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Vienna, Austria

The development of sustained, long-term endothermy was one of the major transitions
in the evolution of vertebrates. Thermogenesis in endotherms does not only occur via
shivering or activity, but also via non-shivering thermogenesis (NST). Mammalian NST is
mediated by the uncoupling protein 1 in the brown adipose tissue (BAT) and possibly
involves an additional mechanism of NST in skeletal muscle. This alternative mechanism
is based on Ca?*-slippage by a sarcoplasmatic reticulum Ca?t-ATPase (SERCA) and
is controlled by the protein sarcolipin. The existence of muscle based NST has been
discussed for a long time and is likely present in all mammals. However, its importance for
thermoregulation was demonstrated only recently in mice. Interestingly, birds, which have
evolved from a different reptilian lineage than mammals and lack UCP1-mediated NST,
also exhibit muscle based NST under the involvement of SERCA, though likely without the
participation of sarcolipin. In this review we summarize the current knowledge on muscle
NST and discuss the efficiency of muscle NST and BAT in the context of the hypothesis
that muscle NST could have been the earliest mechanism of heat generation during
cold exposure in vertebrates that ultimately enabled the evolution of endothermy. We
suggest that the evolution of BAT in addition to muscle NST was related to heterothermy
being predominant among early endothermic mammals. Furthermore, we argue that, in
contrast to small mammals, muscle NST is sufficient to maintain high body temperature
in birds, which have enhanced capacities to fuel muscle NST by high rates of fatty acid
import.

Keywords: brown adipose tissue, cold exposure, non-shivering thermogenesis, SERCA, sarcolipin, skeletal
muscle, UCP1

INTRODUCTION

The evolution of endothermy is of major interest in the understanding of mammalian and
avian radiation. It is often debated when and how the transition from ectothermic reptiles to
endothermic mammals and birds occurred. In terms of the underlying ultimate factors leading
to the evolution of endothermy, there are currently two dominating hypotheses: The “increased
levels of activity” or “aerobic capacity” model (Bennett and Ruben, 1979) and the “parental care”
model (Koteja, 2000). In essence, the aerobic capacity model postulates that maximum metabolic
rate, a proxy of aerobic capacity and sustained activity, is the target of directional selection.
In this model, elevations in basal metabolic rate (BMR) are only a correlated consequence of
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increased maximum metabolism. The parental care model, on
the other hand, assumes that increased investment into offspring
required increased rates of energy assimilation, which led to
enhanced function and metabolism of visceral organs. In both
models increased aerobic tissue metabolism is accompanied
by increased mitochondrial density, increased mitochondrial
membrane surface, and elevated enzyme activities (Hulbert and
Else, 2000). It has also been proposed that BMR was elevated
by increased membrane leakiness caused by the incorporation
of polyunsaturated fatty acids (PUFA) (Hulbert and Else, 1999,
2000; Hulbert, 2003, 2005), a view that has been challenged
by a comparative study on mammals (Valencak and Ruf,
2007). However, there still may be direct effects of certain
PUFA on membrane-bound enzymes that may well affect
e.g., seasonal adjustments of metabolism (reviewed in Arnold
et al., 2015). While both, birds and mammals, can defend
their body temperature (T,) within the thermoneutral zone
by basal metabolism based on the above described processes,
the biochemical basis of heat production during cold exposure
seems to differ in both groups. Hence, most researchers in the
field assume that endothermy among vertebrates was developed
twice: once within the bird lineage and once within mammals.
A commonly accepted view is that small placental mammals
were able to colonize colder habitats because they are able
to maintain high Ty even in the cold by producing heat via
non-shivering thermogenesis (NST) mediated by the uncoupling
protein 1 (UCP1) in brown adipose tissue (BAT) (Chaftfee et al.,
1975; Foster and Frydman, 1978; Heaton et al., 1978). Birds, on
the other hand, lack this mechanism (Emre et al., 2007) and
seem to rely on shivering and non-shivering heat production in
muscle during cold exposure (Dawson and Carey, 1976; Bicudo
etal,, 2001). However, BAT and functional UCP1 are not present
in all mammalian species. Marsupials, monotremes (Jastroch
et al., 2008; Polymeropoulos et al., 2012), and certain placental
mammals lack functional BAT (Gaudry et al., 2016). A recent
study has shown that mutations inactivating UCP1 have occurred
in at least eight of the 18 placental mammal orders (Gaudry
etal., 2016), questioning the importance of BAT-mediated NST as
the key thermoregulatory component in all placental mammals.
The existence of a mechanism of muscular NST has long been
suspected, ie., for marsupials and monotremes (e.g., Nicol
et al., 1992; Grigg et al., 2004). While the principle mechanism
of uncoupled NST via sarcoplasmatic reticulum Ca?*-ATPase
(SERCA) activity was studied and described extensively in
rabbits by de Meis et al. (e.g., de Meis, 2001a; de Meis et al.,
2005b), the precise mechanism, i.e., the role of sarcolipin (SLN),
and its importance for thermoregulation was only recently
discovered (Bal et al., 2012, 2016). Importantly, Rowland et al.
(2014) suggested that NST in skeletal muscle—which can
occur independently of shivering—was the earliest facultative
thermogenic mechanism in vertebrates, before evolutionary

Abbreviations: ATP, Adenosine triphosphate; BAT, Brown adipose tissue; BMR,
Basal metabolic rate; NST, Non-shivering thermogenesis; PUFA, Polyunsaturated
fatty acids; RyR, Ryanodine receptor; SLN, Sarcolipin; SERCA, Sarcoplasmatic
reticulum Ca®*-ATPase; SR, Sarcoplasmatic reticulum; Ty, Body temperature;
UCP1, Uncoupling protein 1; Vp,x, Maximal Velocity.

pressure resulted in the development of a mechanism (UCP1
in BAT) allowing for higher rates of heat production without
interference with muscle function. Muscle NST may have evolved
earlier than classical UCP1-dependent BAT thermogenesis,
which is not a characteristic trait of all endotherms and the
transition from ectothermy to endothermy did not depend on
BAT. In this review we summarize our current knowledge on
muscle-based NST, from here on referred to as muscle NST
to distinguish it from UCP1-mediated NST in BAT, and add
more evidence to the hypothesis that muscle NST could have
been the earliest mechanism of endogenous heat production
in vertebrates. We also discuss hypotheses why small placental
mammals, despite the existence of muscle NST, additionally
evolved UCP1-mediated NST in BAT, and why birds did not.

