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In silico cardiac myocyte models present powerful tools for drug safety testing and

for predicting phenotypical consequences of ion channel mutations, but their accuracy

is sometimes limited. For example, several models describing human ventricular

electrophysiology perform poorly when simulating effects of long QT mutations.

Model optimization represents one way of obtaining models with stronger predictive

power. Using a recent human ventricular myocyte model, we demonstrate that model

optimization to clinical long QT data, in conjunction with physiologically-based bounds

on intracellular calcium and sodium concentrations, better constrains model parameters.

To determine if the model optimized to congenital long QT data better predicts risk

of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk,

we tested the optimized model against a database of known arrhythmogenic and

non-arrhythmogenic ion channel blockers. When doing so, the optimizedmodel provided

an improved risk assessment. In particular, we demonstrate an elimination of false-

positive outcomes generated by the baseline model, in which simulations of non-

torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our

results underscore the importance of currents beyond those directly impacted by a drug

block in determining torsadogenic risk. Our study also highlights the need for rich data

in cardiac myocyte model optimization and substantiates such optimization as a method

to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.

Keywords: cardiac modeling, model optimization, safety pharmacology, long QT, in silico drug trial, cardiotoxicity

1. INTRODUCTION

Mathematical models of cardiac electrophysiology are at the cusp of usage in a variety of clinical
and pre-clinical applications, including safety pharmacology (Mirams et al., 2012; Zhang et al.,
2016). In particular, mathematical modeling forms a central component in the Comprehensive in
Vitro Proarrhythmia Assay (CiPA) initiative, a proposed strategy for progressing drug safety testing
(Sager et al., 2014; Colatsky et al., 2016; Fermini et al., 2016; Gintant et al., 2016).

In terms of cardiotoxicity, drug safety testing aims to avoid Torsades de Pointes (TdP), a
life-threatening ventricular tachycardia. Indeed, occurrences of drug-induced TdP in patients have
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lead to regulatory bans and market withdrawals of several drugs
(Mirams et al., 2011). TdP risk is associated with prolongation
of the QT interval on the electrocardiogram, in particular due
to block of the hERG channel, which carries the rapid delayed
rectifier current (IKr; Sanguinetti et al., 1995; Straus et al., 2005;
Hoffmann and Warner, 2006). However, multiple other currents
and dynamics are of importance to torsadogenesis, and including
measured effects of drugs on multiple channels, rather than
just hERG, into TdP risk stratification improves risk prediction
(Kramer et al., 2013; Mistry et al., 2015). Mechanistically, TdP
initiation is linked to early afterdepolarizations (EADs) at the
cellular level. Triggering of these EADs may depend directly on
multiple different ionic currents, including the L-type calcium
current (ICaL) and the late sodium current (INaL) (Lankipalli et al.,
2005; Hale et al., 2008), and may also depend on intracellular
calcium and sodium dynamics (Terentyev et al., 2014; Kim
et al., 2015; Xie et al., 2015; Krogh-Madsen and Christini, 2017),
implying that the levels of the ionic transporters that control
these concentrations (e.g., the sodium-calcium exchanger and
the sodium-potassium pump) are important for torsadogenesis.
Indeed, recent in silico work have pointed to the magnitudes
of these two transporters as having large impact on TdP risk
(Lancaster and Sobie, 2016).

Despite the proposed usage of mathematical models in
safety pharmacology, even recent and sophisticated models of
human ventricular myocyte electrophysiology perform poorly
when simulating each of the most typical congenital long
QT (LQT) syndromes (Mann et al., 2016). This naturally
raises concerns about the ability of these in silico models
to predict drug-induced LQT and TdP. However, using a
global optimization strategy, in silico models can optimized
to reproduce repolarization delays consistent with those seen
clinically in the congenital LQT patient datasets, providing
optimism for clinically-related model usage (Mann et al., 2016).
A concern remains, however, as to whether these in silicomodels,
optimized in terms of action potential properties, replicate
dynamics of intracellular ionic concentrations well enough
to reliably predict TdP risk. For example, when optimizing
a model in terms of its electrical activity only, it can be
difficult to correctly identify parameters that mainly control
ionic concentrations (Groenendaal et al., 2015). Indeed, previous
modeling studies have shown how identical-looking action
potentials, modeled using different combinations of model
parameters, can have differing calcium transients (Sarkar and
Sobie, 2010).

