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One goal of advanced information and communication technology is to simplify

work. However, there is growing consensus regarding the negative consequences of

inappropriate workload on employee’s health and the safety of persons. In order to

develop a method for continuous mental workload monitoring, we implemented a task

battery consisting of cognitive tasks with diverse levels of complexity and difficulty. We

conducted experiments and registered the electroencephalogram (EEG), performance

data, and the NASA-TLX questionnaire from 54 people. Analysis of the EEG spectra

demonstrates an increase of the frontal theta band power and a decrease of the parietal

alpha band power, both under increasing task difficulty level. Based on these findings

we implemented a new method for monitoring mental workload, the so-called Dual

Frequency Head Maps (DFHM) that are classified by support vectors machines (SVMs) in

three different workload levels. The results are in accordance with the expected difficulty

levels arising from the requirements of the tasks on the executive functions. Furthermore,

this article includes an empirical validation of the new method on a secondary subset

with new subjects and one additional new task without any adjustment of the classifiers.

Hence, themain advantage of the proposedmethod comparedwith the existing solutions

is that it provides an automatic, continuous classification of the mental workload state

without any need for retraining the classifier—neither for new subjects nor for new tasks.

The continuous workload monitoring can help ensure good working conditions, maintain

a good level of performance, and simultaneously preserve a good state of health.

Keywords: mental workload, electroencephalography, biomedical signal processing, pattern recognition, state

monitoring

1. INTRODUCTION

Advanced information and communication technology, highly interactive work environments,
and work assistance systems impose increasingly high demands on our cognitive capacity and
on the ability to cope with mental workload. Although one main goal of information and
communication technology is to simplify work, there is growing consensus concerning the
negative consequences of inappropriate workload on human’s health and the safety of persons.
Reports show that employees are complaining more frequently about high mental workload
and stress (Kompier and Kristensen, 2001; NIOSH, 2002; Landsbergis, 2003; Lohmann-Haislah,
2012). At the same time, increased automation can be also associated with monotonous tasks, a
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decrease in arousal, and underload (Hacker and Richter, 1984;
Parasuraman et al., 1993, 1994; Debitz et al., 2003; May and
Baldwin, 2008).

Optimization of work conditions in human-machine systems
is a big challenge. Under optimized work conditions we await
performance at its best whilst simultaneously preserve employee’s
health. In this context, a reliable and objective method for
capturing mental workload continuously is absolutely essential.
Hence, the long-term goal is to develop a method to be able to
recognize critical states like high and low workload.

1.1. Theoretical Background
Mental workload has a long history in the psychological
literature. However, different authors refer to it with different
concepts and there is neither a common definition of mental
workload nor a clear methodology for measuring it. The
concept of mental workload was first introduced in the 1940s
(Bornemann, 1942) with the aim of optimizing human-machine
systems. Although various definitions have followed since then,
the core of the concept is the relation between task demands
and personal capacity. According to Kahneman (1973) cognitive
resources for human information processing are limited and
hence the amount of task demands placed on a person’s limited
resources is equivalent to mental workload. Similar definitions
are given by Eggemeier et al. (1991) where “Mental workload
refers to the portion of operator information processing capacity
or resources that is actually required to meet system demands.”
Mental workload is assumed in Wickens (2002) to describe
the “relation between the (quantitative) demands for resources
imposed by a task and the ability to supply those resources by the
operator.” In Xie and Salvendy (2000) time is also included as an
important factor and it is suggested that “mental workload is the
amount of mental work or effort necessary for a person or group
to complete a task over a given period of time.”

Considering the enormous historical body of literature and in
order to put our work on the footing of a consistent theoretical
background mental workload in this article is defined in line with
the definition of mental strain according to the ISO standard
in International Organization for Standardization (1991). There
mental strain is specified as “the immediate effect of mental stress
within the individual (not the long-term effect) depending on
his/her individual habitual and actual preconditions, including
individual coping styles.” This definition reflects cognitive and
emotional processes in the human brain that are characterized
by neurophysiological changes in the central nervous system.
Furthermore, these processes also imply a shift to catabolic
activity within the autonomic nervous system (Fairclough et al.,
2005). This reaction represents a compensatory strategy to
preserve performance under increased demands and stressors
(Hockey, 1993, 1997).

1.2. Assessment of Mental Workload
Assessment of mental workload can be done by subjective and
objective methods. Subjective methods ask the subject for a rating
by mean of questionnaires. Examples for objective methods
are performance measurements and psychophysiological
measurements.

Subjective methods consist of relatively low data acquisition
effort and high user acceptance. They would offer a
straightforward solution to register workload if they were
not sensitive to subjective distortion. They are problematic
because firstly individuals are expected to provide a certain
kind of answer and secondly the experienced workload took
place at some time in the past. Additionally, there might also
exist discrepancies due to the subjects not having understood
the questionnaire’s items or due to an inability to introspect.
Importantly, they do not allow for fine-grained temporal
sampling, e.g., on the time scale of seconds, without clearly
reducing user acceptance. Furthermore, surveys can alter the
current workload state, e.g., if during a monotonous task the
subject becomes activated by answering questions.

