review works (Kopic et al., 2010).

Secretion of acid is regulated by an intricate network
of paracrine (histamine, somatostatin), endocrine (gastrin,
somatostatin), and neural [acetylcholine (ACh) and others]
components. It involves the intercommunication of parietal cells
with specialized cells of the gastric mucosa (ECL cells in the body
and fundus, G cells in the antrum andD cells in the antrum, body,
and fundus) and neurons (a comprehensive summary is shown in
Table 1 and Figure 1).

Vagal Stimulation
Vagal stimulation of acid secretion has long been known.
Parietal cells receive direct vagal stimulation, usually mediated
by cholinergic neurons of the enteric nervous system (ENS).
ACh acts via muscarinic M3 receptors (Kajimura et al.,
1992) and induces the mobilization of Ca2+ from cellular
stores via phospholipase C activation and inositol triphosphate
elevation (Chew and Brown, 1986; Wilkes et al., 1991). Calcium
subsequently activates several kinases, like calcium/calmodulin-
dependent protein kinase II (CaMKII) and protein kinase C
(PKC). CaMKII has a stimulatory effect on acid secretion, early
proven by the fact that its pharmacologic inhibition abolishes
the cholinergic activation of parietal cell secretion (Tsunoda
et al., 1992). The role of PKC in acid secretion is more
complex due to the different roles different PKC isoforms play.
While PKC-ε induces a rise in basal intracellular calcium levels,
therefore sensitizing the cell to stimulation, PKC-α inhibits acid
secretion by down-regulating CaMKII activity (Fahrmann et al.,
2002).
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TABLE 1 | Functional specialization of the gastric gland cells.

Cell type Main location Main stimulant Substance secreted Function of the secretion

Mucous neck cells Fundus Tonic secretion Mucus

Bicarbonate

Provides a physic barrier between the lumen and the epithelium.

Buffers gastric acid to avoid epithelium damage.

Parietal cells Oxyntic area ACh, Gastrin, Histamine Hydrochloric acid (HCl, gastric acid)

Intrinsic factor

Activates pepsin, kills bacteria.

Permits vitamin B12 absorption.

ECL cells Corpus ACh, Gastrin Histamine Stimulates gastric acid secretion.

Chief cells Corpus ACh, Secretin Pepsinogen

Gastric lipase

Digests proteins.

Digests fats.

G cells Antrum ACh, Peptides, Aminoacids Gastrin Stimulates gastric acid secretion.

D cells Oxyntic area Acid in the stomach,

Gastrin, Cholecystokinin

Somatostatin Inhibits gastric acid secretion.

Mucous cells

(gastric epithelium)

Antrum Tonic secretion Mucus

Pepsinogen

Provides a physic barrier between the lumen and the epithelium.

Digests proteins.

ECL, enterochromaffin-like; ACh, acetylcholine.

FIGURE 1 | Major players in gastric acid secretion. Apical secretion of hydrochloric acid by the parietal cell requires three ion transport processes: an

H+/K+-ATPase-mediated exchange of intracellular hydrogen ion for an extracellular potassium ion, and chloride secretion and potassium recycling, which are

necessary to maintain electroneutrality and avoid luminal potassium depletion. Secretion is mainly regulated by activation: (i) of receptors for the secretagogues

acetylcholine, histamine, and gastrin that are mainly secreted by the enteric nervous system, enterochromaffin-like (ECL) cells, and G cells, respectively, and (ii) of

receptors for inhibitory somatostatin released by D cells.

Gastrin
Gastrin is a peptide hormone produced by G cells, present in the
gastric antrum. It is released in response to a variety of stimuli.
Amino acids and amines in the gastric lumen can stimulate
gastrin release via calcium-sensing receptor (DelValle et al., 1990;
Goo et al., 2010), thus G cells can directly respond to the arrival of
food. They also receive direct stimulation of ENS neurons, which
release ACh and gastrin-releasing peptide after input from the
vagus nerve (Madaus et al., 1990; Debas and Carvajal, 1994). On
the other hand, paracrine somatostatin arriving from nearby D
cells represents the most important inhibitory signal for gastrin
secretion (Zavros et al., 2003).

Gastrin travels in the bloodstream and directly and indirectly
promotes acid secretion by acting on ECL cells and parietal cells
upon binding to cholecystokinin (CCK) receptor type 2 (CCK2)
(Kulaksiz et al., 2000). ECL cells respond by secreting histamine
(Hakanson and Liedberg, 1970), which potently induces acid
secretion by parietal cells (see below). This activation cascade
is usually named gastrin-histamine axis. Gastrin might induce

H+/K+-ATPase activation directly on parietal cells (Hills et al.,
1996), although less evidence seems to support this concept. An
analysis of isolated parietal cells indicated that CCK2 activation
by gastrin induces a rise of intracellular calcium (Cabero
et al., 1992), which might induce translocation of H+/K+-
ATPase to the apical membrane in a similar way to cholinergic
induction.

Histamine
Histamine is secreted by ECL cells and acts on adjacent parietal
cells, probably being the most potent inducer of acid secretion.
ECL cells release histamine in response to gastrin and neuronal
signals. ENS neurons also secrete pituitary adenylate cyclase
activating polypeptide (PACAP), a neuropeptide that binds to a
surface receptor of ECL cells and induces histamine secretion
(Sandvik et al., 2001). Histamine acts on parietal cells via H2
receptor, a GPCR that induces both a Gs-dependent activation
of adenylate cyclase and cAMP increase and a Gq-dependent
rise in calcium levels (Hill et al., 1997). As discussed earlier,
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calcium has a positive effect on acid secretion, and so does
cAMP. It activates protein kinase A (PKA)which, in turn, triggers
a phosphorylation cascade that activates several downstream
effectors leading to the translocation of H+/K+-ATPase to the
apical membrane (reviewed by Yao and Forte, 2003). Given
the central role of histamine in acid secretion H2 receptor has
become a pharmacologic target of interest; H2 antagonists have
been developed that prevent gastroesophageal reflux disease,
although other drugs like proton pump inhibitors have been
proven to be more effective (Khan et al., 2007).

Somatostatin
Somatostatin is the main negative regulator of acid secretion. It is
a hormone and paracrine peptide produced in the stomach by D
cells. These cells are present in the oxyntic mucosa, where they
negatively regulate ECL and parietal cell function, and also in
the antral mucosa, where they negatively regulate G cell function
(Alumets et al., 1979; Kamoshida et al., 1999). The physiology and
morphology of both cell populations is somewhat different.