To investigate this possible limitation, we therefore carried
out a multi-variable optimization, using both clinical congenital
LQT data and constraints on the concentrations on intracellular
Ca2+ and intracellular Na+ ([Ca2+]i and [Na+]i). We then
asked whether optimized models that better represent the
congenital LQT syndromes might allow for more accurate
and more reliable modeling of acquired LQT and TdP risk.
To this end, we simulated 86 cases of multi-channel drug
block with known TdP risk level (Lancaster and Sobie, 2016)
and found that the model optimized in terms of both action
potential and [Ca2+]i, and [Na+]i data, better predicts TdP
risk.

2. METHODS

2.1. Cell Model and Drug Simulations
Simulations were performed using the O’Hara-Rudy (ORd;
O’Hara et al., 2011) human ventricular ionic model as the
baseline model, as this is the model proposed to be used in
the CiPA initiative (Colatsky et al., 2016; Fermini et al., 2016).
We used endocardial myocyte parameter settings except where
otherwise noted (Figure 4A). We used a 1 Hz pacing rate
and corresponding steady-state initial conditions (O’Hara et al.,
2011). For each perturbation to the model (simulating drug
block or LQT syndromes and parameter changes during the
optimization; detailed below), the model was simulated for 500
beats prior to collecting data. We quantified action potential
duration to 90% (APD90) or 50% (APD50) repolarization, as
indicated. Calcium transients were characterized by diastolic
level (the minimum [Ca2+]i attained within an action potential
cycle cycle) and systolic concentration (the peak [Ca2+]i reached
during an action potential). The [Na+]i varies little within a single
action potential and was measured as the maximum value.

For our drug simulations, we used the datasets of Kramer
et al. (2013) and Mirams et al. (2011) as curated by Lancaster and
Sobie (2016) with an associated yes/no risk of torsadogenesis. For
each drug, the dataset gives its estimated effective free therapeutic
plasma concentration (EFTPC), along with IC50 values for block
of the channels generating IKr, ICaL, and the fast sodium current
(INa). Drug effect on each channel type was modeled as a
conductance block based on aHill equationwith a coefficient of 1:

Gx,drug = Gx

(

1+
EFTPC

IC50,x

)−1

, (1)

where Gx,drug is the maximal conductance of channel x in the
presence of the drug. The dataset contains 86 entries, with some
duplicate drugs modeled differently by the two original sources.
There are therefore 68 different compounds in the set, covering
a variety of intended clinical use, including anti-arrhythmics,
anti-histamines, antipsychotics, hypertension/angina drugs, and
others.

2.2. Drug Classification
To classify model output generated by these drug simulations we
used a Support Vector Machine (SVM; Ben-Hur et al., 2008).
We used linear decision boundaries separating two categories
of data: TdP risk and no TdP risk. These decision boundaries
were computed as the solution to a minimization of an error
(E) calculated as the sum of squared distances between the
location of miscategorized points and the boundary. Because
the two variables used in the classification (APD50 and diastolic
[Ca2+]i) have very different absolute values, we normalized them
to baseline (i.e., no drug) values.

In general, the minimum value of E will take on different
values when using different cell models to simulate drug effects,
indicating that the separation of data points by category is better
for some models than others. Therefore, to compare goodness
of the classification between models and also to determine
sensitivity of the decision boundaries, we calculate regions for
which E remains below a threshold value (E∗), which we set to
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twice the value of the lowest value of E found among the four
tested models.

2.3. Model Optimization
We optimized the baseline ORd model based on clinical data
from LQT patients, following a similar strategy as Mann et al.
(2016) and using their QT interval data for control patients
and patients with one of the three most prevalent congenital
LQT syndromes: LQT1, LQT2, or LQT3. The QT interval data
from LQT1 and LQT2 patients came from a patient cohort
with heterozygote nonsense mutations only, as that can be
mimicked in the model by decreasing the conductances of IKs
and IKr by 50%, respectively. The LQT3 cohort data is more
heterogenous and the subtype was simulated by increasing the
conductance of INaL by a factor that was allowed to vary as
part of the optimization process. The amount of QT interval
prolongation in these patient groups was 12.2% for LQT1,
16.6% for LQT2, and 16.2% for LQT3. Mapping the delayed
repolarization measured clinically as QT interval prolongation
directly to APD90 prolongation in the cell model, the objective
data set was 267.97 ms (control), 301.14 ms (LQT1), 312.20 ms
(LQT2), and 311.55 (LQT3).