Although performance measurements offer an objective way
to define workload, we have to be aware of their main issue.
It is a fact that in order to cope with increased demands
individuals adapt their behavior. They invest more effort and
experience more mental workload to maintain performance at
the same level. In this sense performance measurements are not
sensitive to the increase of workload while subjective ratings and
physiological indicators may reflect changes. However, in cases
where individuals change their task goals and accept a lower
level of performance or even give up (Meijman and O’Hanlon,
1984), performance measures will indicate a decrease (hence
increased workload) while physiological measures may remain
unchanged or show decreased workload. However, to capture
high mental workload that could affect individual’s health we
have to concentrate on situations where individuals keep engaged
to the task and try to maintain their performance even though
task demands increase and they have to invest more effort.
Performance measurements are thus insufficient.

Objective methods as the analysis of biosignals offer
the capability to continuously determine mental workload.
Eligible biosignals for workload registration are e.g., the EEG,
cardiovascular parameter as well as ocular data. The signals
react differently by different kinds of workload (e.g., emotional,
physical, or mental workload) but also between different subjects.
User acceptance varies with respect to the complexity of the
registration system constituting their main issue. However,
recent developments in the field of mobile technology promise
small, lightweight, and wireless systems. In addition, a main
advantage of biosignals is that they can be obtained continuously,
a subject can hardly manipulate them, they do not alter subject’s
current workload state, and they can be obtained on-the-fly
during task execution.

Previous studies indicated that several psychophysiological
variables respond in a more or less predictable way to cognitive
effort, e.g., heart rate variability (Veltman and Gaillard, 1996;
Mulder et al., 2002), blood pressure (Veltman and Gaillard,
1996), the P300 from the EEG (Ullsperger et al., 1988),
pupil diameter (Beatty, 1982), and adrenaline concentration
(Frankenhaeuser et al., 1980).

1.3. Neural Indexing of Mental Workload
In our article we focus on power spectrum analysis of the
electroencephalogram. The reason is that features of brain
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activity have a unique potential for achieving mental workload
registration. For the sake of completeness, we have to mention
that there are also a number of studies that try to estimate mental
workload by use of neurophysiological components from event
related potentials (ERPs) (Brouwer et al., 2012; Roy et al., 2016).
However, the great advantage of spectral features against ERPs
is that they are less intrusive and more practical regarding real-
life applications. Spectral features allow continues monitoring of
mental state without any need for releasing stimuli and triggering
their appearance time.

There is a lot of research work with the aim to establish
a reliable method for mental workload estimation by use
of spectral features from the EEG (Brouwer et al., 2015).
Some researchers use ratios of the spectral power frequency
bands (Brookhuis and de Waard, 1993; Pope et al., 1995; Prinzel
et al., 2001), try to define thresholds for them, or work with
single power spectra and classification algorithms (Berka et al.,
2007; Heger et al., 2010; Dijksterhuis et al., 2013). In general,
threshold values are problematic because they are not commonly
applicable to different subjects. Individually, i.e., for each single
person, trained models for EEG classification offer an acceptable
solution (Brouwer et al., 2012). Therefore, classifiers have to
be trained for each subject and also in regard to the task set
and its different workload levels. After that the model can be
used for estimating the subject’s mental workload during the
particular task. This individual adjustment and retraining of
the classifier to subject and specific task is time-consuming and
cumbersome. However, many years of investigation in the field of
mental workload, experience with EEG analysis, and the results of
numerous EEG studies (Gundel and Wilson, 1992; Wilson, 2001,
2002b; Berka et al., 2007; Kohlmorgen et al., 2007; Lei et al., 2009;
Lei and Roetting, 2011) form the solid basis for the development
of our method for mental workload monitoring.

Our aim is to obtain individual classification of a subject’s
mental state independent of a specific task. Furthermore,
retraining of the classifier should not be necessary, neither for
new subjects nor for new tasks. For achieving these objectives,
we developed a new method for continuous mental workload
classification based on the so-called Dual Frequency Head
Maps (DFHM). These DFHM rely on personalized spectral
features and their spatial occurrence. They are classified with
support vector machines (SVMs) trained by means of established
knowledge linked to the variability of the spectral features due
to mental demands that have been reported in EEG research
over the past 50 years. In particular, increased mental workload
is mainly associated with EEG variations in the spectral power
of the theta band at frontal sites (Inouye et al., 1994; Gevins
et al., 1997; Smith et al., 2001; Sammer et al., 2007) and of the
alpha band at the parietal area (Gevins et al., 1997; Smith et al.,
2001; Wilson, 2002a; Wilson and Russell, 2003). The theta band
is considered to be a reliable parameter which is enhanced with
increasing task difficulty (Gevins et al., 1998; Jensen et al., 2002),
whereas the alpha band seems to be less reliable with respect
to the decrease which is normally expected (e.g., Hagemann,
2008). Some studies have linked this behavior to different kinds
of attention (internal vs. external) or other task requirements
(Klimesch, 1999; Kelly et al., 2006).