D cells secrete somatostatin in response to several stimuli.
One of them is gastrin, which induces somatostatin secretion
(Zavros et al., 1998), which in turn inhibits gastrin secretion
from G cells. Therefore, the gastrin-somatostatin axis constitutes
a negative feedback mechanism that maintains gastrin levels and
acid secretion under control. Another positive stimulus is CCK,
a peptide hormone secreted by the small intestine I cells as a
response to luminal lipids; by stimulating somatostatin secretion
CCK inhibits acid secretion during intestinal digestion (Konturek
et al., 1992).

Luminal pH is probably the most important inducer of
somatostatin release. Antral D cells are often called open type,
because they possess extensions that make contact with the
luminal content (Lamberts et al., 1991). Although the exact
molecular pathway by which D cells sense luminal pH has
not been described yet, calcium-sensing receptor is a plausible
candidate (Goo et al., 2010; Adriaenssens et al., 2015). Apart from
the direct effect on D cells, spinal neurons have been proposed
to mediate luminal pH-induced somatostatin release. Oxyntic D
cells are called closed type and are not in contact with gastric
lumen, whereby it is unlikely they participate in pH sensing.

Cholinergic signaling has also been described to regulate
somatostatin release, although its action is different on antral
and oxyntic D cells; cholinergic agonists induce somatostatin
release in antral D cells via M3 receptor (Buchan et al., 1992)
while they inhibit somatostatin release in oxyntic D cells (Chiba
and Yamada, 1990). Other ENS neuropeptides that have been
described to induce somatostatin release include the vasoactive
intestinal peptide (Zdon et al., 1988) and PACAP (Li et al., 2000).

Somatostatin functions as an overall brake on acid secretion
since it negatively regulates parietal cells, G cells and ECL
cells via SST2 receptor. In parietal cells, somatostatin inhibits
acid secretion (Wyatt et al., 1996), in part via a Gi protein-
induced decrease of cAMP levels (Park et al., 1987). In ECL cells
somatostatin reduces Ca2+ currents, preventing intracellular
calcium elevation induced by gastrin and, thus, exocytosis of
histamine (Bjorkqvist et al., 2005). The molecular pathway by
which somatostatin inhibits G cells has not been elucidated yet,

although direct contacts between D cells and G cells and control
of G cell function by somatostatin were recognized early (Larsson
et al., 1979).

Ghrelin
Ghrelin is a peptide that defines the anatomical body of the
human stomach (Choi et al., 2014) and seems to induce acid
secretion by stimulating histamine production by ECL cells
(Schubert, 2015). Other compounds have been also reported
to affect directly or indirectly gastric acid secretion. The effect
of compounds like interleukin-1β, neurotensin, nitric oxide,
oxyntomodulin, secretin, and serotonin is most likely inhibitory,
although it remains a matter of debate (reviewed by Kopic and
Geibel, 2013).

EXTRACELLULAR ADENOSINE: SOURCES
AND RECEPTORS

Enzymes and Transporters Modulating
Extracellular Adenosine
In vivo the extracellular concentration of a signaling molecule
depends on a balance between its formation, release, uptake, and
degradation or transformation. The adenine nucleotides AMP,
ADP, and ATP and the nucleoside adenosine are components of
the purinergic signaling. In general, ATP and adenosine are the
main purinergic effectors. They are present both inside cells and
in the extracellular milieu and are released by intact, living cells
by different means.

In neuroendocrine and exocrine cells ATP secretion occurs
mainly via regulated exocytosis (Evans and Surprenant, 1992;
Evans et al., 1992; Gualix et al., 1996; Sorensen and Novak,
2001; Lazarowski, 2012) (Figure 2). Under a variety of conditions
ATP can also be transported through the plasma membrane
by conductive mechanisms mediated by anion channels and by
connexin hemichannels and pannexin channels (reviewed by
Lazarowski, 2012). Concerning adenosine, it can be released
through the ubiquitous equilibrative nucleoside transporters
(ENTs; SLC29) following the concentration gradient (Griffith
and Jarvis, 1996; Thorn and Jarvis, 1996). Increased levels of
extracellular ATP can also lead to rapid formation of adenosine
by the sequential action of the ectonucleoside triphosphate
diphosphohydrolase (CD39) family of enzymes, which convert
ATP to AMP, and ecto-5′-nucleotidase (CD73), which converts
AMP to adenosine (Yegutkin, 2008).

As a signaling termination mechanism, adenosine is taken
up by cells or metabolized in the extracellular medium
(Figure 2). The uptake system includes ENTs, which are the
main transporters in the rapid clearance of adenosine (Nguyen
et al., 2015), and concentrative nucleoside transporters (CNTs),
that move nucleosides against the concentration gradient (Thorn
and Jarvis, 1996). Metabolization includes adenosine deaminase
(ADA), which forms inosine as a terminal metabolite (Cristalli
et al., 2001) and adenosine kinase, which regenerates the
nucleotide AMP and thereby refills the adenine nucleotides
reservoir (Boison, 2006). Using selective inhibitors Nguyen
et al. (2015) demonstrated that multiple adenosine clearance
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FIGURE 2 | Adenosine metabolism in the extracellular space. Extracellular adenosine mainly derives from the phosphohydrolysis of precursor nucleotides ATP, ADP,

and AMP by ectonucleotidases CD39 and CD73. Adenosine levels also depend on the activity of equilibrative and concentrative nucleoside transporters ENTs and

CNTs, that allow the nucleoside to cross the plasma membrane, and of adenosine deaminase that degrades irreversibly adenosine to inosine. Purinergic receptors

comprise the ligand-gated ion channel P2X and the G protein-coupled receptors (GPCRs) P2Y for nucleotides, and the four GPCRs for adenosine (P1). ENTPD, family

of ectonucleoside triphosphate diphosphohydrolases. Purinergic receptors (P1 and/or P2) and other proteins co-expressed on the membrane may form cell

type-specific combinatorial signaling units.

mechanisms are redundant preventing adenosine extracellular
accumulation.