NON-SHIVERING THERMOGENESIS IN
MUSCLE: HOW DOES IT WORK?

The “classical” mechanism of NST in BAT involves the
protein UCP1 that facilitates proton leakage across the inner
mitochondrial membrane, leading to futile cycling of protons
and to heat generation instead of adenosine triphosphate
(ATP) production (Nedergaard and Cannon, 1985). Another
mechanism of heat production in mammals involves Ca?*-
slippage in skeletal muscle cells (myocytes). A seminal study
on knockout mice has shown that this form of NST is crucial
in supporting the maintenance of high Ty, in absence of BAT-
mediated NST, and that it is controlled by the protein SLN (Bal
et al., 2012). The mechanism of this muscle NST is based on
activity of a Ca®t-ATPase, i.e., SERCA, in the sarcoplasmatic
reticullum (SR). During muscle contractions SERCA removes
Ca®* from the myocyte cytosol (Hasselbach and Makinose, 1961,
1963; Periasamy and Huke, 2001) back into the SR, thereby
triggering muscle relaxation before the initiation of the next
contraction phase. However, SERCA does not always use the
entire energy derived from ATP-hydrolysis to pump Ca**-ions
across the SR membrane, a variable part (between ~10 and
25 kcal/mol ATP) is released as heat (de Meis, 2002; de Meis
et al., 2005b). The partitioning is regulated by the gradient
between cytosolic and SR luminal concentrations of Ca** and the
protein SLN (Asahi et al., 2003; Mall et al., 2006). High luminal
concentrations of Ca?" uncouple ATP-hydrolysis from Ca?"
transport across the SR membrane by causing the release of the
two Ca**-ions bound to SERCA back to the cytoplasmic side of
the membrane rather than to the luminal side (reviewed in Mall
et al., 2006). Such “slippage” creates an uncoupling of SERCA
activity from Ca?* transport into the SR, i.e., no actual transport
of Ca’T-ions and converts the energy from ATP-hydrolysis into
heat (Asahi et al., 2003; Maurya et al.,, 2015). This process is
fostered by SLN although it is not yet possible to explain the
effect of SLN on slippage in molecular terms (Mall et al., 2006).
In short, SLN allows ATP hydrolysis to occur but interferes with
calcium transport, resulting in the release of calcium back into
the cytosol (de Meis, 2001b). This leads to two effects: First heat is
produced by SERCA and second, SLN maintains high Ca* levels
in the cytosol, hence activating Ca?*-dependent pathways that
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regulate muscle metabolism and mitochondrial activity (Sahoo
et al., 2013).

SERCA is expressed in seven different isoforms in mammalian
tissues. The most likely ones involved in thermogenesis, due
to their expression in skeletal muscle, are SERCAla (mainly in
fast twitch fibers) and possibly SERCA2a (in slow twitch and
fast-oxidative fibers) (Periasamy and Kalyanasundaram, 2007).
Muscle NST has been mainly studied in SERCAIla, but there
is evidence that SERCA2a can also modulate the amount of
heat produced during ATP hydrolysis (reviewed in Pant et al.,
2016). Another regulator of SERCA, the protein phospholamban,
is not involved in thermogenesis (Sahoo et al., 2013; Shaikh
et al, 2016). Phospholamban affects the apparent affinity of
SERCA for CaZt but does not affect the maximal velocity (Vimax)
of SERCA Ca’>* uptake into SR whereas SLN decreases the
Vmax of SERCA Ca®t transport into SR but does not affect the
affinity of SERCA for Ca", i.e., can even bind to SERCA at
high concentrations of Ca**. In other words, phospholamban
acts as a brake on SERCA activity until it is dissociated by
either phosphorylation or by high Ca?* (Shaikh et al., 2016),
whereas SLN facilitates heat production by SERCA. Recently, a
third regulator of SERCA, myoregulin, has been identified, but
to date its role is not well-understood (Anderson et al., 2015).
Interestingly, SERCA can also be regulated by the concentration
of certain PUFA in the surrounding SR membrane, with very
large effects on SERCA activity (Swanson et al., 1989). This
may explain the effects of certain dietary PUFA on hibernation
(Ruf and Arnold, 2008). For instance, a study on hibernating
Syrian hamsters (Mesocricetus auratus) has shown that cardiac
SERCA activity was enhanced by high n-6 PUFA content in SR
phospholipids, allowing them to reach lower Ty, but depressed
by high amounts of n-3 PUFA (Giroud et al.,, 2013). Details on
the specific effects of PUFA are reviewed elsewhere (Arnold et al.,
2015).

NST via SERCA is of course only one of several different
pathways of heat production in skeletal muscle cells (Figure 1).
First, heat is generated in mitochondria during ATP synthesis
since some protons always leak through the inner mitochondrial
membrane, rather than through the ATP synthase (Rolfe and
Brand, 1997; Clarke et al., 2013). Secondly, heat is generated
during ATP hydrolysis in several enzymatic reactions, when the
energy released exceeds that required to drive a reaction. This is
the case for the ATP utilization by the sodium-potassium pump
(NaT-K*-ATPase), the myosin-ATPase during muscular work or
shivering, and by SERCA. SERCA activity produces up to 25% of
the metabolic rate of a resting muscle (Simonides et al., 2001) and
thus contributes to elevations of BMR when muscles are enlarged
in response to cold (e.g., Vézina et al., 2017). Further heat will be
generated by SERCA during both shivering, when Ca?* pumping
is coupled to myofibril contraction and when it is uncoupled, i.e.,
when SERCA serves as a heat generator by slippage of Ca?"-
ions. In this case, ATP is cleaved without apparent work and
then the ADP produced is phosphorylated by the mitochondria,
leading to an increase in oxygen consumption (de Meis, 2001b).
Hence mitochondrial oxidative phosphorylation also contributes
to muscle-NST. All of these pathways of heat generation may be
increased in response to cold exposure, albeit on different time

scales. For instance, in cold-adapted rats, the total volume of
mitochondria was significantly increased by 37% in the musculus
soleus after 3 weeks, increasing the capacity for heat production
during oxidation of fuels and ATP synthesis (Buser et al,
1982). Similarly, the total activity of the Nat-K*-ATPase can be
significantly up-regulated during cold exposure in pigs (Herpin
etal., 1987). It seems, however, that this up-regulation is based on
the relatively slow process of increasing the enzyme’s expression
level (Clarke et al., 2013), or changing the fatty acid composition
or cholesterol content of the surrounding membrane (Cornelius,
2001). In contrast, the activation of heat generation upon cold
exposure by SERCA via SLN should be instantaneous (Bal
et al., 2012). Indeed, Suzuki et al. (2007) could demonstrate
an increase of heat production in single cells within seconds
after experimentally causing influx of extracellular Ca?* (Suzuki
et al., 2007). This increase in heat production was suppressed
when SERCA activity was specifically blocked (Suzuki et al.,
2007). Thus, apart from myofibril contraction, ATP hydrolysis by
SERCA apparently is the only mechanism in muscle that can be
immediately up-regulated in response to cold.