The conducted experiments are described in section 2, starting
with the description of the cognitive task battery we implemented
for data acquisition. The subsequent section 3 introduces the
new method and the proceeding for its evaluation while the
results from the statistical analysis are presented in section 4.
Furthermore, the empirical validation of the DFHM method on
a new sample set and task are described in section 5. Finally,
the results are discussed in section 6 and conclusions about
limitations and impact of the study are drawn.

2. MATERIALS AND EXPERIMENTS

2.1. Tasks
In order to develop a method based on well-grounded theory
to quantify mental workload by means of the EEG, we
specifically put together an appropriate set of tasks with reduced
confounding factors for inducing different levels of workload.
According to Berka et al. (2007) this set should consist of
relatively pure tasks that induce cognitive state changes by
manipulation of task demands. A method created using such
tasks is meant to be more valid when used in more complex
operational situations. This is due to the fact that mental states
involved in complex tasks can be broken down into fundamental
cognitive processes such as attention, working memory, and
executive function resources (Berka et al., 2007). Latter are
necessary to cope with operational environments. Hence, we
established a link to the state-of-the-art research on working
memory processes and executive functions.

Baddeley’s theory (Baddeley, 1986, 2000, 2012) offers a starting
point of a central attentional control system that was modeled
following the supervisory attentional system by Norman and
Shallice (1986). According to this there exist on the one hand
situations that allow for schema-based processing and require
little attentional control. Responses in these cases run quite
automatically because they are based on well-learned schemata
in long-term memory. On the other hand there exist situations
that cannot be handled by schemata and demand action by a
central attentional control system to inhibit automatic responses.
Furthermore, they require the selection of task adequate, new
responses. In Miyake et al. (2000) three executive functions
are defined to be needed during non-automated processing:
inhibition, shifting, and updating.

Within this framework we selected nine cognitive tasks (0-
back, 2-back, Sternberg, serial Sternberg, Stroop, switch-PAR,
switch-NUM, switch-XXX, AOSPAN) for our task battery. They
overlap somewhat with regard to task demands but differ with
regard to the executive function addressed (Table 1). Their
implementation was realized with the E-Prime application suite.

The 0-back task represents an easy task, where the subject will
have to press the mouse button if the presented letter is “X.”
In the 2-back task the subject will be asked to press the mouse
button if the presented letter is the same as the next to last letter
seen (Kirchner, 1958; Gazzaniga et al., 2013). Hence, subjects are
updating their working memory continuously.

During the Sternberg task (Sternberg, 1966) a set of two or
six letters at a time appears on the screen. After an interval of
1,000 ms, a test letter is presented. Subjects will be instructed
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TABLE 1 | The tasks and their preferential workload source.

Task Duration Working Executive functions

[min] memory Updating Inhibition Shifting Multitasking

0-back 5 (x)

2-back 5 x x

Sternberg 10 xx

ser. Sternberg 10 xx x

Stroop 5 x x

switch-PAR 5 x

switch-NUM 5 x

switch-XXX 10 x x

AOSPAN 20 xxx x x x

rest start 3

rest end 3

The claiming intensity of each executive function is indicated by the number of Xs.

to press the red mouse button if the test letter has been shown
before and the green mouse button otherwise. Furthermore, they
are instructed to not read the letters aloud.

The serial Sternberg task (Raghavachari et al., 2001) is a
combination of the n-back task with the Sternberg task. Hence,
it is a working memory task with updating requirements. Single
letters appear serially on the screen, followed by a test letter at
the end of the sequence. Subjects will be instructed to press the
red mouse button if the test letter has been shown before and
the green mouse button otherwise. The number of the presented
letters varies between two and six and the subjects are not allowed
to read the letters aloud.

The Stroop task (Stroop, 1935) is an inhibition task.
Differently colored words appear on the screen one at a time.
The subject is asked to press the mouse button (yellow, green,
red, and blue) that matches the font color, ignoring the meaning
of the word.

The switch task consists of two easy single blocks and a
more demanding mixed block (Gajewski et al., 2012). In the
single blocks participants have to classify digits according to their
numeric value (NUM) or their parity (PAR). In the mixed blocks
the participants have to memorize the switching rule between
these two conditions (NUM, NUM, PAR, PAR, NUM etc.) and
process the digits differently every second time.

The AOSPAN task is administered as a demanding dual task
in the version developed by Unsworth et al. (2005) and was
translated and adapted by the author. Subjects are asked to
memorize letters in the order presented while simultaneously
solving math problems. The math problem requires to click
as soon as they know the answer. After the click a number is
presented and they have to decide if it is the right answer to the
problem. Then a letter to be memorized is shown. At the end a
recall slide is presented asking them to select the letters shown
in the correct order. Finally, they get feedback about both their
memory and math performance. Furthermore, the subjects are
instructed to keep the percentage number indicating their math
performance above 85%.