Release of ATP in the Stomach Wall
Most nerve terminals contain and release ATP together with
classical transmitters such as ACh, norepinephrine, dopamine,
glutamate, gamma-aminobutyric acid, and neuropeptides
(Burnstock, 2013a, 2014b). This occurs in both the peripheral
and the central nervous systems (CNS), although its relevance
varies considerably in different species and pathophysiological
conditions (Burnstock, 2013b, 2014b; Kennedy, 2015; King,
2015; Estevez-Herrera et al., 2016).

In order to understand the functional implications that ATP
release might have in nerve fibers innervating the different
stomach structures it is useful to bear in mind the anatomy of
the stomach wall (Figure 3). The ENS is the intrinsic nervous
system of the gastrointestinal tract and is composed of the
myenteric and the submucosal plexuses, which are integrated in
the wall of the gastrointestinal tract. The ENS is connected to
the CNS through sympathetic and parasympathetic nerves, and
regulates several functions among which are included motility,
glandular secretions, fluid transport, or local blood flow (Xue
et al., 2016).

The stomach submucosal plexus presents virtually no ganglia,
and so the abundant nerve fibers present in the oxyntic mucosa
derive from the myenteric ganglia (Zhao and Chen, 2012). The
majority of these neurons are cholinergic and are innervated
by preganglionic efferents from the vagus nerve. Intact vagal

innervation is crucial for gastric acid secretion (Kupari et al.,
2013).

Purinoceptor expression is widespread in the gut. They are
involved in synaptic transmission and neuromodulation in both
myenteric and submucous plexuses and thus participate in
secretion and motility (Burnstock, 2011, 2014a). ATP co-released
in nerve endings can diffuse through the synaptic cleft and bind
to post-junctional P2 receptors or be converted into adenosine
by ectonucleotidases. In some cases, adenosine can act through
P1 receptors in the prejunctional or post-junctional structures or
in nearby cells.

For example, adenosine has been described to act as a
modulator of neurotransmitter release. Adenosine regulates
ATP and norepinephrine secretion in the prejunctional nerve
terminals of the presynaptic neurons innervating smooth muscle
(Burnstock, 2013a, 2014b). Adenosine also participates in
the regulation of ACh release, which is a major excitatory
neurotransmitter in the myenteric plexus. In the rat ileum ACh
regulates its own release in an autocrine fashion by activating M3
muscarinic receptors present in the myenteric neuron, which in
turn induces an outflow of endogenous adenosine. In a bimodal
response, ATP would act first on P2 receptors inducing ACh
and ATP co-release (Vieira et al., 2009) and the enzymatically
generated adenosine would induce or reduce ACh release upon
binding to A2A or A1 receptor, respectively (Duarte-Araujo et al.,
2009). The fact that gastric parietal cells and D cells express A2B
(Arin et al., 2015a,b) and A2A (Yip et al., 2004a), respectively,
suggests that adenosine is a bona fide extracellular mediator

Frontiers in Physiology | www.frontiersin.org 5 September 2017 | Volume 8 | Article 737

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Arin et al. Adenosine and Gastric Acid Secretion

FIGURE 3 | The innervation of the different layers of the stomach wall is a potential adenosine source. Parasympathetic fibers innervate the myenteric and

submucosal plexuses of the enteric nervous system and acetylcholine (ACh) is the major neurotransmitter, while sympathetic fibers innervate the same regions and the

gastric mucosa, being norepinephrine (NE) the major neurotransmitter. Brown lines represent innervation between different regions of the intrinsic nervous system.

ATP, which is co-released in all the synaptic contacts, can be enzymatically transformed into adenosine.

in the neighborhood; it is possible, therefore, to speculate that
the autocrine regulation described above for myenteric neurons
might operate too in the cholinergic fibers of the ENS innervating
both parietal and D cells, representing an additional regulatory
mechanism for adenosine in gastric acid secretion.

The presence of ectonucleoside triphosphate
diphosphohydrolase activity acting on ATP and ADP was
demonstrated by Savegnano et al. in rat gastric mucosa. This
hydrolase, besides participating in the extracellular metabolism
of nucleotides, controls the gastric secretion of acid, pepsin, and
mucus, as well as the stomach contractility (Savegnago et al.,
2005). High levels of ATP diphosphohydrolase were also detected
in the guinea pig stomach associated with parietal and chief cells
(Sevigny et al., 1998) and ATPase activity was described in the
stomach of mice and guinea pigs, in the neurons of myenteric
and submucosal plexuses, in the muscular layer and mucosal
nerve terminals (Lavoie et al., 2011). Those enzyme activities,
by degrading ATP, participate directly in the extracellular
adenosine availability. Adverse conditions, including hypoxia
or inflammation, are associated with increased intracellular and
extracellular dephosphorylation of ATP to adenosine through
ectonucleotidases (Antonioli et al., 2008).

Adenosine Receptors
Extracellular adenosine exerts its action by interacting with four
members of the large family of seven transmembrane GPCRs
denoted A1, A2A, A2B, and A3 (Fredholm et al., 2011; Gessi et al.,
2011; von Kugelgen andHarden, 2011). Significant advances have
been made in our understanding of the pharmacological profile

and function of these receptors as well as their molecular cloning,
expression, and structure (reviewed by Trincavelli et al., 2010).
Adenosine receptors are widespread throughout the body and
seem to be involved in neurological and cardiovascular diseases,
inflammation, and cancer, among other diseases and conditions
(Borea et al., 2016). Major differences in the receptor subtypes are
their affinities for the endogenous ligand adenosine (Fredholm
et al., 2001b), internalization and desensitization (Klaasse et al.,
2008), and recruitment of G proteins and activation of signaling
cascades (Table 2). As an example, most of the effects evoked by
A2A and A2B receptors are due to activation of adenylate cyclase,
generation of cAMP, and activation of PKA, whereas A1 and A3
are associated with adenylate cyclase inhibition through pertussis
toxin sensitive Gαi (Abbracchio and Burnstock, 1994). Regarding
the potency of adenosine at these receptors, both agonist binding
affinity and functional studies revealed that A1, A2A, and A3
sites show similar high affinities for adenosine whereas much
higher concentrations of adenosine are required to activate A2B
(Table 2) (Fredholm et al., 2001b, 2011; Yan et al., 2003).

While receptors for adenosine are P1 purinergic receptors,
extracellular nucleotides activate P2 purinergic receptors
(Abbracchio and Burnstock, 1994). P2 receptors fall into two
families P2X (ionotropic) and P2Y (metabotropic) (Table 2),
each one composed by several members (Burnstock, 2007). In
general, P2Y receptors are GPCR and P2X receptors regulate
cell function by opening ion channels selective for monovalent
and divalent cations and neither G proteins nor effector enzymes
appear to be directly involved. However, P2X may also regulate
the levels of second messengers. As a matter of fact, there
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TABLE 2 | Receptors for adenosine are metabotropic P1 purinergic receptors.

