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Hypertrophic scars remain a major clinical problem in the rehabilitation of burn survivors

and lead to physical, aesthetic, functional, psychological, and social stresses. Prediction

of healing outcome and scar formation is critical for deciding on the best treatment

plan. Both subjective and objective scales have been devised to assess scar severity.

Whereas scales of the first type preclude cross-comparison between observers, those

of the second type are based on imaging modalities that either lack the ability to image

individual layers of the scar or only provide very limited fields of view. To overcome

these deficiencies, this work aimed at developing a predictive model of scar formation

based on polarization sensitive optical frequency domain imaging (PS-OFDI), which

offers comprehensive subsurface imaging. We report on a linear regression model that

predicts the size of a scar 6 months after third-degree burn injuries in rats based on early

post-injury PS-OFDI and measurements of scar area. When predicting the scar area at

month 6 based on the homogeneity and the degree of polarization (DOP), which are

signatures derived from the PS-OFDI signal, together with the scar area measured at

months 2 and 3, we achieved predictions with a Pearson coefficient of 0.57 (p < 10−4)

and a Spearman coefficient of 0.66 (p < 10−5), which were significant in comparison

to prediction models trained on randomly shuffled data. As the model in this study was

developed on the rat burn model, the methodology can be used in larger studies that are

more relevant to humans; however, the actual model inferred herein is not translatable.

Nevertheless, our analysis and modeling methodology can be extended to perform

larger wound healing studies in different contexts. This study opens new possibilities

for quantitative and objective assessment of scar severity that could help to determine

the optimal course of therapy.

Keywords: scars size prediction, burn injury, wound healing diagnosis, optical coherence tomography, skin

imaging

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2017.00967
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00967&domain=pdf&date_stamp=2017-12-01
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:agolberg@tauex.tau.ac.il
https://doi.org/10.3389/fphys.2017.00967
https://www.frontiersin.org/articles/10.3389/fphys.2017.00967/full
http://loop.frontiersin.org/people/485713/overview
http://loop.frontiersin.org/people/486222/overview
http://loop.frontiersin.org/people/81355/overview


Kravez et al. Prediction of Scar Size with PS-OFDI

INTRODUCTION

Burns is a global public health problem, accounting for an
estimated 265,000 deaths annually (WHO, 2016). A review of
literature published since 1965 reported a 32–72% prevalence
rate of hypertrophic scarring in patients suffering from burn
injuries (Lawrence et al., 2012). Although tremendous progress
has been achieved in the last decades in saving lives after burn
injuries, hypertrophic scars remain a major clinical problem
in the rehabilitation of burn survivors, leading to physical,
aesthetic, functional, psychological, and social stresses (Lawrence
and Fauerbach, 2003; Aarabi et al., 2007; Baillie et al., 2014).
Moreover, molecular mechanisms behind scar formation are not
completely understood and it remains challenging to provide
early prediction of the long term scar outcome (Tziotzios et al.,
2012; Koppenol et al., 2017).