In its simplest setup, the optimization was designed to
minimize a sum-of-squares error from the APD90 objective
when subjecting the model to control conditions and each
of the LQT subtypes 1, 2, and 3. We refer to this as the
“APDLQT" optimization. In other optimizations, we included
[Ca2+]i and [Na+]i information in the objective to improve the
optimization outcome. This “multi-variable” optimization was
done by adding a hefty error (200 ms squared) if [Ca2+]i and
[Na+]i fell outside a certain range during the control condition.
We used a range of 0.05–0.15µM for diastolic [Ca2+]i, 0.3–
0.7 µM for systolic [Ca2+]i, and 7–10 mM for [Na+]i based
on measurements in human ventricular myocytes and recent
modeling work (Beuckelmann et al., 1992; Piacentino et al., 2003;
Grandi et al., 2010).

For the optimization method, we used a genetic algorithm
(GA), which is a global optimization method that has been
successful in optimizing cardiac ionic models to experimental
and simulated data (Syed et al., 2005; Bot et al., 2012; Kaur
et al., 2014; Groenendaal et al., 2015). We used a population
size of 200 individual model instantiations and ran each GA for
50 generations. All other settings specific to the GA (detailing
selection, crossover, mutation, and elitism) were defined as
detailed previously (Bot et al., 2012). Because of the stochasticity
inherent to the GA, each optimizationwas run ten times.We used
the run resulting in the lowest error as the optimized model.

The parameters to be determined in the optimization process
are scaling factors for the currents IKr, ICaL, INaL, the slow
delayed rectifier current (IKs), the sodium-calcium exchange
current (INCX), the sodium-potassium pump current (INaK), and
the extent of INaL increase with simulated LQT3. All scaling
parameters were allowed to vary from 0.1% to 10-fold their values
in the baseline model.

Note that for ease and consistency we will refer to current
scaling factors as scaling of maximal conductances (and use
GKr, GCaL, GNaL, GKs, GNCX, and GNaK for the currents defined

above), although some currents are technically scaled by a
permeability or a maximal charge carried.

3. RESULTS

3.1. Sensitivity of APD, [Ca2+]i, and [Na+]i
in Baseline Model
To help guide our optimization procedure, we first did a
sensitivity analysis to the major conductances as parameters with
low sensitivity are problematic to determine in an optimization.

In the baseline ORd model, the action potential duration of
the ORd model is highly sensitive to changes in IKr (Figure 1A).
For example, when decreasing GKr by 50% to simulate LQT2,
the response is a prolongation of APD90 by 117 ms (44%),
substantially larger than the QT interval prolongation of 68
ms (16.6%) seen in LQT2 patients with heterozygote nonsense
mutations (Mann et al., 2016). The APD has an intermediate
sensitivity on GCaL, but shows little sensitivity to variations in
GKs and GNaL, the currents associated with LQT1 and LQT3,
respectively. For example, reducing GKs by 50% to mimic LQT1,
gives a modest 8-ms (3%) APD90 prolongation, much shorter
than the 51 ms (12%) QT interval prolongation seen clinically
(Mann et al., 2016).

As expected, the calcium transient has a very different
parameter sensitivity dependence. It depends strongly on the
conductances of ICaL and INCX, with a 50% increase in GCaL

or a 50% reduction of GNCX increasing systolic [Ca2+]i by
almost 0.2 µM (Figure 1B). The calcium dynamics also has a
significant dependence on GNaK, which only controls [Ca2+]i
indirectly via [Na+]i changes that regulate INCX. Indeed, [Na

+]i
depends sensitively on GNaK, with a 50% reduction in GNaK

resulting in a 1.7 mM increase in [Na+]i (Figure 1C). Variations
in the remaining key conductances have little influence on [Na+]i
levels.

These results are consistent with those presented previously
for ±10 and ±20% parameter variations in the ORd model
(O’Hara et al., 2011).

3.2. Model Optimization
As it is difficult to estimate parameters to which an output is
not sensitive, the above analysis suggests that if optimizing the
baseline ORd model to APD data only, it will be problematic
to estimate many of the conductance parameters. Including
repolarization delay data from LQT types 1, 2, and 3 as
additional information to the objective may help determine
the scaling of GKs, GKr, and GNaL. Further, pinpointing these
parameters may narrow down other conductances that correlate
with these more directly determined parameters (Groenendaal
et al., 2015). The sensitivity analysis also indicates that inclusion
of calcium transient data to the optimization objective should
help determine GNCX and GNaK scaling, and that incorporation
of [Na+]i may further help determination of GNaK scaling.