Type Subtype Main coupling/signaling via Endogenous agonist Ki (nM, human)*

Agonist: Adenosine

Ki (nM, human)*

Agonist: NECA

P1 A1 Pertussis toxin-sensitive Gαi proteins

↓ Adenylate cyclase

↑ PLC—↑ IP3—↑ [Ca2+]i—PKC

Adenosine 100 14

A2A Cholera toxin-sensitive Gαs proteins

↑ Adenylate cyclase—↑ cAMP—PKA

Adenosine 310 20

A2B Gαs proteins and Gq proteins in some cells

↑ Adenylate cyclase—↑ cAMP—PKA

↑ PLC—↑ IP3—↑ [Ca2+]i—PKC

Adenosine 15,000 140

A3 Gi proteins

↓ Adenylate cyclase

↑ PLC—↑ IP3—↑ [Ca2+]i–PKC—

Adenosine 290 25

P2 P2X1-7

(7 members)

Ligand-gated channels selective for

monovalent and divalent cations

ATP

P2Y1-14

(8 members)

G proteins

↑ PLC—↑ IP3—↑ [Ca2+]i—PKC

↑ PLA2—↑ Arachidonic acid

ATP, ADP, UTP, UDP

IP3, inositol triphosphate; NECA, 5
′-N-ethylcarboxamidoadenosine (a non-selective agonist for P1 receptors); PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C.

*Ki values extracted from Yan et al. (2003).

is a significant crosstalk between all purinergic networks,
which superimposes difficulties in identifying the receptor and
mechanism responsible for a certain downstream response.

If extracellular adenosine plays a physiological role or is
involved in a pathological process, it must be present at
effective extracellular concentrations. In healthy, unstressed
tissues adenosine levels in the extracellular space are low due to its
rapid metabolism and uptake. The basal level has been estimated
to be in the 10−8–10−7 M range (Ballarin et al., 1991). Slightly
higher levels (10−6 M) have been measured in the CNS (Hagberg
et al., 1987). This would be sufficient to activate A1, A2A, and
A3 receptors (Table 2) provided that these proteins are expressed
on the cell surface at a certain density (Fredholm et al., 2001b;
Yan et al., 2003). Under stress conditions, such as hypoxia, or
other conditions leading to depressed cellular energy states, there
is an acute increase in adenosine generation that can exceed the
removal capacity, resulting in markedly increased extracellular
adenosine concentrations. Release from cells with damaged cell
membranes or necrotic cells could provide even larger increases
in extracellular adenine nucleotides as intracellular ATP levels
are typically 3–5 mM. This direct release seems to occur during
pathologies such as oxygen-glucose deprivation or ischemia
(Frenguelli et al., 2007). It has been reported that the local
adenosine level increases 10-fold during hypoxia and 100- to
1,000-fold in ischemia (Zetterström et al., 1982; Hagberg et al.,
1987; Dux et al., 1990; Ballarin et al., 1991), which would allow
also cell responses mediated via A2B receptors in these settings.

Not only the levels of extracellular adenosine but also the
expression of adenosine receptors is regulated in cellular stress
(Murphree et al., 2005). In particular, hypoxia can stimulate the
expression of the A2B receptor as its gene bears a hypoxia-
inducible factor-1 response element in its promoter (Kong et al.,
2006). Low oxygen tension in areas of tissues with poor blood

supply stimulates the formation of hypoxia-inducible factor-
1. Having in mind that this transcription factor is a central
regulator of oxygen homeostasis and that it has been implicated
in transcriptional regulation of anti-inflammatory or tissue-
protecting signaling (Hart et al., 2011; Eltzschig et al., 2012), it
is tempting to speculate that increased extracellular adenosine
and parietal cell A2B expression (Arin et al., 2015b) may also be
implicated in stomach protection from damage.

As a general rule, the higher the number of receptors the
more potent the response to the agonist will be. In the particular
case of adenosine receptors, being coupled to more than one G
protein and signaling pathway, an increase in receptor number
does not necessarily alter the maximal response; instead, it will
shift the dose-response curve (Fredholm et al., 2011). To add
more complexity, purinergic signaling might depend not only on
the expression levels of individual membrane receptors but also
on the combinatorial networks of receptors and other proteins
coexpressed in a cell. Based among others on energy transfer and
immunoprecipitation techniques, a variety of homo- and hetero-
oligomers of P1 (A1, A2A, and A3) and P2Y subtype receptors
have been described (Ciruela et al., 2006; Schicker et al., 2009; Hill
et al., 2014). The tight interaction between A1 and A2A receptors,
and Gi and Gs proteins described in a recent work (Navarro et al.,
2016) is an example of this kind of oligomerization that could be
part of a complex transducing mechanism capable of switching
biological functions depending on the extracellular concentration
of adenosine. Interactions between specific membrane receptors
and enzymes involved in the extracellular metabolism of adenine
nucleotides like CD37 (Schicker et al., 2009) or nucleosides like
ADA (Ciruela et al., 1996; Franco et al., 1997; Gracia et al.,
2008, 2013) could also have functional significance bymodulating
local agonist concentration and/or ligand binding to adenosine
receptors.
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Adenosine Effects on Gastric Acid
Secretion Modulation
Over the years, a link between adenosine and gastric acid
secretion has been suggested by a host of studies addressing
the contribution of adenosine and specific receptors to gastric
acid secretion in different model scenarios. The knowledge
about the modulator role of adenosine on gastric acid secretion,
however, may be yet defined as fragmentary and inconclusive.
Nevertheless, it can be drawn that adenosine actions may be
species-dependent, inhibitory or stimulatory, and direct and
indirect.