For all tasks the subjects are instructed to work as quickly and
accurately as possible. A more detailed description of the tasks
including slide presentation times, number of trials, and number
of targets can be found in Radüntz (2016).

Performance evaluation for all tasks was done by analysis
of individual accuracy rates. In case of the AOSPAN task, the
accuracy rates were calculated from the sum of correctly recalled
letters from only the items in which all characters were recalled
in correct serial order.

2.2. Procedure
The EEG investigation was performed in a shielded lab under
well-controlled laboratory conditions at the Federal Institute of
Occupational Safety and Health in Berlin. We asked subjects to
participate in a 1-day experiment where they had to complete the
above-mentioned cognitive tasks.

The experiment consisted of a training procedure and the
main test. The training procedure served to familiarize the
subjects with the cognitive tasks and created similar starting
conditions for all participants. The training tasks were the same
as those of the main experiment but shorter in duration. They
were repeated until the subject reached an accuracy index of at
least 80%. In that way we aimed to control the effect of task
demands on the registered mental workload independent from
learning effects. Only the training of the AOSPAN task was
performed during the main experiment. It took place directly
before the actual task as described in Unsworth et al. (2005). The
math practice of the task aimed to calculate for each person how
long they need to solve the math operations. Each individual’s
mean (plus 2.5 SD) was used during the main AOSPAN task as a
time limit for the math problem.

The main experiment started after a short break subsequent
to the training. It was controlled remotely through a remote
desktop connection, an intercommunication system, and a video
monitoring system. The tasks were presented to the subjects in a
counterbalanced order. The duration of each task is presented in
Table 1. The participating subjects needed on average 90 min to
complete all tasks. Physiological signals were digitally recorded
only during the main experiment. They were also measured
during resting periods (with eyes open) of about 3 min at the
beginning and the end of the main experiment to serve as
reference measurements.

2.3. Subjective Ratings
We used the NASA-TLX questionnaire (Hart and Staveland,
1988) in a computerized version for capturing subjective
workload. Subjects were asked to first rate the workload
sources after each task during the training phase. That
was done by 15 pairwise comparisons of the NASA-TLX’s
six workload dimensions: mental demand, physical demand,
temporal demand, performance, effort, and frustration. Analysis
of subjects’ pairwise choices indicates the perceived importance
of each dimension and hence its contribution to the task specific
workload. Furthermore, the paired comparisons enable us to gain
individualized weightings of the subscales. The second part of
the NASA-TLX questionnaire was conducted during the main
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experiment. Ratings of each workload dimension within a 100-
point range were done after each task by clicking on a 5-point
step box with an optical mouse.

2.4. Subjects
Fifty seven people in paid work and between the ages of 34 and 62
years participated in our study. Hence, the individually occurring
mental workload was expected to vary due to the high variability
of the sample in respect to cognitive capacity and age. Three
persons had to be excluded from further analysis because they
did not complete all cognitive tasks. Hence our final sample set
consists of 54 subjects (31 female, 23 male, mean age 41).

All of the investigations acquired were approved by the
local review board of our institution and the experiments were
conducted in accordance with the Declaration of Helsinki. All
procedures were carried out with the adequate understanding
and written consent of the subjects.

3. METHODS

Digital signal processing and all calculations were done with
MATLAB.

3.1. EEG and the New Method of DFHM
3.1.1. Pre-processing
Twenty five passive electrodes were placed at positions
according to the 10–20-system for capturing the EEG (Figure 1).
Registration was carried out with a sample rate of 500 Hz and
with reference to electrode Cz. For signal recording we used an
amplifier from BrainProducts GmbH and their BrainRecorder
software.

The recorded EEG is windowed with a Hamming function
and filtered with a bandpass filter (order 100) between 0.5
and 40 Hz. Independent component analysis (ICA, Infomax
algorithm, Makeig et al., 1996) is applied to the signal and the
independent components calculated are automatically classified
as either an artifact or signal component (Radüntz et al.,
2015, 2017). The signal components are projected back onto
the scalp channels and constitute the artifact-free EEG. In
the following, the artifact-free EEG is transformed to average
reference and cut into segments of 10 s length, overlapping by
5 s. Workload relevant frequency bands (theta: 4–8 Hz, alpha: 8–
12 Hz) are computed over the segments using the Fast Fourier
Transformation (FFT).

3.1.2. Z-scores and Generation of DFHM
The spatial fusion of the frontal theta band power with the
parietal alpha band power for each segment constitutes one of
the main concepts in our method. For this, we apply a theta-
bandpass filter to the signals of the frontal electrodes and an
alpha-bandpass filter to the signals of the parietal electrodes.
Next, for reducing individual variation, we calculate for each
participant the z-scores of theta and alpha band power of each
electrode. The z-score represents the distance between a value
and the mean of the data in units of the standard deviation.