Heat producing mechanisms that involve SERCA are also
known from birds and fishes. In birds there is a profound increase
in SERCA activity during cold exposure-similar to muscle NST in
mammals (Dumonteil et al., 1993, 1995). Interestingly, SERCA2a
remains largely unchanged, whereas SERCAla increases its
level of expression with prolonged acclimatization (Dumonteil
et al, 1995). This suggests that in birds, SERCA2a may be
primarily involved in shivering thermogenesis in slow-twitch
fibres, whereas SERCAla seems responsible for ATP cleavage
during muscle NST in fast-twitch fibers (Dumonteil et al,
1995). In birds, prolonged cold exposure also leads to a 30-
50% increase in ryanodine receptors (RyR) (Dumonteil et al.,
1995), i.e., the Ca?t channels through which Ca%t is normally
released from the SR. Presently it is unclear whether muscle
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FIGURE 1 | The pathways of heat generation in muscle cells. Non-shivering
thermogenesis (NST) in muscle cells is activated by the binding of the peptide
sarcolipin (SLN) to the Cat ATPase (SERCA), the transmembrane Ca2+
pump located in the sarcoplasmatic reticulum (SR) membrane. SLN causes
Caz*'—slippage with the sole purpose of heat generation. Heat is also
generated by mitochondria, the sodium-potassium pump, and myofibril
contraction. For more details see text. Modified after Herpin et al. (2002).
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NST in birds also involves Ca?* slippage controlled by SLN.
However, the involvement of SLN in muscle NST in birds seem
unlikely, since the C-terminus, which appears crucial for the
regulation of SERCA (Barbot et al., 2016), has a differing amino
acid-sequence (KSYQE/Q instead of RSYQY) (Montigny et al.,
2014). Interestingly, a study on ducklings found that muscle
NST was correlated to changes in avian UCP, a paralog of the
mammalian UCP1, (the UCP1-locus has been lost in birds,
Emre et al., 2007), which—in contrast to mammalian UCP1—
is not associated with a change in mitochondrial membrane
conductance, but involved in muscle thermogenesis. The exact
mechanisms are still unclear (Teulier et al., 2010), however,
avian UCP expression is restricted to skeletal muscle and
its abundance increases under cold-acclimatization (Raimbault
et al., 2001).

A form of muscle NST has also at least evolved twice in
fishes, as it is found in certain fish species that show regional
endothermy like billfish and butterfly mackerel (Block, 1994).
The so-called “heater organ,” a specialized tissue next to the eyes,
derived from muscle, uses futile Ca?* cycling to raise the local
temperature by some degrees above that of the surrounding water
(in the case of the swordfish up to 15°C), thereby enhancing
temporal resolution of vision (Carey, 1982; Fritsches et al., 2005).
Although derived from extraocular muscle fibers, cells of the
heater organ have lost most of the contractile myofilaments that
are characteristic for muscle tissue. Instead, the cells express a
modified muscle phenotype with a high mitochondrial and SR
content. The latter is enriched in SERCAla pumps and RyR.
These Ca?t channels cause a release of sequestered Ca?" from
the SR, whereas SERCAla pumps it back into the organelle,
leading to futile Ca®* cycling and heat production (Block et al.,
1994; Morrissette et al., 2003; da Costa and Landeira-Fernandez,
2009). Taken together it seems that the mechanism of muscle
NST in mammals, birds and even fish involves ATP hydrolysis
by SERCA. However, although SLN is already found in fishes
and reptiles (Newman et al, 2013), it is so far not known
if it is involved in heat production in these taxa. If this is
not the case, the SLN-induced slippage of Ca®*-ions without
involvement of the RyR (Mitidieri and de Meis, 1999; Mall
et al, 2006) would be an alternative form of thermogenesis
restricted to mammals. But at this point, this remains
speculation.

Another organ that seems to benefit from local heating is the
heart, for which maintaining functionality even at low T}, is most
important. SERCA2a is the major isoform in the heart and is
primarly involved in Ca?* handling to ensure proper cardiac
function. The capability of up-regulating SERCA2a activity,
already present in fish, could be crucial for the maintenance
of high heart rates and, as a secondary function, also for
regional endothermy and therefore could have contributed to the
evolution of endothermy and the colonization of cold habitats.
Interestingly, gene-expression and protein levels of SERCA2a are
increased in the hearts of hibernators in winter compared with
those in the non-hibernating season (Yatani et al., 2004; Brauch
etal., 2005): A higher density of SERCA2a in the SR membranes
accelerates Ca?* -uptake, an adaptation needed to counteract the
temperature-dependent (Arrhenius) effect on maximum SERCA

activity at low T}, during torpor. The high density of SERCA
and the concomitant high amount of hydrolysis of ATP also
provides the potential for muscle NST (de Meis, 2002; Andrews,
2007). More evidence for this secondary role of SERCA2a in
the heart was collected by Ketzer et al. (2009), who evaluated
the contribution of cardiac tissue in rabbits by measuring
mitochondrial respiration in permeabilized cardiac muscle and
specifically looked into heat produced by Ca?* transport (Ketzer
et al, 2009). They found an increase in oxygen consumption
and associated heat production during Ca?* transport by cardiac
SR after short-term cold exposure. The extra heat produced
by the heart under these conditions was mainly derived from
both an increase of SERCA2a activity and an enhancement of
mitochondrial oxidative phosphorylation. These data suggest
that heat production through SERCA2a in cardiac muscles leads
to regional endothermy, helping the heart to sustain proper
contractions and work load. However, there is no evidence that
this local heat production involves SLN and in fact SLN is not
expressed in the ventricles of small rodents (Vangheluwe et al.,
2005).