We therefore optimized the baseline ORd model to both
clinical QT interval data from LQT patients and [Ca2+]i and
[Na+]i as detailed in section 2.3. The model optimized to this
multi-variable objective produces APD90 values that are within
3% of their target values (Figure 2). The optimized parameter
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FIGURE 1 | Sensitivity of baseline ORd model to select conductances. (A) The APD of the baseline model has a strong sensitivity to the conductance of IKr. (B) The

calcium transient (quantified here as systolic [Ca2+]i ) depends sensitively on GCaL, GNCX, and GNaK. (C) The level of [Na+]i depends mainly on GNaK. Conductances

were varied by ±20% (light blue/red) and ±50% (dark blue/red) of baseline values.

FIGURE 2 | APD values of optimized models. Horizontal lines give control

APD90 (black) as well as APD90 surrogates for QT interval prolongation in LQT

patients (colored). These APD values form the optimization objective in the

simplest case (“APDLQT”). For the multi-variable optimization (“multi-var”), the

objective also include constraints on [Ca2+]i and [Na+]i . Dots give APD90

values under control simulations (black) and during LQT simulations (LQT1,

red; LQT2, blue; LQT3, green). The overestimation of the LQT2 response and

the underestimation of the LQT1 response in the baseline ORd model are

eliminated in the optimized models. Relative APD90 prolongation in the

baseline model is 3.0, 43.8, and 15.8%, for LQT1, LQT2, and LQT3,

respectively. For the multi-variable optimized model, relative APD90

prolongation is 14.9, 22.9, and 18.6% for LQT1-3, while for the

APDLQT-optimized model the corresponding values are 14.5, 19.4, and

17.0%. The target QT interval values are 12.2, 16.6, and 16.2%.

scaling factors are given in Table 1. The optimized model has
a much increased GKs, resulting in a larger response to the
simulated LQT1 condition, matching the target data (Figure 2).

Optimizing the baseline model to APD values only (i.e.,
omitting the [Ca2+]i and [Na+]i constraints) results in slightly
better matching of the objective (Figure 2; errors with 2%).
Optimized parameter values are very different, with large
increases in scaling of GCaL and GNaK in addition to the enhanced
GKs scaling (Table 1).

TABLE 1 | Scaling factors for optimized models.

Objective Ks Kr CaL NCX NaK NaL NaLLQT3

Multi-variable 8.09 1.17 3.57 3.05 1.91 1.70 4.17

APDLQT 9.71 1.42 9.59 1.75 7.40 4.86 2.28

The optimization gave estimated parameters for scaling of the currents IKs, IKr , ICaL, INCX ,

INaK , and INaL, and for the increase of INaL during simulated LQT3. Optimizing to APD

values only (APDLQT ) resulted in a very different parameter set compared to the multi-

variable optimization that include of [Ca2+ ]i and [Na
+ ]i constraints. In particular, it resulted

in much increased scalings for ICaL and INaK .

Despite the diversity in parameter scalings among the baseline
and the optimized models, the action potential morphology
is quite similar across these differently parameterized models
(Figure 3A). We also include for comparison the action
potential generated by Mann et al. in an optimization to
clinical LQT data under both baseline and β-adrenergic
conditions (“APDLQT±βAdr” optimization, Mann et al., 2016).
The main difference among the action potential waveforms is a
depolarization of phase 2 of the action potential, the amount of
which correlates with the upscaling of GCaL from the baseline
model (about 2–4 in themultivariable and APDLQT±βAdr models,
and almost 10 in the APDLQT model).

However, calcium transients and [Na+]i levels are vastly
different across models (Figures 3B,C). When including [Ca2+]i
and [Na+]i constraints in the optimization, the optimized
calcium transient and [Na+]i level are very close to those of
the baseline model, despite the allowed ranges being relatively
large (0.05–0.15µM for diastolic [Ca2+]i, 0.3–0.7µM for systolic
[Ca2+]i, and 7–10 mM for [Na+]i). In our optimizations, when
optimizing to APD only, the calcium transient is significantly
enhanced. This is consistent with the much boosted GCaL

and the decreased GNCX scaling (relative to the multi-variable
optimization) both of which favor a larger calcium transient. In
addition, the GNaK scaling is much increased when optimizing
to APD only, consistent with the lower [Na+]i. For the
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FIGURE 3 | Action potentials, calcium transients, and [Na+]i in optimized models. (A) Optimized models have similar action potentials under control conditions, but

the different parameter sets underlying the different solutions give rise to some waveform variation. (B) Despite having comparable action potentials, models optimized

without constraints on [Ca2+]i and [Na+]i can have widely different calcium transients. Shaded areas give constraints on minimum and maximum [Ca2+]i (0.05–0.15

and 0.3–0.7µM, respectively). (C) Without constraints on [Ca2+]i and [Na+]i , optimization can result in models with very low [Na+]i levels. Shaded area indicate

constraint on [Na+]i (7–10mM). “APDLQT±βAdr” designates the original optimization to clinical LQT data under normal and β-adrenergic stimulation conditions by

Mann et al. (2016).