Gastric acid secretion requires a complex network of
interactions between secretagogues and inhibitory mechanisms
involving endocrine, paracrine, and neural stimuli (see section
Acid Secretion and Its Regulation). Hence, for a correct
interpretation of the experimental findings about the effects of
adenosine on acid secretion, the limitations of and the specific
interactions occurring in each experimental protocol must be
taken into consideration. In the studies in intact animals, findings
reflect the plasticity of gastric acid regulatory mechanisms, such
as neural stimulation, and the compensation by modulatory
agents other than adenosine. In the perfused stomach, the
effects observed mostly derive from the intrinsic mechanisms
of control of the stomach. In the studies using the gastric
mucosa, the secretory function of the parietal cell will depend
of the mechanisms that the parietal cell itself has, in addition to
the activatory (ECL cells and G cells) and inhibitory (D cells)
influence of the other cells that are also homed by the gastric
glands. And finally, in the studies with isolated parietal cells, the
acid secretion rate will be defined by the integrity of a collection
of intrinsic processes, including those that make and secrete
the hydrochloric acid, the quality and quantity of adenosine
receptors and the activity of the signaling machinery.

To facilitate comparisons and comprehend causes for
seemingly potential discrepancies, we review here the most
relevant publications clustered in five sections: studies in intact
animals, isolated stomach, gastric mucosa, isolated gastric glands,
and isolated gastric parietal cells. A summary of the experimental
evidences is offered in Table 3.

Studies in Intact Animals
While dogs and rabbits were the preferred models in early in vivo
studies on purinergic control of gastric acid secretion, most work
aiming at establishing whether adenosine has a role in gastric
acid secretion was performed in rodents. The administration
of adenosine and its analogs was shown to inhibit gastric acid
secretion in various species. However, the site at which adenosine
acts seems to differ.

In conscious rats subjected to vagotomy or in anesthetized
rats with intact vagal innervation, intracerebroventricular
administration of adenosine inhibited gastric secretion in a
dose-dependent manner. In the latter case, the inhibition was
found to be due to a reduction in vagal efferent activity to the
stomach acting at the brain level on xanthine-insensitive P1
receptors (Puurunen and Huttunen, 1988). These findings are
compatible with other studies also conducted in unanesthetized

rats, such as those of Westerberg and Geiger who demonstrated
that adenosine analogs not only regulate the acidity but
also the volume of gastric secretions; they showed that 5′-
N-ethylcarboxamideadenosine (NECA) and 2-chloroadenosine
decreased basal acid output in a dose-dependent manner and
that low doses of NECA inhibited gastric volume almost
entirely (Westerberg and Geiger, 1989). Also subcutaneous
administration of adenosine to awake rats promoted an
inhibitory effect that was mediated by adenosine binding to
A1 receptor (Scarpignato et al., 1987). By contrast, it was
observed that adenosine and related analogs increased gastric
acid secretion in anesthetized rats after intravenous injection in
an action that was totally prevented by vagotomy, suggesting
that adenosine derivatives stimulate gastric acid secretion in
anesthetized rats by activating some unidentified adenosine
receptors harbored in the afferent via of the vagus nerve
(Puurunen et al., 1986). Using a gastric cannula designed as
a real-time H+ sensor, Glavin et al. (1987) observed that the
ADA-resistant analog of adenosine R-phenylisopropyladenosine
(R-PIA) led to a decreased acid secretion in conscious rats
with intact vagal stimulation, while the P1 receptor antagonist
8-phenylteophylline augmented gastric acid output. These two
studies strongly suggested that adenosine signaling pathwaysmay
have a secretory action in the rat when the connection vagus/ENS
is properly integrated, which clashes with the other studies above.

Globally, these findings indicate that, in vivo, the functional
status of vagal innervation and its proper integration into the
ENS may determine the gastric response to adenosine, with
contradictory results yet unresolved. It must be taken into
account that the stomach is one of the most complex glandular
organs in the body, that vagal innervation may account for up
to 85% of the basal and 50–60% of the post-prandial secretion of
acid (Debas and Carvajal, 1994), and that, as shown in Figure 1,
the vagus not only acts directly on the acid-secreting parietal cell
but also on the histamine-, somatostatin-, and gastrin-secreting
cells of the gastric glands (Debas and Carvajal, 1994; Kopic and
Geibel, 2013). Hence, differences in the effective concentration
of extracellular adenosine as consequence of differences in the
experimental design (such as in the administration route) might
lead to apparently inconsistent responses.

Works on the phenotype of knockout mice for specific
adenosine receptors have focused on inflammation, anxiety,
vascular resistance, or tolerance to hypoxia/ischemia, to name
some (reviewed by Fredholm, 2007), but gastric acid secretion
disorders have not been reported. Research performed in the A2A
receptor- and A1 receptor-knockout mouse stomach regarding
acid secretion is detailed below.

Studies in Isolated Perfused Stomach
Rodents are also the preferred species for most experimentation
on acid secretion using the whole stomach after “in situ”
vascular perfusion with an isotonic saline solution. As a
general rule, the perfused stomach maintains the chemical and
neural interconnections of the gastric gland cells though the
extrinsic secretomotor innervation (the vegetative system) may
be attenuated by the unavoidable anesthesia.

Frontiers in Physiology | www.frontiersin.org 8 September 2017 | Volume 8 | Article 737

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Arin et al. Adenosine and Gastric Acid Secretion

TABLE 3 | Adenosine actions on gastric acid secretion in human and animal models.

Model Species Effector/

treatment

Mechanism Finding Acid

secretion

References

Intact animal Rat Conscious—

vagotomized

Ado – Decrease Decrease Puurunen and Huttunen, 1988

Anesthetized—intact

vagus

Ado Vagal stimulation (P1) Decrease Decrease Puurunen and Huttunen, 1988

Unanesthetized Ado analogs Gastric volume Decrease Decrease Westerberg and Geiger, 1989

Unanesthetized Ado Gi coupled A1 Decrease Decrease Scarpignato et al., 1987

Anesthetized Ado analogs Vagal stimulation Increase Increase Puurunen et al., 1986