Prediction of scarring outcome at the early time points
after injury is important for the decisions about burn wound
management and treatment planning and assessment (Sheridan,
2012; Koppenol et al., 2017). Therefore, a range of subjective and
objective scales has been devised to assist the caregiver in the
decision making (Heimbach et al., 1984). The subjective scales,
such as The Vancouver Scar Scale (VSS), Manchester Scar Scale
(MSS), Patient and Observer Scar Assessment Scale (POSAS),
Visual Analog Scale (VAS), and Stony Brook Scar Evaluation
Scale (SBSES), consider factors such as scar height or thickness,
pliability, surface area, texture, pigmentation, and vascularity
(Nedelec et al., 2000; Fearmonti et al., 2010). However, they
are dependent on the observer and are difficult to compare.
In search of more objective diagnostic burn criteria, a wide
spectrum of methods has been explored: biopsy and histology
(Sheridan, 2012), fluorescent imaging (Sheridan et al., 2015),
near-infrared light spectroscopy (Cross et al., 2007), confocal,
and multiphoton microscopy (Chen et al., 2011), laser Doppler
techniques (Jaskille et al., 2010), and non-contact high-frequency
ultrasonography (Lin et al., 2011), as well as thermography
(Liddington and Shakespeare, 1996). To date, these strategies fall
into one of two categories: (1) they lack the ability to image
individual layers of the wound and provide an accumulated bulk
signal, making the diagnosis of burn depth unreliable, and (2)
although providing high spatial resolution and depth-sectioning,
the limited field of view and long acquisition times make them
impractical in a clinical setting. In contrast, Optical Frequency
Domain Imaging (OFDI) and related implementations of optical
coherence tomography (OCT) provide depth-resolved images
of the tissue architecture and functional vasculature with an
interesting trade off of the field of view, spatial resolution,
and imaging speed, that can help to overcome the barriers
encountered by alternative modalities (Park et al., 2001; Kim
et al., 2012; Villiger et al., 2013a,b).

OFDI is an optical imaging modality that captures
micrometer-resolution, three-dimensional images of the
subsurface microstructure of biological tissues. Polarization
Sensitive (PS) OFDI further improves structural imaging by
providing insight into the polarization properties of the tissue
by measuring the polarization state of the light backscattered
by the tissue. The polarization state of light is altered by

propagating through a medium that exhibits birefringence.
Quantifying the rate of this change with depth provides a
measure of tissue birefringence. The majority of the extracellular
matrix of skin consists of collagen, which is a prominent
source of birefringence. In skin undergoing thermal injury, the
collagen proteins denature, in the process of which they lose
their birefringence. Hence, burns are characterized by a lower
birefringence, a feature which previously has been used to assess
burn depth (Park et al., 2001; Kim et al., 2012). In addition to
birefringence, PS-OFDI can also assess depolarization, which
corresponds to a randomization of the measured polarization
states. This randomization is expressed by the Degree of
Polarization (DOP), ranging from 0 for completely randomized
polarization states to 1 for perfectly aligned polarization
states. Collagen fibers that are uniformly arranged result in
deterministic polarization states that vary along depth due to
tissue birefringence (Lo et al., 2016) but are locally uniform
and result in high DOP. In contrast, collagen fibers that are
disorganized on a size scale smaller than the focal volume of
the probing beam result in a randomization of the measured
polarization states and a reduced DOP (Lo et al., 2016).

We previously have developed reconstruction strategies
that mitigate artifacts resulting from polarization sensitive
measurements through fiber-based imaging systems and provide
maps of tissue birefringence and DOP in animal models (Villiger
et al., 2013a,b). We have also shown that PS-OFDI provides
valuable insights into the structural remodeling taking place
during scar formation in a mechanical tension induced HTS
model in rats (Lo et al., 2016). Compared to normal skin
with heterogeneous birefringence and low DOP, HTS was
characterized by an initially low birefringence, which increased as
collagen fibers remodeled, and a persistently high DOP (Lo et al.,
2016). In additional work, we showed that PS-OFDI signature
could differentiate between third-degree burn scars treated with
different therapy plans of partially irreversible electroporation
(Golberg et al., 2016).

The goal of the present work was to develop a linear regression
model that predicts the size of the scar 6 months after a third-
degree burn in rats based on PS-OFDI imaging at early time
points. Linear regression models are the simplest prediction
models for quantitative inference [see ref (Rice, 2010) as well
as (Stanton, 2001) for a historical perspective]. Such models are
used in diverse contexts including biology and medical science
(Motulsky and Christopoulos, 2002) as well as economics and
social science (Greene, 2011). Accurately predicting the healing
outcome of burn injuries based on non-invasive imaging at early
time points would be a crucial diagnostic capability that could
open new options for management and care of burn patients.