For the z-score calculation, we use beforehand calculated
individual means and standard deviations for the two band

FIGURE 1 | EEG-layout montage used.

powers of each channel. These descriptive parameters are gained
from the total of subject’s segments of the first minute of
each task. The first minute of the tasks was chosen because it
represents different workload conditions but without side effects
like fatigue, exhaustion, or monotony. Although one could argue
that the number of tasks is limited, we believe that it is sufficient
to gain general information about the individual brain oscillation
mode under different workload requirements.

Based on these individually computed four values for each
electrode, we calculate for each person the z-scores for each
segments’ theta and alpha band power. Next, we collocate the
z-scores of the theta band power at the frontal electrodes and
the z-scores of the alpha band power at the parietal electrodes in
one head map. This means that we comprise band powers from
all electrodes, but include only the workload-relevant frequency
bands in respect to the brain area. This compilation of the theta
band power from the frontal electrodes and the alpha band power
from the parietal electrodes leads to the DFHM for each EEG
segment. Figure 2 shows how the DFHM are generated, and how
the spatial information is kept.

3.1.3. DFHM Workload Index
Based on long-term experience and in-depth knowledge of the
literature in respect to the variability of the EEG depending
on workload variance, we labeled 540 DFHM according to
the well reputed behavior of the frequency band powers. The
DFHM were selected from the first minute of each measurement
(except of the AOSPAN task) of every subject (54 subjects × 10
measurements × 1 segment of the first minute). For the sake of
consistency, we excluded the first minute of these tasks from the
further proceeding of classifier test. The labels used represented
the range of low load, moderate load, and high load. The labeling
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FIGURE 2 | Generation of DFHM by combining the frontal theta band power with the parietal alpha band power in one head map.

process was totally blind to subject and task and relied only on the
behavior of the frequency bands. Accordingly, each DFHM was
visually inspected. If the frontal z-score value of the theta band
power was high and the parietal z-score value of the alpha band
power was low, the DFHM was labeled as high load. In contrast,
all DFHM with a low frontal z-score value and high parietal z-
score value were labeled as low load. The remaining, where the

differences of frontal and parietal z-scores were not pronounced,
were labeled as moderate load. Figure 3 shows examples of such
DFHM and their labels.

Subsequently, training of two support vector machines
(SVMs) for low load and high load DFHM classification was
carried out. We performed random sub-sampling, also known as
Monte Carlo cross-validation. We are aware that by application
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FIGURE 3 | Examples of DFHM and their labels.

of this method not all DFHM of our labeled data set might be
used. However, we are also aware of our quite small set size. Given
this, we consider an advantage of this method that there is no
dependency of subset split-size to the number of folds (e.g., k-fold
cross validation).

We split our data into a training and a testing subset, whereby
their size corresponded to 60 and 40% of the labeled DFHM,
respectively. These random partitioning of the data was repeated
ten times. For each split the classifiers were retrained from scratch
to fit to the new training subset and predictive accuracy was
computed by means of the testing subset. Finally, the results were
averaged over the splits. The empirically selected parameters and
the testing results of both SVM kernels are presented in Table 2.
The least classification accuracy of both classifiers yielded 92.69%.

Our system’s setup consists of the general pre-processing
of the recorded EEG data, computation of z-score and
DFHM, and their classification. Figure 4 shows the processing
pipeline.

For every subject and measurement, DFHM are created of
each EEG segment. Both SVM classifiers are applied on each
DFHM and the new workload index is automatically computed
as a logical combination of the classifiers’ output every 5 s
(Figure 5). Based on these index values all segments are classified
as low, moderate, or high load segment .

In contrast to the single power spectra of the alpha and
theta band there is no need anymore for defining quantitative
threshold values for the three workload states. The DFHM
achieve immediate classification in one of the three classes
(Figure 6). An additional advantage is that labeling of the DFHM
is task independent. Furthermore, the DFHM are also person
independent due to the z-scores used. Hence, retraining of the
classifier is not necessary—neither in respect to new subjects
nor regarding new tasks. The only parameters needed relate
to the calculation of the z-scores. They comprise the pre-saved

TABLE 2 | Optimal parameters and accuracy rates for the SVM classifiers.

C: SVM

regularization

σ : kernel width Mean recognition

rate (%)

Low load DFHM 0.03 3 94.06

High load DFHM 0.03 0.3 92.69

information about the subject’s mean and standard deviation of
theta and alpha band power for each electrode.

3.2. Statistical Analysis for Evaluation of
the DFHM Workload Index
It is quite obvious that labeling of our complete data set is
not possible (1008 DFHM × 54 subjects). Hence, evaluation
of the DFHM workload index is done statistically with regard
to a postulated hypothesis. This arises from the cognitive task
demands well-known from the literature and their impact on
subject’s mental workload. In particular, we expect easy tasks like
0-back, switch-NUM, switch-GER, and the rest measurements
to induce low workload, i.e., relatively few DFHM segments
classified as high load and most DFHM classified as low load. In
contrast, high workload is expected during demanding tasks like
AOSPAN. Here, most of the DFHM are expected to be classified
as high load and only few of them as low load. Finally, the Stroop
and the switch-XXX tasks are assumed to range in the middle
and to induce moderate workload. Hence, the amount of DFHM
classified as high and low load is expected to range between the
above mentioned tasks.