Conscious Ado analogs Vagal stimulation Decrease Decrease Glavin et al., 1987

Perfused stomach Rat – Ado – Decrease Decrease Gandarias et al., 1985

– Ado Gastrin-G cell (A1) Decrease Decrease Yip et al., 2004b

– Ado Somatostatin-D cell (A2A) Increase Decrease Yip and Kwok, 2004

Mouse WT Ado Somatostatin-D cell (A2A) Increase Decrease Yang et al., 2009

A2A-KO Ado >1µM Somatostatin-D cells (A2A) Increase Decrease Yang et al., 2009

A2A-KO Ado < 10 nM Somatostatin-D cells (A1) Decrease Increase Yang et al., 2009

WT ADA inhibition Ghrelin (A2A) Increase Increase Yang et al., 2011

A1-KO ADA inhibition Ghrelin Increase Increase Yang et al., 2011

A2A-KO ADA inhibition Ghrelin No effect No effect Yang et al., 2011

Gastric mucosa Human Antrum,

hyperchlorhydria

Hyperchoridria ADA activity Increase Decrease Namiot et al., 1990

Gastric ulcer Ranitidine ADA activity Increase Decrease Namiot et al., 1991

Antrum, H. pylori

infection

Inflammation ADA activity No effect No effect Bulbuloglu et al., 2005

Gastric ulcer Infection ADA activity No effect No effect Namiot et al., 2003

Gastric glands Rabbit Corpus—basal HCl

secretion

Ado and Ado

analogs

– Increase Increase Ainz et al., 1989

Corpus—histamine—

stimulated

Ado and Ado

analogs

– Increase Increase Ainz et al., 1989

Corpus Ado and Ado

analogs

P1 purinoceptors Increase Increase Gil-Rodrigo et al., 1990

Parietal cells Dog Basal HCl secretion Ado – Decrease Decrease Gerber et al., 1985

Histamine-stimulated Ado A1 Decrease Decrease Gerber and Payne, 1988

Antrum Ado Gastrin-G cells (A1) Decrease Decrease Schepp et al., 1990

Antrum Ado Gastrin-G cells (A2) Increase Increase Schepp et al., 1990

Guinea pig – Ado – Decrease Decrease Heldsinger et al., 1986

Rat – Ado and Ado

analogs

– No effect No effect Puurunen et al., 1987

Rabbit Corpus Ado and Ado

analogs

cAMP increase (A2) Increase Increase Ota et al., 1989

Basal and

histamine—stimulated

Ado and Ado

analogs

P1 (A2) receptors Increase Increase Ainz et al., 1993

Corpus ADA treatment – Decrease Increase Arin et al., 2015b

Corpus Ado and Ado

analogs

Gs coupled (A2B) Increase Increase Arin et al., 2015b

The “acid secretion” column denotes either the reported primary effect or the secondary effect that is deduced from the “Finding” according to current knowledge. Ado, adenosine;

ADA, adenosine deaminase; KO, knockout; WT, wild-type.

A pioneer study by Gandarias et al. (1985) reported that
adenosine (10−3–10−4 M) reduced the basal secretion of acid
in isolated rat stomach whereas ATP, ADP, and AMP were
able to elevate basal acid secretion dose-dependently. Notably,

in the presence of adrenergic and cholinergic blockers like
ergotamine, propranolol, or atropine, all purine derivatives,
including adenosine, caused a significant increase in the
basal acid secretion. Several further works evidenced that the
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adenosine-promoted reduction of HCl secretion in the rat
stomach might be an indirect effect due to its binding to
inhibitory A1 receptor in the gastrin-secreting G cells, leading
to a reduction in the gastrin concentration in the perfusate and
consequently in gastric acid secretion (Yip et al., 2004b). In
the same line of thinking, it was also shown that the decrease
in gastrin secretion might well be due to adenosine binding
to the A2A receptor expressed in the gastric plexus and at
the somatostatin-secreting D cells. Concomitant to the rise in
somatostatin release, a rise in gastrin levels would occur as
a counter-regulation loop which would increase acid secretion
afterwards (Yip and Kwok, 2004). Findings supporting this view
were reported by Schepp et al. (1990) in primary cultures of dog
antral G cells, who found that gastrin secretion was inhibited
by adenosine in a pertussis toxin-sensitive process involving A1
binding and activated by adenosine and related analogs in a
cAMP-independent process involving A2 receptor.

Meanwhile, in experiments performed in isolated perfused
stomachs of mice bearing genetic ablation of A2A receptor,
adenosine was demonstrated to exhibit differential dose-
dependent effects on acid secretion, so that at high concentrations
(>1µM), adenosine acted through A2A stimulating
somatostatin secretion but when adenosine concentrations
were below 10 nM it acted mainly through its inhibitory A1
receptor (Yang et al., 2009) decreasing somatostatin production.
Theoretically, high adenosine would result in decreasing and low
adenosine in increasing acid secretion.

Using pharmacological approaches in the A1 and A2A
receptor knockout mice stomach, Yang and colleagues examined
gastric ghrelin release. As mentioned in section Acid Secretion
and Its Regulation, ghrelin seems to induce acid secretion by
stimulating histamine production by ECL cells (Schubert, 2015).
These authors found that adenosine exerts predominantly a tonic
A2A receptor-mediated stimulatory action on ghrelin release,
whereas an A1-mediated inhibitory action is also apparent when
the tonic excitatory effect was blocked with tetrodotoxin. They
also demonstrated that ghrelin release became activated by
including an ADA activity inhibitor in the perfusate in wild type
and A1 knockout mice but not in A2A knockouts, reinforcing the
concept that circulating ghrelin and adenosine increase in parallel
via A2A in mice (Yang et al., 2011). Whether this stimulatory
axis operates in humans is an open question that deserves to be
addressed.

Studies in Gastric Mucosa
The purinergic regulation of acid secretion in gastric mucosa was
first addressed by Kidder (1973) when purinergic receptors had
not been yet discovered. Kidder demonstrated that ADP and ATP
inhibited acid secretion in bullfrog gastric mucosa when added to
the bathing saline solution.

Of particular relevance are the studies conducted in human
gastric mucosa biopsies from healthy patients and patients
affected by a gastric pathology. Unfortunately, the direct impact
of adenosine on the secretory function of the gastric parietal
cell or gastric mucosa glands has not been addressed, though
numerous studies reporting a role for ADA activity in gastric acid
secretion have been conducted. As ADA inactivates extracellular

adenosine to inosine and inosine has a 7-fold lower affinity for
adenosine receptors than the natural ligand or even no affinity
(Fredholm et al., 2001b), an increase in ADA activity results in
reduced adenosine signaling.

Namiot et al. (1990) measured ADA activity in mucosa
samples taken endoscopically from the fundus and antrum areas
of the stomach in patients having a normal acid secretion,
achlorhydria, or gastric acid hypersecretion. They found that
ADA activity was higher in the fundus than in the antral region,
and that patients with hypersecretion exhibited the highest ADA
activity in the fundic mucosa, correlating positively ADA activity
and basal or maximal acid output. These findings led the authors
to propose that ADA activity and, therefore, adenosine is another
potential compound involved in the modulation of gastric acid
secretion.