MATERIALS AND METHODS

Animals
Female Sprague-Dawley rats (∼250 g, N = 18, 6-week-old) were
purchased in Charles River Laboratories (Wilmington, MA). The
animals were housed in cages with access to food and water
ad libitum and were maintained on a 12-h light/dark cycle
in a temperature-controlled room. All animal procedures were
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approved by the Institutional Animal Care and Use Committee
(IACUC) of the Massachusetts General Hospital. All procedures
were in accordance with the guidelines of the National Research
Council. The animals were treated humanely.

Scar Models
For statistical prediction of the resulting scar size, a dataset
with a range of different scar sizes is needed. We used the
data from our previous work where we showed the ability of
partially irreversible electroporation (pIRE) to reduce the size of
scars in rats, 6 months after injury (Golberg et al., 2016). Third
degree burns were treated at various time points after injury with
different pulsed electric field parameters, resulting in a range of
scar sizes 6 months after the initial injury, as reported in Golberg
et al. (2016). In brief, animals were anesthetized with isoflurane
and their fur was clipped along the dorsal surfaces. Burns were
incurred by pressing the end of a pre-heated (≥95◦C) brass block
against the rat’s dorsum for 10 s, resulting in a non-lethal, full-
thickness, third-degree burn, measuring ∼1 cm2, which is 0.25%
of the total body surface area (TBSA; Golberg et al., 2016). Four
burn injuries were performed on each animal at sites separated
by 2 cm along the head to tail axis, accounting for 1% TBSA of
total burn area. The depth of the burn was evaluated histologicaly
in 9 animals at time 0, 12 h and 1 week after the injury (n = 3
animals per time point; Golberg et al., 2016). One burn served
as control and three burns with treated with pIRE using contact
electrodes with a surface area of 1 cm2, separated by a 2mm gap
(Golberg et al., 2016). Square pulses of 70 µs duration at a 3Hz
repetition rate were delivered using a BTX 830 pulse generator
(Harvard Apparatus Inc., Holliston, MA; Golberg et al., 2016).
Voltage, number of pulses, and treatment frequency very varied
between different groups of animals and are described in Table
S1 (Golberg et al., 2016). In total we analyzed 3 replicate wounds
per treatment condition for each of the 9 different treatment
conditions.

Polarization-Sensitive Optical Frequency
Domain Imaging
PS-OCT was performed as reported in detail previously (Villiger
et al., 2013a; Lo et al., 2016), at 1, 2, 3, 5, and 6 months after
the burn injury. The system operated with a wavelength-swept
laser source at an A-line rate of 54 kHz and a center wavelength
of 1,320 nm, achieving an axial resolution of 9.4µm in tissue. We
scanned rectangular surface areas of 10 × 5mm, consisting of
2,048 A-lines/image× 256 images, with a focused beam featuring
a lateral resolution of 15µm. The lesions were covered with a
thin layer of ultrasound-gel as an immersion liquid and apposed
against a glass slide to center the superficial layers in focus. Two
to three volumes were acquired for each lesion and time point,
and the volume that aligned most accurately with the lesion was
selected for further analysis. For PS-OCT, the polarization state
of the light directed to the sample was alternated between linear
and circular polarization between adjacent A-lines, and the signal
was detected with a polarization diverse receiver.

The data were reconstructed with spectral binning (Villiger
et al., 2013a), using 1/5th of the spectral bandwidth, a
lateral Gaussian filter with a full width at half maximum

(FWHM) equal to 12 adjacent A-lines, and an axial offset
of 48µm to derive depth-resolved tissue birefringence. Tissue
birefringence was expressed in deg/µm, corresponding to the
amount of retardation per sample path. The DOP was evaluated
independently for each spectral bin and input polarization state
over the same lateral Gaussian kernel, and then averaged:

DOP =
1

2N

∑2

p=1

∑N

n=1

√

Q2
p,n + U2

p,n + V2
p,n

Ip,n
(1)

where Q, U, V, and I are the spatially averaged components
of the Stokes vector, n denotes the spectral bin and p the
input polarization state. DOP expresses the randomness of the
measured polarization states and scales from 0 (completely
random) to unity (uniform). Close to the surface, the polarization
states are usually well maintained, resulting in a DOP close to
unity. As the light propagates deeper and depending on the
depolarizing properties of the tissue, the light gets increasingly
depolarized, resulting in lower DOP values. The structural
intensity tomograms are displayed in logarithmic scale as gray
scale images. Birefringence was mapped from 0 to 1.2 deg/µm
with an isoluminant color map (Geissbuehler and Lasser, 2013)
and overlayed with the gray-scale intensity image. DOP is scaled
from 0.5 to 1 and is rendered in the same color map.

For quantitative analysis of the polarization properties, we
defined a cylindrical region of interest with a diameter of 1mm
centered on the lesion at each time point and extending from the
epidermis to the subcutaneous fat. We found that both mature
scars and normal skin resulted in high mean birefringence
values.

In scars, the birefringence is very uniform and accompanied
by a high DOP. In contrast, the mesh-like arrangement of
collagen fibrils in the normal skin results in a spot-like,
heterogeneous appearance of birefringence in normal skin,
paired with low DOP. Hence, we used a measure of homogeneity
of the birefringence to best capture the scar status. Homogeneity
was evaluated with the “graycomatrix” function, available in the
image processing toolbox in Matlab (MathWorks, Natick, MA,
USA). It was computed with an offset of 5 pixels in the axial
direction, and dividing the birefringence into 12 levels ranging
from 0 to 1 deg/µm over the entire cylindrical region of interest.
Homogeneity results in a value from 0 (not homogeneous) to
1 (very homogeneous). As a second polarization metric, we
computed the average slope of the DOP (DOPSlope). The DOP
values were averaged at each depth across the tissue cylinder and
then fit with a straight line to express its downward slope per
millimeter.

Quantification of Scar Area
Scar surface areas were quantified from digital images, captured
at each time point, with ImageJ software (Schneider et al., 2012).
All scar edges were traced manually and the area was quantified
using a calibrated internal length standard for each image.
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Linear Regression Model to Predict Scar
Area
The data set consists of 36 data points (wounds): 9 animals
with 4 lesions each (1 untreated burn and 3 burns treated with
pIRE). For each wound three features were measured eachmonth
(Scar_Area, Homogeneity, and DOPSlope).

We performed linear regression using two types of data
vectors as features for predicting the scar size at 6 months after
the burn injury:

a) 3-dimensional data vectors, including Scar_Area,
Homogeneity, and DOPSlope for only a single month
from months 1 to 3.

b) 6-dimensional data vectors, including the same features, taken
from a pair of months from months 1 to 3.

c) 9-dimensional data vectors, including the same features, taken
from months 1, 2, and 3.

We first transformed all feature values into z-score explanatory
variables:

z =
(x− µ)

σ
(2)

Where µ and σ are the mean and standard deviation for the
feature, across the 36 samples, and x is the measured feature
value.

We used leave-one-out cross-validation (LOOCV) as
follows—we built a linear regression based on 35 samples and
predicted the target value (scar size at month 6) for the hidden
data point. This process was repeated 36 times (each sample left
out once). The LOOCV process results in 36 predictions for the
scar area at month 6.

We then calculated the Pearson and Spearman correlations
(Rice, 2010) between the vector of predicted values and the vector
of actual measured scar sizes. The Root Mean Square Error
(RMSE) of the prediction model was also determined as follows:

RMSE =

√

√

√

√

1

n

i
∑

1

(xi − x̂i)
2 (3)

where xi is the measured value for the scar size, x̂i is the value
predicted by a given model, and n is the number of samples.

We chose to use several approaches to measure the prediction
quality as they represent different aspects that may be of interest.
Pearson correlation provides an estimate of how the predicted
values are linearly associated with the measured ones. Spearman
correlation provides an estimate of howmonotonic the predicted
values are compared to the measured ones. That is—how
predictive the early post-injury measurements are in being able
to answer questions like—will Scar A be larger than Scar B at
month 6? RMSE provides an intuitive quantitative estimate of the
absolute error.