IMPORTANCE OF MUSCLE NST IN
MAMMALS

Muscle NST in mammals has been known to exist for decades
and the biochemical mechanisms involved in muscle NST were
studied extensively in the past (e.g., Clausen et al., 1991; Mitidieri
and de Meis, 1999; de Meis, 2001b). However this type of
NST has been shown only recently to represent an essential
source of endogenous heat production that allows mammals to
remain euthermic in the cold (Bal et al., 2012), and therefore
data on muscle NST in mammals are still scarce (see Table 1).
Although only clearly confirmed in laboratory strains of mice
and rats—species that usually possess functional BAT (Babu
et al., 2007; Bal et al., 2012; Pant et al., 2015)—skeletal muscles
meet all relevant preconditions to be the site of a ubiquitous
heat production mechanism in all endotherms. Skeletal muscle
represent the largest fraction of body mass in mammals and
birds, and interestingly, are about 30% more massive in mammals
than in similar-sized ectothermic reptiles (Ruben, 1995; Rowland
et al., 2014). Even more support for the ubiquitous involvement
of muscle NST in thermogenesis of mammals comes from
studying hibernation. Not all mammals maintain a high Ty
throughout the year. So called heterothermic mammals often
reduce their energetic demands during challenging periods by
using short bouts of torpor or months long hibernation, both
characterized by a tremendous reduction of metabolic rate,
endogenous heat production and therefore Ty, and inactivity.
It has recently been shown that SERCAla and SLN are
significantly reduced during the hibernation season in skeletal
muscles of thirteen-lined ground squirrels [Ictidomys (formely
Spermophilus) tridecemlineatus] (Anderson, 2016; Anderson
et al., 2016). While this downregulation could be due to reduced
muscle function during inactivity, it is surprising that SLN,
the regulator of ATP hydrolysis efficiency of SERCA, i.e., the
regulator of the amount of heat produced, is also reduced. This
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TABLE 1 | Evidence of muscle-based non-shivering thermogenesis in vertebrates.

Taxon Species Evidence for muscle NST References
Fish Billfish, butterfly mackerel ¢ No BAT, no thermogenic function of UCP1. Block, 1994; Jastroch et al., 2005
e Heater organ- release of sequestered Ca2* from the SR via
ryanodine receptors. SERCA1a pumps it back into the
organelle, leading to Ca?t cycling and heat production.
Amphibia NA ¢ Not yet investigated.
Reptilia Potentially tegu lizards ¢ No BAT, no thermogenic function of UCP1. Tattersall et al., 2016
e Tegu lizards maintain a Ty, of 5-6°C above ambient during the
reproductive season and even during the colder night hours,
when an increase of Ty, via basking is not possible.
Birds Several species e No BAT, no UCP1. Dumonteil et al., 1995
* A release of sequestered Ca2* from the SR via ryanodine
receptors. SERCA1a pumps it back into the organelle, leading
to Ca2™ cycling and heat production.
Mammals
Monotremata  Anecdotal evidence for ¢ No BAT, no evidence for thermogenic UCP1; e.g., Grigg et al., 1992, 2004; Nicol et al., 1992

echidnas
torpid states.

Marsupialia NA

No BAT, no thermogenic function of UCP1; speculations about

Speculations about alternative rewarming mechanism from

e.g., Nicol et al., 1992; Grigg et al., 2004

alternative rewarming mechanism from torpid states.

Placentalia Found in rodents,
lagomorpha; strong

evidence for pigs

addition to UCP1/BAT);

ground squirrels.

BAT and thermogenic function of UCP1 in most species;
Evidence of sarcolipin-regulated muscle NST in mice and rats (in

Downregulated sarcolipin gene expression in thirteen-lined

Berthon et al., 1994, 1996; de Meis, 2001a,b;
de Meis et al., 2005b; Babu et al., 2007; Bal
et al.,, 2012, 2016; Anderson, 2016; Anderson
etal., 2016; Pant et al., 2016

Muscle NST via SERCA found in rabbits;
Likely in piglets- increasing thermogenic capacity in piglets,

while at the same time shivering is decreasing.

could suggest that the reduced expression of SLN is rather
correlated to an actively down-regulation of metabolic rate to
save energy, which in turn would indicate that muscle NST plays
an important role in the thermogenesis and energy expenditure
of ground squirrels.

Although SLN is only expressed in amounts likely to small to
have a measurable effect on thermogenesis in mice with intact
BAT/UCP1 (Butler et al., 2015), SLN has been proven to be
important for maintenance of endothermy when NST in BAT is
not possible (Bal et al., 2012). Interestingly, both mechanisms of
NST—UCP1-mediated as well as muscle NST—can compensate
for the loss of one system, while double-knockout mice without
UCPI and SLN are unable to survive during prolonged cold
exposure, indicating that at least one of the two mechanisms
is pivotal to maintain endothermy (Rowland et al, 2015).
Furthermore, studies on the significance of muscle NST in UCP1-
knockout mice, as well as BAT-ablated mice have shown that
the efficiency of muscle NST can be increased with long-term
exposure to mild cold (4°C), while shivering thermogenesis is
reduced (Rowland et al,, 2015; Bal et al., 2016). It is generally
assumed that BAT is the principal site of NST in small cold-
adapted mammals, but this notion is challenged by the finding
of compensation of UCP1/BAT-dysfunction by muscle NST,
although it is questionable whether UCP1-knockout mice can
actually maintain their Ty, at ambient temperatures below 4°C.
Furthermore, a recent study has shown that UCP1-inactivating
mutations have occurred in at least eight of the 18 placental
mammalian orders, mainly larger-bodied species (Gaudry et al.,

2016), suggesting that at least large species do not depend on
UCP1-mediated NST in BAT.