For statistical evaluation of our new method, we calculated
the percentage of segments in the three classes (low load,
moderate load, and high load) getting three percentage values
for each person and task. Thereafter, we computed two analyses
of variance (ANOVA) with repeated measures design using
the portion of low load segments (LLS) and the portion of
high load segments (HLS) as within-subject factor, respectively.
To complete the picture, we involved all measurements in
our evaluation. Hence, two rest measurements and nine tasks
constituted the eleven levels used. For the examination of
significant differences between these levels, we employed post-hoc
tests. Thereby, multiple paired comparisons with a Bonferroni
correction were calculated. The Bonferroni correction is used to
counteract the problem of multiple comparisons by adjusting the
significance level by the number of the calculated comparison
tests (Abdi, 2007). The correction aims to keep the false-positive
error at 5% overall. Statistical analysis was computed by means of
the software package SPSS.

Furthermore, regarding the NASA-TLX and the accuracy rates
we calculated one more repeated measures ANOVA, respectively.
They both comprised one within-subject factor and only nine
levels (the nine tasks but no rest measurements). The ANOVAs
were completed by Bonferonni-corrected post-hoc tests. These
examinations allow us to compare the new workload index with
further workload relevant data later on and gain additional
information that could be beneficial in case of doubts when
interpreting our DFHM results.
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FIGURE 4 | Processing pipeline for workload index determination.

4. RESULTS

Statistical analysis yielded significant differences in the means
of the portion of high and low load segments. These changes
among the tasks were examined by post-hoc analysis. They are
presented in Tables 3, 4 and illustrated in Figure 7. In particular,
analyses show obvious differences between the easy tasks (rest
measurements, 0-back, switch-PAR, and switch-NUM) and the
more demanding ones (Stroop, switch-XXX, and AOSPAN) as
well as between the most demanding AOSPAN task and the
remaining. They are well pronounced for both: the proportion
of high load and the proportion of low load segments but
in different directions. Furthermore, we noticed the Stroop
and the switch-XXX tasks to range in the middle between
the easy tasks and the AOSPAN task. They have significantly
higher proportions of high load segments than the easy tasks
but significantly lower than the most demanding task. The
proportion of low load segments behaves accordingly in the
opposite direction. In general, we note that an increase of task
demands leads as expected to an increase of the portion of
high load segments while the portion of low load segments
decreases.

Results of the subjective ratings and the accuracy rates
computed for the nine cognitive tasks of the test battery over
54 subjects are illustrated in Figure 8. The left plot shows the

average NASA-TLX workload index of each task. Analysis of
variance and post-hoc tests showed significant changes of the
mean workload index between most of the tasks (Table 5).
The 0-back, switch-PAR, and switch-NUM tasks are subjectively
rated as easy tasks by the subjects (workload index≈ 37.6,
NASA-TLX range: 0–100) and do not show any significant
differences between each other. The Stroop task is rated as
moderate (workload index≈ 50), while the rest of the tasks show
higher workload indices (workload index≈ 65.8). Noteworthy
is that the subjects did not differentiate between the five in
respect to the cognitive demands quite differing tasks (i.e.,
2-back, Sternberg, serial Sternberg, switch-XXX, AOSPAN)
regarding the experienced workload. Furthermore, we noticed
that the Stroop task shows significant differences to all other
tasks.

The average accuracy rates are presented in the right plot.
During the experiment, the means of the accuracy rates changed
significantly. These significant changes were revealed by post-
hoc analysis (Table 6) and show obvious performance differences
between the easy tasks (0-back, switch-PAR, and switch-
NUM) and the rest as well as between the most demanding
AOSPAN task and the remaining. Furthermore, we noticed
the Stroop task to have significantly higher accuracy rates
than the working memory tasks 2-back, Sternberg, and serial
Sternberg.
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FIGURE 5 | Computation of the new workload index as a logical combination of both SVM classifiers’ output.

FIGURE 6 | Examples of the DFHM workload index generated every 5 s: during the rest measurement at the beginning (Left) and during the demanding AOSPAN

task (Right).

5. EMPIRICAL VALIDATION OF THE DFHM
WORKLOAD INDEX BY MEANS OF NEW
EXPERIMENTS

For the empirical validation of the DFHM workload index we
conducted a new experiment. Hereby, we tested an additional
sample set of eight subjects (5 female, 3 male, age between 29
and 60 years, mean age 40). The new data were collected under
the same conditions and procedure as the above mentioned
experiment. In order to test if the new method can deal with
new tasks without adjustment, we enlarged our task battery by
an additional cognitive task: the stop signal task (Logan, 1994;
Dimoska, 2005).