Amongst these approaches to evaluating performance
Spearman correlation is the most robust one, insensitive to the
variation that can be calibrated in practice and to the statistical
model selection.

Random Control
As a random control, we shuffled the measured values at month
6 and performed the same LOOCV analysis for the shuffled
data. This way we disconnect the relationship between the
measurements at month 1–3 and the corresponding 6th−month
scar size. This yields datasets that are identical to the original
ones but with shuffled 6th-month scar size. The shuffling and
LOOCV analysis were repeated 1,000 times. For each such
shuffled instance, we compute the Pearson and Spearman of
the predicted Scar_Area at 6th month to the input (shuffled)
Scar_Area at 6th month. Thereby we obtain an empirical p-value
for the observed performance of predicting the actual real data
and can rule out overfitting. We performed this analysis for all
model types described above.

RESULTS

Our hypothesis is that PS-OFDI signatures measured at the
early time points after the burn injury allow predicting the final
wound healing outcome. To test this hypothesis, we simplified
this complex process and defined the scar size (area in mm2) at
6 months after the injury as the healing outcome and modeled
it in response to the PS-OFDI signatures and the scar size at
early time points. We used the homogeneity of the birefringence
(Hom) and the slope of the DOP (DOPSlope) as signatures
derived from the PS-OFDI measurements. These parameters
were evaluated in a cylindrical region of interest in the center
of each lesion (2–3 volumes per lesion), extending from the
epidermis to the subcutaneous fat. Together with the scar size,
as measured from digital photographs, this leads to the following
model:

Scar_Area(6m) = β0 +
∑K

i=1
αiScar_Areai + γiHomi

+ δiDOPSlopei, (4)

where Scar_Area is the surface area of the burn scar
(mm2), Hom, and DOP_Slope are the OFDI derived
homogeneity and DOP slope (Golberg et al., 2016), i
indicates the time point in months after the burn injury,
K is the set of employed time points (1, 2, or 3 months
after the injury with all combinations), β0 is the intercept,
and α, γ, and δ are scalar coefficients obtained by linear
regression.

For the construction of the multivariable regression model,
we used data, generated in our previous study, where we treated
third-degree burns in rats with various pIRE therapy parameters
to investigate their impact on the resulting scar size (Golberg
et al., 2016). These experiments generated a data set of 36
individual scars of various sizes on 9 animals (one untreated scar
per animal and three pIRE treated scars with three biological
repeats), measured longitudinally up to 6 months after the burn
injury (Figure 1A). A total of 216 measurements for Scar_Area,
Hom, and DOPSlope as shown in Table 1 and Figures 1B–D, 2

were used. We used Scar_Area, Hom, and DOPSlope from
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FIGURE 1 | (A) Digital images of scar remodeling over time up to 6 months after third-degree burn injury. (B–D) Box-plots of the data recorded from the scars during

6 months of healing. (B). Scar_Area, (C). Homogeneity of birefringence, (D). The slope of the DOP. Plot annotations were defined as follows. Boxes: the main body of

the boxplot showing the quartiles and the median’s confidence intervals if enabled. Medians: horizontal lines at the median of each box. Whiskers: the vertical lines

extending to the most extreme, non-outlier data points. Caps: the horizontal lines at the ends of the whiskers (n = 36 wounds, 9 animals).

TABLE 1 | Measured parameters of third-degree burn scars in rats with/without pIRE treatment.