APDLQT±βAdr optimized model (Mann et al., 2016), both GNCX

and GNaK were much increased relative to baseline (scaling
of 2.95 and 9.12, respectively), resulting in a small-amplitude
calcium transient and a low [Na+]i.

3.3. TdP Prediction
To test how well the optimized models predict TdP risk, we
used a dataset consisting of drugs blocking IKr, ICaL, and INa
to varying degrees, and their associated risk of torsadogenesis
(TdP positive or TdP negative; Lancaster and Sobie, 2016). As
demonstrated previously, while many of the drugs in this dataset
that carry a TdP risk do prolong APD, some drug simulations
predict an increased APD for TdP negative drugs (Figure 4A,
Lancaster and Sobie, 2016). In particular, in the baseline model,
simulations of three non-torsadogenic drugs results in action
potential prolongation of 15–25 ms (one of these is noted by
a black dot in Figure 4A). As demonstrated by Lancaster and
Sobie, simulations of those three drugs also led to a decreased
diastolic [Ca2+]i, which was not seen in the TdP positive drugs.
Therefore, including diastolic [Ca2+]i as a second metric (APD50

being the first) by which to classify the drugs, allows for a correct
TdP risk categorization of these three otherwise false positives
(Figure 4A, Lancaster and Sobie, 2016). Indeed, using APD50 and
diastolic [Ca2+]i in combination correctly classifies drugs in the
dataset with high specificity and sensitivity (Figure 4A, Lancaster
and Sobie, 2016).

For the APDLQT±βAdr optimized model (Mann et al., 2016),
qualitatively similar results are observed (Figure 4B). The
particular values of diastolic [Ca2+]i over which TdP positive
drugs are separated from TdP negative drugs are shifted,
reflecting baseline differences. The same three TdP negative
compounds that resulted in APD prolongation in the baseline
model, give increased APD50 in this optimized model as well.

When simulating drug application in the multi-variable
optimized model, predictions are improved (Figure 4C). In

particular, none of the TdP negative drugs result in APD50

prolongation beyond 5 ms, implying that APD50 prolongation
in itself is a strong predictor of torsadogenic risk in this model.
In addition, many of the TdP negative compounds result in
more substantial reductions in APD50 and/or diastolic [Ca2+]i
compared to the baseline and the APDLQT±βAdr optimized
models. There is therefore an increased flexibility to the
positioning of the decision boundary separating the TdP positive
from the TdP negative drugs (dashed lines in Figure 4Cmark off
area within which the categorization error remains less than the
threshold value, E∗).

For the APDLQT optimized model, the classification is less
successful (Figure 4D). The same three TdP negative drugs that
resulted in false positive APD prolongation in the baseline and
in the APDLQT±βAdr optimized model do so here. Further,
simulation of several TdP positive drugs result in decreased
diastolic [Ca2+]i without much change in APD and therefore
form false negatives in this categorization. The presence of
these false positives and negatives pose a challenge to the
classification and prevents the categorization error from getting
below the threshold value regardless of the location of the
decision boundary.

What are the ionic mechanisms underlying the improvement
in predictive ability by the multi-var model? The simulated drugs
that give the false positive APDprolongations for the baseline and
APD-optimized models are piperacillin and verapamil (note that
two independent measurements for verapamil are included in the
dataset). These drugs block both ICaL and IKr. We investigated
the ionics of verapamil (black dots in Figure 4) in more detail,
as verapamil is a well-known example of an IKr-blocking agent
that does not prolong the QT-interval and is not torsadogenic
(Redfern et al., 2003).

A simulation of verapamil application in the baseline model
is shown in Figure 5A. Drug-induced reductions in outward
IKr and inward ICaL are seen to be of similar amplitude and
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FIGURE 4 | Prediction of TdP risk from model simulations. (A) Baseline ORd model with epicardial myocyte parameter settings (the epicardial configuration is shown

here as it was determined to give the best classification in Lancaster and Sobie, 2016. Using the endocardial baseline model yields very similar results).