A commonly shared view suggests that the thermogenic
evolution of UCP1 has occurred after the divergence between
placentals and marsupials (Saito et al., 2008). Interestingly, UCP1
orthologs have been identified in non-placental mammals, as
well as in fish (Jastroch et al., 2005, 2008), but UCP1 has a
unique function in placentals in that it is necessary for H-
driven NST in BAT (Hughes et al, 2009). This is consistent
with the fact that all studies looking into UCP1-mediated NST
and the presence of BAT in marsupials and monotremes, which
diverged from placental and marsupials even earlier, so far
failed to find clear evidence for UCP1-mediated NST (Nicol,
1978; McNab and Wright, 1987; Hayward and Lisson, 1992;
Nicol et al.,, 1997; Opazo et al., 1999; Rose et al., 1999; Kabat
et al., 2003; but see: Polymeropoulos et al., 2012). Although
the mechanism of NST in marsupials and monotremes remains
elusive, it has often been speculated that an UCP1-independent
mechanism of NST must exists in both groups (e.g., Nicol et al,,
1992; Grigg et al., 2004). Anecdotal evidence of a hibernating
echidna retrieved from its hibernaculum at a T}, of about 13°C
showed that the individual rewarmed to about 18°C without
any visible signs of shivering or muscular movement except
for occasional very slow movements of the limbs and body,
before body twitches and shivering were observed above 18°C
(Grigg et al, 1992). On the first glance the idea that muscle
NST might be important for rewarming from torpor contradicts
the earlier finding of low SLN gene expression throughout
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the hibernation season in ground squirrels (Anderson, 2016).
However, ground squirrels have functional UCP1 and BAT and
therefore no need to rely on muscle NST during arousals.
Interestingly, monotremes and marsupials, which, although
inhabiting generally warmer areas, can also be found in
habitats with temperate climate and coldish winter temperatures,
have lower resting T}, than placental mammals. Monotremes
consist of the aquatic platypus (Ornithorhynchus anatinus) and
terrestrial echidnas (Tachyglossidae). The short-beaked echidna
(Tachyglossus aculeatus), which is the only of the echidna species
we have sufficient knowledge on, has a modal T, of about 32°C
with daily amplitudes of 2-5°C and an often labile T, that
rises as a result of activity and declines during inactivity (Grigg
et al., 2004). Furthermore, echidnas often enter torpid states,
thereby allowing their T}, to drop to levels as low as ambient.
Resting Tys of small-sized marsupials are ranging between 32
and 35°C (Geiser, 2004) and most small-bodied marsupials are
known to regularly enter torpor (Geiser and Kortner, 2010).
Furthermore, some marsupials, such as antechinus (a very
small, nocturnal mouse-like marsupial), are highly susceptible to
develop hypothermia when cold stressed, although they are able
to undergo torpor and regulate the decrease in Ty, (Geiser, 1988).
Thus, it seems that in the case of very small species the lack of
BAT may indeed be associated with increased difficulties dealing
with cold conditions.

IF MUSCLE NST WAS SUFFICIENT, WHY
DID UCP1-MEDIATED THERMOGENESIS
IN BAT EVOLVE?

If the anecdotal reference by Grigg et al. (1992) reported above
is supported by future studies demonstrating muscle NST in
monotrenes or marsupials, this would mean that NST in skeletal
muscle is more ancient than NST in BAT. The existence of
two mechanisms of NST, a likely more ancient mechanism in
muscle and the later evolved mechanism of short-circuiting
the proton gradient in BAT, leads to the question about the
selective advantage associated with the latter. Speculations about
the ultimate reasons for the evolution of UCP1 mediated
thermogenesis in BAT include various scenarios: In addition to
the hypothesis that this mechanism enabled animals to colonize
colder habitats that we already mentioned above, speculations
include (1) defense against the natural cold stress of birth
(Cannon and Nedergaard, 2004), (2) enabling a high T}, for
periods of parental care (Oelkrug et al., 2013), (3) incompatibility
of locomotor performance and muscle NST (Rowland et al.,
2014), and (4) rapid arousal from torpor as well as decreasing the
energetic costs of rewarming from torpor (Oelkrug et al., 2011).
Below, we reevaluate these hypotheses in the light of the existence
of muscle NST.

It has been hypothesized that UCP1 mediated thermogenesis
in BAT evolved as a defense of the cold stress of birth (Cannon
and Nedergaard, 2004), when mammals leave the warm body
of the mother and have to cope with considerably lower
outside temperatures. Could muscle NST be not sufficient for
thermoregulatory demands of neonates? Even in larger species,

neonates have high demands of thermogenesis. They lose more
heat than the bigger adults because of their large surface area
to volume ratio and have less insulation. Interestingly, SLN
expression is high in newborn mice and rats - two species
that have muscle as well as UCPl-mediated NST - and is
usually down-regulated during neonatal development (Babu
et al., 2007; Pant et al., 2015); however, continuous cold exposure
can prevent this down-regulation, leading to an increased
thermogenic capacity (Pant et al., 2015). Another interesting
taxon in this context are pigs. Both wild and domestic pigs
lack BAT (Trayhurn et al., 1989) and the UCP1-mediated NST
capacity (Berg et al., 2006), and piglets are known to have poor
thermoregulatory capacities at birth (postnatal hypothermia)
(Kammersgaard et al., 2011). It is assumed that pigs lost UCP1
function and the ability to use BAT for thermoregulation because
of absent or only weak selection for this mechanism in a
warm climate, arguably because it will be energetically costly
to produce large amounts of this 32 KD protein (Berg et al,
2006). All Suidae species except the wild boar, Sus scrofa, live
only in tropical or subtropical habitats. To cope with adverse
thermal conditions in northern habitats, wild boar apparently
evolved compensatory mechanisms like larger adult body size
(Vetter et al., 2015), building insulating nests for offspring,
and synchronizing reproduction within social groups, enabling
piglets to huddle in large groups of combined litters (Graves,
1984; Berg et al., 2006). Nevertheless, piglet mortality is still high
and often attributed to thermoregulatory problems (Herpin et al.,
2002), which could be due to the lack of BAT. However, there is
evidence that while cold-induced shivering intensity decreases,
simultaneously measured metabolic rate (i.e., heat production)
increases (Berthon et al., 1994). This change in the ratio between
shivering and metabolic rate leads to a >five-fold apparent
improvement of shivering efficiency (Berthon et al., 1994). We
hypothesize that the enhancement of thermogenesis in piglets
is actually due to an increasing contribution of SERCA-based
Ca?" slippage in skeletal muscles. Importantly, this would mean
that muscle NST and shivering can occur at the same time. A
recent study found that in rather cold-tolerant breeds of domestic
pigs, UCP3—a paralog of UCP1 found in so called beige cells,
which manifested after cold exposure and showed a similar heat
production potential as BAT—has a thermoregulatory function
(Lin et al., 2017). However, this mechanism is not found in all
pig breeds, i.e., non-detectable in cold-sensitive pigs. Blockage of
shivering did not lead to a significant drop in Ty, in cold-resistant
pigs, suggesting that those breeds possess a heat production
mechanism other than shivering (Lin et al, 2017). Because
blocking the Ca?* release through the RyR-receptors also did not
change Ty, the authors concluded that this mechanism cannot
involve muscle NST via SERCA. However, muscle NST via SLN
works independent of the activity of the RyR receptor (de Meis
et al., 2005a). Furthermore, there is increasing evidence that
UCP3 and UCP2 do not exhibit uncoupling function like UCP1
under physiological conditions (Trenker et al., 2007; Graier et al.,
2008). The notion that muscle NST can indeed produce high
amounts of heat and therefore may well play a role in piglet
thermoregulation is supported by a pathological condition called
malignant hyperthermia or porcine stress syndrome, as was
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already pointed out earlier by Rowland et al. (2014). Porcine
stress syndrome is due to a mutation in the RyR in the SR, which
leads to a massive release of Ca’" into the cytoplasma, causing
increased SERCA activity and heat generation (MacLennan and
Phillips, 1992).