Scar_Area (mm2) Hom DOPSlope (1/mm)

Month 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6

Mean 76.13 48.07 33.77 34.72 36.09 0.734 0.7 0.593 0.573 0.539 0.281 0.185 0.195 0.256 0.295

Std 25.22 12.36 7.65 11.01 12.79 0.071 0.055 0.189 0.04 0.1 0.1 0.067 0.09 0.054 0.087

Min 36.068 29.448 19.3 16.519 12.737 0.58 0.635 0.0 0.5 0.0 0.104 0.092 0.0 0.166 0.0

25% 60.2 39.13 29.74 26.61 26.847 0.685 0.672 0.6 0.544 0.514 0.209 0.14 0.16 0.217 0.246

50% 70.69 46.97 34.51 34.29 35.91 0.736 0.701 0.634 0.579 0.552 0.249 0.168 0.192 0.253 0.299

75% 87.46 53.26 39.68 40.6 43.32 0.774 0.731 0.681 0.594 0.585 0.361 0.2 0.257 0.299 0.335

Max 163.736 92.247 49.528 69.56 64.71 0.858 0.892 0.775 0.676 0.671 0.495 0.385 0.382 0.375 0.452

Dataset is based on individual 36 scars, measured over a period of 6 months after initial burn injury, as reported in Golberg et al. (2016). Shown data is an average of 9 animals (4

wounds per animal). OFDI data for each wound includes an average from 2 to 3 acquired volumes.

various combinations of measurements at months 1–3 to predict
the scar size in the 6th month.

First, we attempted to predict the Scar_Area at month 6 based
on the Scar_Area, Hom, and DOPSlope measured only at the
single time point of month 1, 2, or 3 after the injury (pIRE
therapy was ongoing during this period; Golberg et al., 2016). The
predictions based on the measurements 1 month after the burn
injury were not significantly correlated to the actual measured
scar size (Pearson coefficient −0.05, p < 0.39 and Spearman
coefficient 0.01, p < 0.48, Figure 3A). The predictions based on
the measurements performed 2 months after the burn injury
were more significantly correlated (Pearson coefficient 0.36, p
< 0.015 and Spearman coefficient 0.47, p < 0.002, Figure 3B).
The predictions based on the measurements taken 3 months
after the burn injury were also significant (Pearson coefficient

0.41, p < 0.006 and Spearman coefficient 0.41, p < 0.006,
Figure 3C).

Next, we extended the model to predict the Scar_Area at
month 6 based on the Scar_Area, Hom, and DOPSlope measured
at 2 or 3-time points 1, 2, and 3 months after the burn
injury. Predictions of the scar areas at month 6 were the most
accurate when based on the combined measurements of months
2 and 3 (Pearson coefficient 0.57, p < 10−4 and Spearman
coefficient 0.66, p < 10−5, Figure 4B). The prediction based
on measurements at all 3-time points, months 1, 2 and 3
followed closely in performance (Pearson coefficient 0.51, p <

7·10−4 and Spearman coefficient 0.59, p < 8·10−5, Figure 4D).
Models of the scar area based on the combined measurements
of months 1 and 2 (Figure 4A) or 1 and 3 (Figure 4C) were
less significant and resulted in a Pearson coefficient of 0.36,
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FIGURE 2 | PS-OFDI images of a developing scar following third degree burn injury in the dorsal skin of a rat. Longitudinal and cross-sectional views of the healing

burn wounds at several time points in the same animal (n = 36 wounds, 9 animals, 2–3 volumes acquired from each wound).

FIGURE 3 | Predicted scar area at month 6 based on measurements taken at a single time point (A). Month 1 (B). Month 2 (C). Month 3 after third-degree burn injury.

The control histograms of the correlation coefficients corresponding to randomly shuffled measurements appear on the right-hand side of each panel.

p < 0.016 and Spearman coefficient of 0.41, p < 0.006 for
months 1 and 2, and a Pearson coefficient of 0.35, p < 0.018
and Spearman coefficient of 0.37, p < 0.013 for months 1 and

3, respectively. The summary of the model comparison appears
in Table 2. The model coefficients are Figure 4 reported in
Tables S2–S8.