(B) APDLQT±βAdr optimized model. (C) Multi-variable optimized model. (D) APDLQT optimized model. Dotted lines indicate no-drug control values of APD50 and

diastolic [Ca2+]i . Colors for the different models correspond to the color scheme in Figure 3. Solid lines give decision boundaries between torsadogenic (open circles)

and non-torsadogenic drugs (filled circles). Dashed lines demarcate regions within which the categorization error remains below a threshold value (E*). Using the

multi-variable optimized model, all drugs that prolong APD50 by more than 5 ms are known TdP risk drugs. Verapamil (marked by black dot) is an example of a TdP

negative drug that significantly prolongs the AP in the baseline and APD-optimized models but not in the multi-variable optimized model.

balance each other during the first 200 ms of the action
potential. When ICaL inactivates at this time, the loss of
outward IKr is largely unopposed, leading to a decreased rate
of repolarization and APD prolongation. In the multi-variable
optimized model, the non-drug action potential is generated
through a near-balance between a much increased ICaL and
a larger INCX providing inward current against the outward
currents IKr and IKs, with IKs now being of similar size as
IKr (Figure 5B). When simulating verapamil application in
the multi-var optimized model, there is a loss of inward
current by the direct effect of ICaL conductance block and
because of a reduction of INCX due to the decreased calcium
transient. As both ICaL and INCX are increased in the multi-
variable optimized model relative to the baseline model, the
loss of inward current with verapamil application is amplified,
preventing repolarization delays. Further, the increased IKs in the
multi-var model helps maintain repolarization under verapamil
application. Thus, factors beyond the scaling of the directly
blocked currents IKr and ICaL contribute to the drug-induced
response.

4. DISCUSSION

We investigated optimization of conductance parameters in
a human ventricular myocyte model to match clinical data
from LQT patients using constraints on the concentrations of
intracellular calcium and sodium ions.Without these constraints,
parameter optimization can lead to models with unphysiological
calcium transient and [Na+]i. To test the hypothesis that
the optimization would allow the model to make improved
predictions of drug-induced arrhythmogenesis, we investigated
the ability of the model to determine TdP risk in a large set
of known drugs. We found that using the optimized model
improves TdP prediction in two complementary manners. First,
simulations of three TdP negative drugs that result in APD
prolongation using the baseline model result in no or minimal
APD prolongation when using the optimized model. Second,
when using both diastolic [Ca2+]i and APD50 for the model-
based drug classification, the optimized model gives an improved
separation between the TdP positive and negative drugs,
measured as an increased flexibility in the positioning of the
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FIGURE 5 | Ionic mechanisms of repolarization dynamics during verapamil application. (A) Baseline model. (B)Multi-variable optimized model. Verapamil (simulated as

a scaling of GCaL by 0.64, a scaling of GKr by 0.55, and a scaling of GNa by 0.998) decrease IKr by similar amounts in the baseline and in the multi-variable optimized

models. However, due to the up-regulated ICaL and INCX in the optimized model, it sustains a larger loss of inward current than the baseline model. Further, the

increased IKs in this model provides a repolarization reserve. Together, these effects lead to a maintained APD50 value and an only slightly increased value of APD90.

decision boundary. Based on these findings, our main conclusion
is that intracellular ionic concentrations are important for safety
pharmacology modeling.

4.1. In Silico TdP Prediction
Other studies have investigated ionic-model-based TdP
prediction using different approaches. It is clear from these
studies that a range of strategies can be applied to improve TdP
prediction. First, there is improvement to the baseline model,
which in itself can involve a number of approaches. One is to
optimize a model to clinical LQT data, as done here or previously
(Mann et al., 2016). Conceptually, fitting a cellular model to

clinical ECG data rather than to experimental cellular-level data
may appear counter-intuitive, but it makes sense given that the
model is used to predict an organ-level, rather than a cellular-
level, arrhythmia risk. Another model optimization approach is
to tune themodel to experimental data obtained with ion channel
blockers. Such data can be additional to the data used originally
to build the baseline model, as in the example of a canine
model that upon optimization delivered improved prediction
of test drug data (Davies et al., 2012). In another article in this
Research Topic, Dutta et al. (2017) used drug data presented
in the original ORd model paper to reparameterize the ORd
model. This optimization was done in conjunction with another
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model improvement strategy: re-casting the IKr description as
a Markov model with state- and voltage-dependent drug block
(Li et al., 2017). An alternative strategy to optimizing a model is
to generate a population of models to represent inter-individual
and/or inter-cell variability, potentially recapitulating variability
in drug response across a heterogeneous population (Lancaster
and Sobie, 2016; Britton et al., 2017). Another contribution to
this Research Topic demonstrates that such population models
predict TdP risk better than using a single baseline model
(Passini et al., 2017). Population models may also be used to
gain mechanistic insights into arrhythmogenesis. For example,
Passini et al. determined that different sub-populations of models
had different propensities to repolarization abnormalities, with
low conductances for the outward currents IKr and INaK and
increased levels of ICaL and INCX making models more prone to
repolarization abnormalities, emphasizing that currents other
than IKr are important in this aspect.