The second hypothesis suggesting that UCPIl-mediated
thermogenesis in BAT evolved because it enabled high T, for
parental care (Oelkrug et al., 2013) is challenged by the recent
finding of tegu lizards (Salvator merianae, formerly Tupinambis
merianae) that maintain high Ty, during the reproductive season,
despite a lack of BAT. Even during the colder night hours, when
an increase of T}, via basking is not possible, T}, is maintained
5-6°C above ambient (Tattersall et al., 2016). Although not fully
understood yet the observed increase in Ty, is correlated with
an increase in heart rate and suggests that heat is produced
by endogenous NST (Tattersall et al., 2016). As reptiles do not
possess BAT and muscle NST has been found in mammals
and birds, which have evolved from reptilian ancestors, we
hypothesize that these lizards also use a similar mechanism likely
involving SERCA. Similarly, short beaked-echidnas lacking BAT
show more stable and high T}, throughout incubation (Beard and
Grigg, 2000; Nicol and Andersen, 2006).

An obvious question to consider with respect to muscle-NST
is whether this type of thermogenesis can occur simultaneously
with, or only in the absence of shivering. The biochemical
mechanisms of both modes of thermogenesis do not seem to
exclude either possibility. Once SLN induces slippage of Ca?*
from SERCA, this means Ca** ions are captured by SERCA
from the sarcoplasma, which is followed by ATP cleavage
and heat generation, and by the release of two Ca®" back
to the sarcoplasma. Hence, there is thermogenesis without
actual transport of Ca?t into the SR, and no requirement
for Ca®" release by RyR following nervous system induced
sarcolemmal and T-tubule depolarization, which would lead to
muscle contraction (de Meis et al., 2005a). Also, it is easy to
envision that a cyclic capture and release of Ca?* by SERCA at
the SR membrane may not cause changes in sarcoplasmatic Ca?*+
levels that cause muscle contractions. Gaining deeper insights
into this question is certainly interesting for future research,
but presently it seems that both scenarios are possible. For
instance, the observations of Grigg et al. (1992) on rewarming
echidnas would indicate pure muscle NST at lower Tys, while
shivering is only occurring later. The data on piglets discussed
above (Berthon et al, 1994), on the other hand, suggest that
muscle NST, i.e., heat production that is not proportional to
fiber contraction intensity, and shivering thermogenesis are not
mutually exclusive. Indeed we see no mechanistic, biochemical
reason why they should be. This raises the question whether
muscle NST in fact is only possible during muscle activity. This
seems unlikely, however, as Bal et al. (2012) found clear evidence
for muscle NST in mice in which shivering was chemically
blocked. Further, measurements of heat production in SR vesicles
at a physiological temperature of 35°C also do not support
this possibility (Mitidieri and de Meis, 1999). In these studies
heat production was in fact maximal at Ca?>" concentrations
similar to that found in the cytosol of a relaxed muscle fiber
(1pM) and decreased as the Ca?T concentration was raised

to a level similar to that found in the cytosol during muscle
contraction (~10 pM). Conversely Inesi and Tadini-Buoninsegni
(2014) have argued that the buildup of high concentrations of
Ca?* in the SR lumen, a prerequisite for slippage, is too slow
to occur during a muscle relaxation and that cytosolic Ca?"
levels during relaxation would be too low to activate SERCAla
activity. These conclusions were based, however, on the kinetics
of Ca** accumulation and SERCAla activity in vesicles studied
at 25°C, a temperature that is well-known to inhibit SERCAla
activity, at least in vesicles obtained from highly homoeothermic
rabbits (de Meis et al., 2005b). Thus, we conclude that the
preponderance of the current evidence indicates that muscle
NST may occur both during muscle contraction and muscle
relaxation, but certainly, further studies on this question seem
highly desirable. Even if muscle NST may occur during shivering,
it seems conceivable that constant Ca?* cycling at the SERCA
domain during slippage might interfere with and hamper highly
coordinated rapid muscle contraction and relaxation during
locomotion. Thus, especially small animals with relatively high
cold loads may have difficulties to reconcile muscle NST with
controlled locomotor activity and foraging. Among other factors
(see below) this may be one of the selective advantages of
a separate thermogenic tissue, namely BAT, which does not
interfere with muscle contraction; but the degree of impairment
of locomotion by muscle NST remains to be investigated. In
this context, Rowland et al. (2014) have suggested that the
predominance of fast-type skeletal muscles in rodents, which
have high amounts of BAT, may have disfavored the use of
muscle NST. This is because fast-type muscles, although they
contain large amounts of SERCAla, which should facilitate
muscle NST, rely on glycolytic pathways for ATP production,
whereas slow or intermediate types rely predominantly on
oxidative metabolism. Therefore, Rowland et al. (2014) have
argued that skeletal muscles with more oxidative fibers, where
muscle-based NST would probably occur, may be favored in
large mammals. However, despite their large fraction of fast-
twitch fibers, even small rodents make use of muscle NST.
As demonstrated by Jensen et al. (2008) enhanced muscle
NST in transgenic mice, which have increased capacity for
muscular fatty acid uptake, was accompanied by an increase
in oxidative fibers. Further, Pant et al. (2015) recently found
that the down-regulation of muscle NST in fast twitch skeletal
muscles of neonatal mice could be prevented by cold acclimation.
Thus, the fiber type composition of skeletal muscles in small
mammals is flexible and can be adjusted to thermoregulatory
requirements. Currently, there are, however, insufficient studies
on a large enough range of species of different size to obtain
a clear picture of the impact of body mass on muscle NST
capacity.