Biopsies of the antral mucosa of Helicobacter pylori-infected
patients showed high ADA activity. However, a correlation of
ADA activity with the degree of inflammation could not be
established (Bulbuloglu et al., 2005). On their hand, Namiot
et al. (2003) postulated that ADA activity intervened in the
inflammatory response of the gastric mucosa to other stimuli
but not to H. pylori infection. In that study, ADA activity
was measured in biopsies collected from patients infected with
H. pylori that had developed chronic gastritis and that had
been submitted or not to distal resection, as well as non-
infected controls. Findings demonstrated that ADA activity in
partially resected stomachs was lower than in intact stomachs
and revealed that infection had no effect on ADA activity.
Based on this, the authors concluded that ADA activity does
not seem to be a factor promoting chronic gastritis. Adenosine
has been defined as an endogenous anti-inflammatory agent
released by cells in metabolically unfavorable conditions (Ye
and Rajendran, 2009; Colgan and Eltzschig, 2012; Borea et al.,
2016), but the studies above reported indicate that such
conclusion should not be straightforwardly extrapolated to
gastric mucosa.

In gastric ulcer patients, ADA activity in the mucosal
body of the stomach was stimulated by ranitidine (an H2

receptor blocker) treatment (Namiot et al., 1991). These studies,
therefore, suggest that adenosine contributes to inhibit gastric
acid secretion and indirectly acts as a gastroprotective agent.
Similarly, in animal studies, adenosine and its analogs have been
shown to protect against stress-induced gastric ulcer formation
(Geiger and Glavin, 1985; Westerberg and Geiger, 1987).

Besides, adenosine has been suggested to have anticancer
effects on gastric cancer cells (Geiger and Glavin, 1985;
Westerberg and Geiger, 1987). In addition to other proposed
mechanisms, such as those promoting apoptosis of gastric cancer
cells acting through intrinsic and extrinsic signaling pathways
(Wang and Ren, 2006; Tsuchiya and Nishizaki, 2015), the
inhibitory adenosine effect on gastrin secretion might be of
relevance (Yip et al., 2004b). As mentioned in section Acid
Secretion and Its Regulation, the hormone gastrin stimulates acid
secretion acting directly on the parietal cell and indirectly by
activating the histamine-producing ECL cells. There are many
arguments in favor of a role of gastrin and its target cell, the
ECL cell, in gastric carcinogenesis. Thus, not only the function
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but also the proliferation of ECL cells in the stomach is regulated
by gastrin (Smith et al., 2017; Waldum et al., 2017).

Durak et al. (1994) showed that mucosal ADA activity was
markedly elevated in patients with gastric cancer, which led
the authors to suggest that this elevated rate of extracellular
adenosine degradation may be behind the accelerated nucleotide
metabolism of gastric cancerous tissues as compared with the
normal tissue. Given that the higher ADA activity in cancer
tissue might underlie the decreased adenosine concentration
(Durak et al., 1994), higher escape from apoptosis might be
occurring in gastric cancer because of low extracellular adenosine
levels. Interestingly, this is compatible with the theory that
it is mainly atrophic gastritis of the oxyntic mucosa that
predisposes to gastric cancer possibly by inducing hypoacidity
and hypergastrinemia (Waldum et al., 2017).

Studies in Isolated Gastric Glands
Two studies attempted to characterize whether purinergic
signaling regulates acid secretion using gastric glands isolated by
enzymatic digestion from the rabbit corpus mucosa. The authors
presented evidence indicating that in non-stimulated gastric
glands adenosine was able to increase acid secretion in a dose-
dependent manner, whereas the adenine nucleotides AMP, ADP,
and ATP did not produce any response (Ainz et al., 1989). After
histamine stimulation glands behaved in a different way, and both
AMP and adenosine had a synergistic stimulatory effect on HCl
secretion whereas ADP andATP induced graded inhibition of the
histamine-promoted activation of acid secretion. The stimulatory
action of adenosine was confirmed in a later work that reported
that adenosine and ATP had opposing effects on acid secretion
in both histamine-stimulated and unstimulated glands with a
positive effect for adenosine and negative for ATP and ADP
(Gil-Rodrigo et al., 1990). The fact that theophylline abrogated
the stimulatory action of adenosine and that indomethacin,
an inhibitor of prostaglandin synthesis, reduced the inhibitory
response of ATP, led the authors to conclude that purinergic
compounds are important modulators of gastric acid secretion
and that the stimulatory responses may be mediated by P1
purinoceptors whereas the inhibitory responses may be mediated
by P2 purinoceptors.

Studies in Parietal Cells Isolated from
Gastric Mucosa
First studies on acid secretion using isolated parietal cells
were performed in dogs by Gerber and colleagues in the
1980s (Gerber et al., 1985). They revealed the existence of
inhibitory adenosine receptors of “Type R” on parietal cells
and that adenosine inhibited directly gastric acid secretion.
Further studies by the same group suggested the presence of A1
receptors involved in the inhibition of the histamine-stimulated
acid secretion (Gerber and Payne, 1988). Since ADA addition
resulted in an enhanced histamine-stimulated acid production,
it was claimed that endogenous adenosine of canine parietal cells
could modulate acid secretion by interaction with the receptors
harbored on the parietal cell membranes. In the guinea pig
parietal cell, Heldsinger et al. (1986) came to the same conclusion,
although in this case the receptors involved were not identified.

As mentioned before, cAMP plays a role in several signaling
pathways involved in acid secretion regulation in the gastric
parietal cell. A2 receptors couple to stimulatory Gs proteins
and activate adenylate cyclase and the formation of cAMP
whereas A1 receptors act through Gi inhibiting cAMP formation
upon activation. Ota et al. (1989) were the first to study
the effects of adenosine and adenosine analogs on acid
secretion in isolated rabbit parietal cells. For testing the changes
promoted by these compounds, they measured the accumulation
of [14C]aminopyrine in cells as an indicator of the acid
that is trapped in intracellular compartments. The authors
found that adenosine and related analogs caused proportional
increases in [14C]aminopyrine accumulation as well as in cAMP
concentration, suggesting the direct participation of adenosine
in the regulation of gastric acid secretion mediated by A2
receptors (Ota et al., 1989). In the rat parietal cell, however,
opposite effects were found, as adenosine did not affect at all
[14C]aminopyrine uptake and cAMP levels (Puurunen et al.,
1987). These findings may be interpreted to mean: (i) that the
adenosine receptor expression and number in gastric parietal
cells is species-specific or (ii) that a contamination of other
cell types in the culture might influence the results. Also
using isolated rabbit parietal cells, Ainz et al. (1993) proposed
the existence of purinoceptors P1 (A2/Ra) that regulated
the concentration-dependent stimulatory effects of adenosine,
NECA and 2-chloroadenosine on gastric acid secretion in basal
and dibutyryl-cAMP- or histamine-stimulated conditions. The
response to NECA of parietal cell acid secretion was found
to be blocked by theophylline, a non-specific P1 purinoceptor
antagonist.