Second, TdP prediction may be improved by selection of
better risk measures. While repolarization delay (APD or QT
interval prolongation) has high sensitivity to TdP positive drugs,
its specificity is more limited, with some drugs prolonging
QT interval, yet carrying only low TdP risk (e.g., amiodarone;
Sager et al., 2014). Measures that may be useful in risk
stratification include diastolic [Ca2+]i (Lancaster and Sobie,
2016) as employed here. While this measure was selected, in
combination with APD50, from a range of action potential
and calcium transient biomarkers through a machine learning
process, there is a mechanistic basis as to why [Ca2+]i levels may
be associated with TdP risk, as abnormal intracellular calcium
dynamics and spontaneous calcium release is associated with
EAD formation, a cellular-level trigger of TdP (Lancaster and
Sobie, 2016; Němec et al., 2016). Another risk measure proposed
from in silico work is the net charge carried during the action
potential by six major ionic currents (Dutta et al., 2017; Li
et al., 2017). This measure may also be mechanistically linked to
TdP arrhythmogenesis, as it is indicative of robustness against
EAD generation under a GKr-reduction challenge (Dutta et al.,
2017). Use of repolarization abnormality occurrence (i.e., EADs
or incomplete repolarization) in simulations as a metric for TdP
risk may also present a viable stratification pathway (Passini et al.,
2017). Given the direct link to arrhythmogenesis, this seems like
a promising risk marker, but a possible limitation lies in its use of
highly elevated drug concentrations to trigger the repolarization
abnormalities, which may lead to an overestimation of the
number of false negatives. Use of this metric rather than APD
prolongation improves TdP prediction in a population ofmodels,
but not in the baseline ORd model (Passini et al., 2017).

In summary, it is clear that in silico cell models can be
improved to better predict TdP risk and that measures beyond
APD prolongation are helpful to this end, but it also apparent
that significant uncertainties remain as to how to best carry out
the modeling and the arrhythmia risk prediction.

4.2. Kr/Ks Balance
Our optimization resulted in significant rescaling of
many parameters, in particular GKs, which was increased
approximately eight-fold. This is comparable to the scaling

of 5.75 found in Mann et al. (2016). In the baseline ORd
model, IKs is relatively small under control conditions, its
peak value during an action potential being roughly 10
times smaller than peak IKr. Significant upscaling of this
current is therefore necessary to recapitulate the clinical LQT1
phenotype showing substantial QT interval prolongation with
loss of IKs. Likewise, the Grandi-Bers model, another recent
human ventricular myocyte model (Grandi et al., 2010) that
has little reliance on IKs under control conditions, requires
sizeable upscaling of GKs (about 25-fold) to reproduce the
LQT1 clinical data (Mann et al., 2016). In contrast, the ten
Tusscher-Panfilov human ventricular myocyte model (ten
Tusscher and Panfilov, 2006) which has similarly sized IKs
and IKr, requires increased GKr (2.65-fold) and decreased GKs

(0.41-fold) to reproduce the clinical LQT dataset (Mann et al.,
2016).

These substantial increases in GKs required for the ORd
and the Grandi-Bers models to reproduce the clinical LQT
data are at odds with the IKs ranges recorded experimentally.
Factors that may contribute to this disagreement include: (1)
Differences between levels of β-adrenergic-dependent kinases
and phosphorylation which regulate IKs and exacerbate LQT1
(Wu et al., 2016); (2) Transmural or other intra-heart
heterogeneity with some regions having especially delayed
repolarization; (3) Methodological experimental limitations with
IKs rundown and/or damage of the IKs channel due to enzymatic
digestion—however, the recordings that formed the basis of
GKs in the ORd model were done in small tissue preparations
using microelectrodes for the express purpose of mitigating these
complications (O’Hara et al., 2011).