Frontiers in Physiology | www.frontiersin.org 6 December 2017 | Volume 8 | Article 967

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kravez et al. Prediction of Scar Size with PS-OFDI

FIGURE 4 | Predicted scar area at month 6 based on multiple measurements taken at (A). Month 1 and Month 2 (B). Month 2 and Month 3 (C). Month 1 and 3

(D). Month 1, 2, and 3 after the third-degree burn injury. The control histograms of the correlation coefficients corresponding to randomly shuffled measurements

appear on the right-hand side of each panel.

TABLE 2 | Summary of the linear regression model for predicting the scar area 6

months after third-degree burn injury based on early time point measurements

with PS-OFDI.

PS-OFDI

measurements

time points

Pearson coefficient

(p-value)

Spearman coefficient

(p-value)

RMSE

Month 1 −0.04 (0.39) 0.008(0.48) 13.63

Month 2 0.358(0.015) 0.465(0.002) 12.36

Month 3 0.412(0.006) 0.41(0.006) 11.7

Month 1&2 0.356(0.016) 0.413(0.006) 12.6

Month 1&3 0.349(0.018) 0.37(0.012) 12.4

Month 2&3 0.569(0.0001) 0.658(<0.0001) 10.81

Month 1&2&3 0.508(0.0007) 0.587(<0.0001) 11.61

DISCUSSION

Our long-term goal is to develop a metric based on PS-OFDI
signatures to assess scar severity and predict the healing potential
of burn wounds. Working toward this goal, in the current study,
we tracked the remodeling of healing burns in rats, subject to

different pIRE treatment plans with PS-OFDI. Burn injuries in
rats have obvious limitations in modeling the healing of burn
wounds in humans (Ramos et al., 2008); yet such animal studies
(Mitsunaga et al., 2012) enable the development and investigation
of PS-OFDI signatures in vivo during wound healing and are an
essential step toward diagnostic applications in human patients
(Lo et al., 2016).

In this study, we showed that the scar size 6months after third-

degree burn injury in rats can be accurately estimated from non-

invasive measurements with PS-OFDI performed in the first 3

months after the injury. The best results (Pearson coefficient 0.57,

p < 10−4 and Spearman coefficient 0.66, p < 10−5, Figure 4C)

was achieved when predicting the scar area at month 6 from the

scar area, the birefringence homogeneity and the slope of the

DOP measured 2 and 3 months after the injury.

The results of this study point to the potential of developing

an approach for predicting clinically important scar properties

early in the treatment process. The relevance and scope of the

current results are, however, limited. Our results are clearly valid

in the context of scars in rats and under the protocols used herein.
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It is likely that models can be developed for human scars, of
many possible types, but the parameters presented are clearly not
directly transferable. Even in the context of rats models, a major
limitation of this current study is the limited number of tested
samples. While the sample size is sufficient to support a strong
confidence level that the prediction quality is not spurious larger
data sets, with hundreds of independent scars, are required to
construct and test more precise prediction models. Such larger
samples will allow for more rigorous statistical testing, replacing
the LOOCV approach used here. The sample size limitation also
dictated a composition of our analyzed cohort that is composed
of untreated samples as well as from several different treatments.
A more uniform design can lead to even more accurate results
but could not be used here as the sample set would become too
small.

The predicted quantity at month 6 clearly depends on the
rat’s month 3 to month 6 history which is not captured by
the month 1 to month 3 measurements. Prediction accuracy
is also affected by the measurement accuracy. Scar size was
manually measured and therefore, the measurement depends on
the evaluator. Automated assessment of the scar size, for example
using OCT, would be favorable and remove bias, however
this method was not performed in the present study as the
method will limit the observed field of view. In addition, genetic
variation between the rats in this study could have affected
scarring potential but are not yet captured in our model. Larger
studies will not be able to resolve prediction errors due to these
factors. They can allow more complex models, however, and
the inclusion of more factors, such as quantitative histological
features information (Quinn et al., 2014). Since different signals

would likely be detected in human wounds in comparison to
wounds in rats, as indicated above, larger future studies should
also address differences and how model parameters can translate
to human scars. Our analysis and modeling methodology
can be extended to perform larger studies in different
contexts.
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