Using parietal cells isolated from rabbit gastric glands
of the stomach corpus, we performed the pharmacological
identification of A2B and demonstrated that degradation of
endogenous adenosine secondary to ADA treatment reduced
acid secretion (Arin et al., 2015b). The cells we used were
representative populations of primary parietal cells at rest,
thus suggesting that endogenous adenosine may contribute to
spontaneous acid production in basal conditions. Furthermore,
exposure of such cells to adenosine analogs stimulated acid
secretion, and further pharmacologic and functional studies
revealed that A2B was the only receptor involved (Arin et al.,
2015b). Our study demonstrated that, in rabbits, the gastric
parietal cell is endowed with a density of A2B receptors sufficient
to promote acid secretion even though the affinity constants were
similar to those reported in other tissues and cell models (Klotz
et al., 1998; Fredholm et al., 2001b, 2011). We also demonstrated
that such activation was mediated by a cAMP rise and not by
calcium (Arin et al., 2015b). In human crypt epithelial cells,
activation of A2B receptor by adenosine promotes Cl− secretion
via intracellular cAMP increase (Antonioli et al., 2008). The
presence of the chloride channel CFTR at the apical pole of
parietal cells has been confirmed in mouse (Sidani et al., 2007)
and human stomach (Strong et al., 1994). As other components
of the machinery of acid secretion CFTR is regulated by cAMP
(Kopic and Geibel, 2013). It would be interesting to establish
whether the regulation of acid secretion by A2B through cAMP
is mediated by the modulation of CFTR.
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Furthermore, flow cytometry and confocal microscopy
revealed that ADA colocalized partially with A2B receptor on the
parietal cell membrane and a link between the activities of these
two proteins in the modulation of acid secretion was claimed
(Arin et al., 2015a). A2B receptor was also found to have a vicinity
relationship with ADA at the surface of the histamine-producing
ECL cell (Arin et al., 2017). The physiological relevance, if any,
of these findings remains to be elucidated. A2B signaling on
distinct cell types and tissues is protective in conditions such
as metabolic stress or during inflammation-associated tissue
hypoxia or ischemia (Fredholm, 2007; Ye and Rajendran, 2009;
Feoktistov and Biaggioni, 2011; Colgan and Eltzschig, 2012;
Borea et al., 2016). Future studies should be done to carefully
delineate if this protective effect is reproduced in the human
stomach.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

There is a large body of evidence to implicate adenosine signaling
in gastric acid secretion modulation. It is now recognized that
adenosine influences acid secretion in a variety of direct and
indirect ways. Findings are seemingly contradicting, but the
scientific effort of the past years has permitted the identification
of specific adenosine receptors and signaling pathways operating
at the membrane of the parietal cells and other cells of the
gastric mucosa in numerous species. From a physiological
and fundamental point of view, this review has attempted to
underline the complexity of the regulation of acid secretion.

The precise role adenosine has in the parietal cell function or
the gastric gland physiology in humans is not clear. Although
findings in the human gastric mucosa are the most attractive
and important for obvious reasons, we cannot come to a
conclusion yet. Studies addressed ADA activity in mucosal
biopsies in patients with a diversity of pathologies. Adenosine
is considered to have an anti-inflammatory action (Fredholm,
2007). However, in H. pylori-infected patients (Bulbuloglu et al.,
2005) or in patients with chronic gastritis (Namiot et al., 2003),
no correlation between ADA activity and mucosal inflammation
was found. A positive correlation between ADA activity and basal
and maximal gastric acid output was found in the fundic mucosa
(Namiot et al., 1990), suggesting a protective, negative influence
of adenosine on acid secretion from fundic parietal cells.
However, considering the low proportion of H+/K+-ATPase-
positive cells in the fundic area of the human stomach and that
95% of parietal cells were found within the oxyntic mucosa of
the stomach (Choi et al., 2014), the physiologic relevance of
these findings may be questioned. Given the differences between
species, extrapolation of the findings in animal models to humans
should be avoided. Another limitation comes from the fact that

there are not non-transformed cells modeling those homed by
the gastric glands. Much work is needed in this area. In keeping
pace with the depth of knowledge of the mechanisms underlying
acid secretion, it is necessary to ask more sophisticated questions
to the cellular components of the human stomach.

Because adenosine receptors are widespread throughout the
body and extracellular adenosine is a ubiquitous signaling
molecule that modulates a wide variety of physiological processes
and pathologies, it is generally believed that understanding
how the different receptor subtypes are expressed and regulated
in each cell type or functional module is a necessary step.
The pleiotropic effects of adenosine exacerbate the dilemma
of the drug/cell/tissue selectivity and pre-miRNAs and anti-
miRNAs may have a chance of success. An exciting, recent
discovery about purinergic signaling has been that A2A,
A2B, and some P2X receptors, as well as some enzymes
involved in extracellular adenosine metabolism, are subject to
microRNA regulation (for a recent review, see Ferrari et al.,
2016). Therefore, in theory, it may be possible to transiently
modulate or permanently block the activation of a particular
adenosine receptor subtype in a localized tissue using specific
microRNAs or anti-microRNAs, which fosters the evaluation of
microRNA technology-based treatments in purinergic network
deregulation-associated diseases.

There is no doubt that extracellular ADA activity in the
stomach plays a role in gastric acid secretionmodulation and that
adenosine receptors have been characterized in a host of cells of
the gastric glands and ENS. But we must be aware of the fact that,
though the presence of receptors for adenosine defines another
potential compound involved in the modulation of gastric acid
secretion, it does not define the importance of this compound
during basal or stimulated acid secretion. The role of adenosine
on gastric acid secretion requires clarification and great efforts
should be done to define it further.
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