The IKs conductance was also increased (by 87%) in the recent
optimization of the ORd model with the Markov IKr formulation
to the original O’Hara et al. data (Dutta et al., 2017). While
this approximately doubled IKs at baseline, IKs remained much
smaller than IKr (by about five-fold) and would not be expected to
be able to reproduce the LQT1 phenotype. Because the particular
balance between IKr and IKs can be important for action potential
stability and EAD generation (Devenyi et al., 2017), one may
expect a model with large GKs to behave differently from a model
with smaller GKs model in terms of arrhythmogenesis. Because
the reasons for the discrepancy between the experimental and the
clinical IKs data are not known, it will likely be useful to the field
to have both a model with large GKs, replicating the clinical LQT
data, and a model with smaller GKs, replicating the experimental
data.

The mismatch between the experimental and the clinically-
based estimations of GKs also raises broader questions regarding
how to best handle inconsistent data in model development. Our
approach here has been to use data of perceived highest relevance
to the particular type of predictions made, i.e., to use clinically-
based parameter estimations to predict clinical arrhythmia risk.
This approach is in line with the general strategy of using
data specific to a particular system (e.g., a cell or a patient)
to generate a model specific to that system. However, the best
way forward may be to couple rigorously uncertainty in model
parameters to uncertainty inmodel predictions using uncertainty
quantification tools (Johnstone et al., 2016).
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4.3. Effect of Verapamil on Action Potential
Duration
The balance between different currents is also important for
determining a model’s response to simulated drug block. The
anti-hypertension and anti-angina drug verapamil blocks ICaL
and IKr, does not prolong the QT interval, and does not prolong
APD in recordings from human trabeculae (Redfern et al., 2003;
Britton et al., 2017). However, different human in silico models
give different responses to simulated verapamil application. The
Grandi-Bers and the ten Tusscher-Panfilov models predict action
potential shortening in response to verapamil (Mirams et al.,
2011, 2012). In variations of the ORd model, verapamil almost
always prolongs the APD, but the response varies depending on
drug concentration, on how block is modeled, and on whether a
Markov model is used for IKr (Britton et al., 2017; Dutta et al.,
2017; Passini et al., 2017).

One hypothesis as to why verapamil does not prolong APD
is that its block of IKr is compensated for by block of ICaL.
Using our multi-var optimized model, we show here that in
addition to the block of ICaL, a secondary reduction in INCX
(due to the decreased calcium transient) is important in off-
setting the IKr block by verapamil. The size of the IKs current is
also important in determining APD under IKr block conditions
as IKs provides a repolarization reserve. However, IKs level
in itself is not predictive of APD shortening with verapamil
since in the APDLQT optimized model, which has a much
increased repolarization reserve in IKs, verapamil leads to APD
prolongation.

4.4. Limitations
There are several limitations to our modeling and optimization
approach. We allowed large ranges of the scaling (0.1%
to 10-fold) of the parameters to be estimated in the
optimization. Consequentially, the conductance scalings
may be unphysiologically large, with, e.g., GKs becoming larger
than estimated experimentally. However, we are explicitly
not attempting to make the best model of a single cell or
small tissue, but, rather, a model capable of making clinically
relevant predictions. We did not include the clinical data from
control and LQT types 1, 2, and 3 patients during β-adrenergic
stimulation (Mann et al., 2016) in the optimization objective

as preliminary optimizations with this addition resulted in
adrenergically stimulated action potentials having unsmooth
repolarization profiles, characterized by slow late repolarization.
Due to experimental difficulties in determining absolute values of
[Ca2+]i and [Na+]i, we based the allowed ranges of these mainly
on modeling work, particularly the ORd and the Grandi-Bers
models. While experimental measurements of [Ca2+]i in human
ventricular myocytes are consistent with the simulated values
(Beuckelmann et al., 1992; Piacentino et al., 2003), reported
measurements of [Na+]i are much higher (∼20 mM), but may be
overestimated (Pieske et al., 2002; Grandi et al., 2010). While the
inclusion of bounds on [Ca2+]i and [Na+]i provided additional
information to constrain conductance parameters, it is likely that
inclusion of more data into the objective would help constrain

parameters further. Such data could include more repolarization
markers, further calcium transient features, and drug block data.

We modeled the drug application using a simple conductance
block, although some drugs are known to block in a state-
dependent manner (Mirams et al., 2011; Di Veroli et al.,
2014; Britton et al., 2017; Dutta et al., 2017). However,
use of this simpler approach allowed us to simulate a
larger drug data set. We used a single model for the drug
simulations. It might be valuable in future work to generate
a population of models around the optimized model to
potentially improve predictions and to give insights into
ionic mechanisms underlying population heterogeneity in drug
responses.
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