The term endothermy is often taken to imply a pattern
of homeothermic endothermy, i.e., birds and mammals that
maintain a less fluctuating and fairly constant Ty, over various
conditions. However, many endothermic mammals and birds are
actually abandoning homeothermy during challenging periods
and undergo heterothermic phases during which they reduce Ty,
and metabolic rate in a state of torpor (Ruf and Geiser, 2015).
Up to date at least 214 species of heterothermic mammals and

Frontiers in Physiology | www.frontiersin.org

November 2017 | Volume 8 | Article 889


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Nowack et al.

Muscle Non-shivering Thermogenesis and the Evolution of Endothermy

birds have been identified (Ruf and Geiser, 2015) and it is now
widely accepted that heterothermy is a plesiomorphic, ancient
trait from which homeothermy has evolved (Grigg et al., 2004;
Lovegrove, 2012). The mammalian ancestor was likely a small,
nocturnal insectivorous animal that regularly used torpor (Luo
et al, 2011; O’Leary et al, 2013). In placental heterotherms
UCP1 plays an important role during rewarming from torpor
(Nedergaard and Cannon, 1984). A study on UCP1-ablated mice
has shown that although the lack of UCP1-mediated NST does
not impair the expression of a full torpor bout (i.e., entry,
maintenance, and rewarming), rewarming rates were about 50%
lower and energetic costs were about 60% higher in UCP1-
ablated than in wild-type individuals (Oelkrug et al, 2011).
However, the mice were kept at warm conditions prior to the
experiment, which prevents the cold-induced increase of muscle
NST reported in later studies (Bal et al., 2016). Therefore, animals
likely had to primarily rely on shivering thermogenesis and
were not able to use muscle NST for rewarming. It would be
interesting to see if cold acclimatization of animals prior to
the experiment would lead to a differing result. Nevertheless,
these data suggest that uncoupling of the proton gradient in
BAT might have evolved to allow for a more rapid arousal and
reduced energetic costs for rewarming, because slow rewarming
increases the time spent at high metabolic rates (Oeclkrug
et al., 2011). If UCP1-ablated mice have lower rewarming rates
this should also be the case for monotremes and marsupials.
Indeed, studies report a comparatively low rewarming rate (about
50% lower than the similar sized marmot) in the monotreme
echidnas (Geiser and Baudinette, 1990; Nicol et al., 2009) even
though the echidnas were rewarming from about 7°C warmer
minimum Tys, and Ty, (as well as T,) is known to affect
rewarming rates (Geiser et al., 1986; Geiser and Baudinette,
1987). Unfortunately, there is no comprehensive comparison
between rewarming rates of marsupiala and placentalia that also
take into account differences in T, and T,. Among known
heterothermic mammals, i.e., those undergoing daily torpor or
hibernation, only six species of marsupials and monotremes
are hibernators (18.8%) and show minimum Tys below 6°C
(range: 1.3-5.9°C (Ruf and Geiser, 2015), whereas at least 87
(62.6%) heterothermic placental mammal species hibernate and,
in contrast to marsupials and monotremes, can reduce their
T}, to below zero degrees. These subzero Tys are known from
at least eight species (Ruf and Geiser, 2015), e.g., —2.9°C in
the arctic ground squirrel [Urocitellus (formely Spermophilus)
parryii) (Barnes, 1989)]. Low tissue temperatures pose a problem
because of Arrhenius effects, i.e., the cold-induced retardation
of maximum enzyme activities. These Arrhenius effects may
hamper, or at least significantly slow down, rewarming to
euthermia. Theoretically, this problem could be overcome by
local heating of a small thermogenic tissue, i.e., the autocatalysis
of heat generating processes as the tissue warms itself. This is
one of the properties of BAT and therefore BAT is likely not
only increasing the speed of arousals from torpor, but was also
important for rewarming from torpor at low Tys. Even if the
temperatures at earth were warmer at the time of BAT evolution,
animals will still have experienced daily and yearly fluctuations,
similar to daily fluctuations in tropical habitats seen today. In

contrast to skeletal muscle, BAT is small, mainly found between
the shoulder blades and around the heart, and even in small
mammals does not exceed 5% of body mass (Smith and Horwitz,
1969). Not surprisingly then, the local heating of BAT can be
even detected by thermal imaging of skin (e.g., Symonds et al.,
2012). In comparison, simply due to total heat capacity, using the
same amount of energy for thermogenesis in skeletal muscles,
which typically have a mass of 30-40% of body mass, in some
species up to 50% (Hoppeler and Flick, 2002), would result in
much smaller elevations of tissue temperature. Arguably then,
the evolution of BAT was especially beneficial for heterothermic
placental mammals, as it allowed them to tolerate lower levels
of Ty, as a result of the enormous reduction of metabolic rate
during hibernation and torpor (Ruf and Geiser, 2015). This
likely enhanced adaptive radiation of placental mammals and
their ability to overwinter in the north-temperate and arctic
zones. These are climates that are significantly colder than
those inhabited by marsupials and monotremes, among which
a preference for warm habitats (ranging from rainforests to
deserts) is an ancestral trait (Mitchell et al., 2014; Oelkrug et al.,
2015).

HOW CAN BIRDS BE HIGHLY
ENDOTHERMIC WITHOUT BAT?