The stop signal task is similar to the Stroop task an inhibition
task. During the task, subjects are instructed to press the green
mouse button as fast as possible if a horizontal left arrow is
presented on the screen and the red mouse button if a horizontal
right arrow appears. If a horizontal arrow is shortly followed by
a vertical arrow, they are instructed to inhibit their response and
not press either button. They have to respond as fast as possible
and consider that their main aim is to keep the frame around the
arrow green. A red frame means they are too slow. Hence, if red,
they should speed up their response while still paying attention
to the vertical arrow.

For the validation we postulate the same hypotheses as above.
If the method is valid, we have to obtain similar tendencies in
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TABLE 3 | Significance thresholds for the discrimination of the portion of low load segments between the cognitive tasks based on the DFHM method

[Greenhouse-Geisser: F (5.57; 295.02) =46.196, p< 0.001; post-hoc tests: ***: p<0.001; **: 0.001≤ p<0.01; *: 0.01≤p<0.05].

0nb 2nb stern s.ste str par num xxx aos sta end

0nb – *** ** *** * ***

2nb – * *** ** ***

stern – *** * *** *** ***

s.ste – *** ** *** * ***

str *** * *** *** – *** *** *** *** ***

par *** – *** *** ***

num * *** – *** *** **

xxx ** ** *** *** – *** *** ***

aos *** *** *** *** *** *** *** *** – *** ***

sta *** *** *** *** *** *** *** –

end *** *** *** *** *** *** *** *** *** –

TABLE 4 | Significance thresholds for the discrimination of the portion of high load segments between the cognitive tasks based on the DFHM method

[Greenhouse-Geisser: F (5.43; 287.99) =41.58, p<0.001; post-hoc tests: ***: p<0.001; **: 0.001≤ p<0.01; *: 0.01≤ p< 0.05].

0nb 2nb stern s.ste str par num xxx aos sta end

0nb – ** *** * **

2nb – *** ** ***

stern – *** * *** *

s.ste – *** * *** * **

str ** *** *** – ** *** *** *** ***

par ** – ** *** ** **

num *** – ** ***

xxx * * ** ** – *** *** ***

aos *** *** *** *** *** *** *** *** – *** ***

sta * ** * *** ** *** *** –

end ** *** * ** *** ** *** *** –

FIGURE 7 | Portion of high load (Left) and low load segments (Right) computed for the rest measurements and the cognitive tasks over the subjects.

Frontiers in Physiology | www.frontiersin.org 10 December 2017 | Volume 8 | Article 1019

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Radüntz Dual Frequency Head Maps

FIGURE 8 | NASA-TLX overall index (Left plot) and accuracy rates (Right plot) computed for the nine tasks over the subjects.

TABLE 5 | Significance thresholds for the discrimination of task load between the

cognitive tasks based on NASA-TLX [Greenhouse-Geisser:

F (5.96; 316.01) = 65.02, p< 0.001; post-hoc tests: ***: p<0.001; **: 0.001≤

p<0̇.01; *: 0.01≤ p<0.05].

0nb 2nb stern s.ste str par num xxx aos

0nb – *** *** *** *** *** ***

2nb *** – *** *** ***

stern *** – *** *** *** ***

s.ste *** – *** *** ***

str *** *** *** *** – *** *** ** ***

par *** *** *** *** – *** ***

num *** *** *** *** – *** ***

xxx *** ** *** *** – *

aos *** *** *** *** *** * –

the behavior of the proportion of high and low load segments
among the tasks as for the first experiment. Furthermore, we
expect that the new task yields similar results as the Stroop task.
Finally, we have to highlight that SVM classifiers for the DFHM
were not retrained for the new experiment, neither regarding the
new sample set nor in respect to the new task.

The proportion of HLS and LLS computed over the eight
subjects for the nine tasks and the two rest measurements are
presented in Figure 9. We note here the same trends as observed
previously for the larger sample set. What is more, the stop signal
task is placed between the most demanding AOPSAN task and
the Stroop inhibition task. Remarkable is its small proportion of
LLS in respect to the Stroop task. However, no exploratory data
analysis was carried out due to the small sample set.

6. DISCUSSION AND CONCLUSIONS

In order to evaluate the new proposed DFHM method, in the
following we consider the obtained results and discuss them also

TABLE 6 | Significance thresholds for the discrimination of accuracy rates

between the cognitive tasks [Greenhouse-Geisser: F (3.71;196.67) = 173.27,

p< 0.001; post-hoc tests: ***: p< 0.001; **: 0.001≤ p< 0.01].

0nb 2nb stern s.ste str par num xxx aos

0nb – *** *** *** *** *** ** *** ***

2nb *** – ** *** *** ***

stern *** – *** *** *** *** ***

s.ste *** – ** *** *** ***

str *** ** *** ** – ** *** ***

par *** *** *** *** ** – ** *** ***

num ** *** *** *** *** ** – *** ***

xxx *** *** *** *** – ***

aos *** *** *** *** *** *** *** *** –

in comparison with the tendencies derived from the subjective
ratings and the performance measurements.