If the evolution of BAT indeed facilitated the use of hibernation,
the lack of BAT in birds may help to explain why there is only a
single bird species known to truly hibernate (Jaeger, 1949; Woods
and Brigham, 2004), although a number of birds show shallow
daily torpor (Ruf and Geiser, 2015). This suggests that the bird
thermoregulatory phenotype, compared with the typical small
mammal, is characterized by a high degree of homeothermy, little
heterothermy, and high exercise performance. Given their lack of
BAT, it seems surprising then that muscle NST, or a combination
of muscle NST and shivering, is sufficient to allow many birds
to maintain very high (42°C) Ty even during cold exposure.
Goldfinches will become hypothermic within a few minutes
after cold exposure in summer, but can withstand temperatures
of —70°C for hours in winter (Dawson and Carey, 1976). In
cold-acclimated ducklings skeletal-muscles were identified as the
major site of NST (Duchamp and Barre, 1993). The fact that
muscle NST seems more efficient in birds might be partially
related to the better insulation of feathers in comparison with
mammalian hair (Aschoff, 1981). While birds can decrease
their conductance enormously during cold exposure due the air
trapped in the rigid feather structure, mammalian hair is softer
and less suitable to trap air as an insulation barrier (McNab,
1966).

However, we suggest that there is another main reason for
a lack of selective advantages of a BAT-like tissue in birds,
which—to our knowledge—has never been considered before:
skeletal muscles in birds already reach metabolic rates that are
at least twice as high as in exercising small mammals, and can
be as high as 8-18 times BMR (Butler et al., 1998; Videler,
2005). The rate-limiting step causing this difference between
mammals and birds is the much greater capacity of avian skeletal
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muscles to take up circulating fatty acids (reviewed in Jenni-
Eiermann, 2017). In contrast to mammals, endurance muscular
work in birds can in fact be fueled to 95% by energy derived
from lipids, and the use of this energy-dense fuel may have first
evolved as an adaptation to energy-demanding flight. It seems
logical then that placental mammals, possessing BAT, would
much benefit from enhanced fatty acid import, compared with
skeletal muscle cells. This is indeed ensured by the function of
lipoprotein lipase, which, along with other enzymes, allows the
massive import of fatty acids into BAT during thermogenesis
at significantly higher rates than into skeletal muscle cells of
placental mammals (Heldmaier et al., 1999; Townsend and Tseng,
2014). Interestingly, when the capacity of fatty acid import into
muscle cells was increased by overexpression of lipoprotein
lipase in transgenic mice, this improved cold resistance—
independent from BAT thermogenesis—and elevated muscular
fatty acid oxidation (Jensen et al., 2008). As noted by Jensen
et al. (2008) this clearly reflects a shift toward “an avian
phenotype”. Arguably, these differences in fuel import capacity
into thermogenic tissues may well-explain the absence of BAT in
birds, as well as the lower thermogenic capacity of marsupials and
monotremes.

CONCLUSIONS

In summary, it seems that muscle NST may have been an
important step in the evolution of endothermy. Endothermy is
clearly facilitated by increasing mitochondrial membrane surface
(Else and Hulbert, 1981) and activity of the sodium-potassium
pump, which is the greatest contributor to BMR (Clarke
et al., 2013). However, apart from shivering, muscle NST via
SERCA ATP hydrolysis was probably the first metabolic pathway
in mammals solely used for thermogenesis. By comparison,
UCPIl-mediated NST in BAT seems to represent a mere
“booster” of endothermy and is heavily employed only by
small placental mammals, that is, by less than 20% of all
endothermic mammal and bird species. A prominent role of
skeletal muscle function in the evolution of endothermy, which
is not only the activation of thermogenesis in response to
cold load but also the static elevation of resting metabolic
rates, would be expected by the above mentioned “aerobic
capacity” model (Bennett and Ruben, 1979). Interestingly, after
mixed support for this model from smaller studies over the
last decades, strong evidence for the aerobic capacity model
comes from a recent comprehensive phylogenetically informed
study ranging from fish and amphibians to birds and mammals,
which shows that there is in fact a positive correlation between
maximum and resting metabolic rates in mammals, and that
this pattern is a result of natural selection (Nespolo et al,
2017). These findings again point to an important role of
enhanced muscle function and metabolism for the emergence of
endothermy.

One of the reasons why the importance of muscle NST may
have been underestimated in the past (but see, e.g., de Meis,

2001a; Grigg, 2004) is that it can be “masked” by shivering,
which may well occur simultaneously (Berthon et al.,, 1994,
1996). There is no reason to assume that muscle NST and
shivering are mutually exclusive as only part of the total SERCA
activity may lead to Ca?" cycling, and another part to the
relaxation of myofibril contractions. In contrast, activation of
UCP1-mediated NST occurs prior to the onset of shivering
(Bockler and Heldmaier, 1983) which makes it easier to identify
as a separate mechanism. However, even NST in BAT can also
occur simultaneously with shivering thermogenesis (Bockler and
Heldmaier, 1983). Arguably then, the evolution of endothermy
was not characterized by switches from one to another, possibly
improved, metabolic pathway. Instead it seems that increasing
levels of endothermy were achieved by recruiting additional
mechanisms of thermogenesis to muscular work during
locomotion, including specialized shivering thermogenesis,
increases in mitochondrial density and membrane leakage,
increases in sodium-potassium pump activity, shifts in SERCA
activity toward NST. Highly endothermic mammals living in
cold environments apparently can use all of these mechanisms
simultaneously.

There are several possible selective advantages to this last
evolutionary step, the additional recruitment of UCP1-mediated
NST. As already pointed out previously (Rowland et al., 2014)
there may be a trade-off between fast muscle contraction and
muscle NST caused by conflicting needs for fast glycolytic and
slow oxidative muscle fibers, respectively. In addition, we suggest
that in contrast to shivering thermogenesis, voluntary muscle
contraction as needed for coordinated locomotion and foraging
may be actually incompatible with Ca”**slippage. Further, we
suggest that the evolution of BAT in addition to muscle NST
was related to heterothermy being predominant among early
endothermic mammals. This is because, in comparison with
large muscles, a small dedicated thermogenic tissue such as
BAT is much more suited to rapidly warm up and escape
limiting Arrhenius effects of low tissue temperature during
hibernation and torpor in harsh habitats. Finally, we argue that
additional mechanisms for NST are not required by animals
that have enhanced capacities to fuel muscle NST by high
rates of fatty acid import. Such a group of endotherms are
birds, which probably evolved this superior fuel transport
capacity as an adaptation to flight. This would explain why
birds have high endothermic capacities, despite the absence of
BAT.
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