Regarding the subjectively experienced mental workload
derived from the NASA-TLX overall index no significant
differences could be identified among the easy tasks 0-back,
switch-PAR, and switch-NUM. This was also not expected
because these tasks do not differ in respect of their minimal
demands. Similarly, no significant differences among these easy
tasks could be found in respect to the proportions of high and
low load segments derived from the DFHMmethod.

Furthermore, analysis of the proportion of identified high
and low load segments per task indicates that with increasing
demands the amount of high load segments increases while
the amount of segments classified as low load decreases.
Moreover, the resulting DFHM workload index yields here the
same tendencies as the other workload parameters from the
questionnaire and the performance data.

It was somewhat surprising that the subjects were not able to
significantly discriminate mental workload among the five tasks
2-back, Sternberg, serial Sternberg, switch-XXX, and AOSPAN
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FIGURE 9 | Empirical validation of the method based on a smaller sample set and an additional task: Proportion of high load (Left) and low load segments (Right)

computed for the rest measurements, the nine cognitive tasks, and the additional stop signal task over a sample set of eight subjects.

which obviously differ in their task demands. We presume that
there is a ceiling effect in the subjectively measured workload. As
the workload reaches the subjective ceiling, the desired validity
of the subjective ratings suffers. Interestingly, subjective ratings
indicate significantly less workload during the Stroop task than
during the five above mentioned tasks. We attribute this to
the playful character of the Stroop task that could function as
motivation and also lead to significantly higher performance
compared to the working memory tasks 2-back, Sternberg, and
serial Sternberg. However, the index derived from the DFHM
places the Stroop task regarding mental workload between the
demanding AOSPAN and the working memory tasks and on a
similar level as that from the switch-XXX task.

Subsequently, we empirically validated the new method on a
smaller sample set of eight new subjects and with one additional
new task (the stop signal task). We want to emphasize that
SVM classifiers were not retrained neither in respect to the new
subjects nor to the new task. Validation of the DFHM workload
index indicated the same tendencies among the tasks as already
obtained by the larger sample set. The additional stop signal task
integrated itself as expected between the demanding AOSPAN
task and the Stroop inhibition task. Noticeable is that in respect of
the proportions of LLS from the Stroop and the stop signal task,
the latter is found to be more demanding. This fact fits well to the
statements of the subjects regarding their difficulties during the
stop signal task.

To sum up, the new DFHMmethod leads to the classification
of EEG segments as high, moderate, or low load. Based on this,
our results support the expected difficulty levels of the tasks
resulting from their demands on the executive functions.

In contrast to single power spectra (e.g., alpha and theta
band) there is no need anymore for defining quantitative
threshold values for the three workload states. Threshold values
are problematic because they are not generally applicable to
different subjects. As the new method relies on personalized
DFHM and on SVM classifiers trained by means of reported

knowledge on the variability of spectral features, it achieves
immediate and continues classification in one of the three classes.
The time-consuming, additional retraining of the classifier for
new subjects and tasks is not necessary anymore. Results from
the other workload relevant parameters (subjective ratings and
performance data) reveal similar outcomes regarding workload
and emphasize the EEG findings.

Based on such consolidated findings of neuronal brain states
an optimal workload range for the operator can be defined. This
range corresponds to more efficient cognitive processing, thus
enabling performance at its best. Simultaneously, it preserves
employee’s health and hence, accounts for optimized work
conditions.

Related research areas are also neuroergonomics
(Parasuraman and Rizzo, 2008), augmented cognition
(Schmorrow et al., 2009), and physiological computing
(Fairclough, 2009; Fairclough and Gilleade, 2014). The main
goal of such research is to use continuous information about
the individual’s mental state for improving task sharing between
human and machine. Our approach to develop a method for
continuous mental workload registration contributes to these
research areas. The overall important benefit is the prevention
of negative impacts of sustained high or low load on the
mental health and cognitive capacity of the working population.
Brain state monitoring can contribute to the modulation of
workload, protect and advise against high load and low load,
and can be used for ergonomic evaluation and improvement of
human-machine systems and information intensive occupations.

As a limitation of our work, we have to mention that
our experiment is conducted in a highly controlled laboratory
environment by using clearly defined, basic cognitive tasks.
Results could be different under realistic settings and real
world scenarios. Especially, the contradictory behavior of the
alpha band power could effect the validity of the DFHM
workload index under realistic conditions with enhanced visual
information processing. Further research is needed to validate
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these findings in such environments. The first steps for research
outside the lab, in particular regarding automatic artifact
rejection, have already been taken (Radüntz et al., 2015, 2017). In
addition, further research is needed to prove if aggregation of the
DFHM workload index over time is more appropriate regarding
feasible state changes. Taken into account that cognitive states
are global, we have to ask if an interpretation of cognitive states
on a second-by-second basis is reasonable. Hence, apart from
the question of the best suitable aggregation type, the question
of an adequate time window should be addressed, too. These
still outstanding research issues will be addressed within the
framework of our current project with air traffic controllers and
in cooperation with the German Aerospace Center.
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