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Experimentally and clinically collected time series data are often contaminated with

significant confounding noise, creating short, noisy time series. This noise, due to natural

variability and measurement error, poses a challenge to conventional change point

detection methods. We propose a novel and robust statistical method for change point

detection for noisy biological time sequences. Our method is a significant improvement

over traditional change point detection methods, which only examine a potential anomaly

at a single time point. In contrast, our method considers all suspected anomaly points and

considers the joint probability distribution of the number of change points and the elapsed

time between two consecutive anomalies. We validate our method with three simulated

time series, a widely accepted benchmark data set, two geological time series, a data set

of ECG recordings, and a physiological data set of heart rate variability measurements of

fetal sheep model of human labor, comparing it to three existing methods. Our method

demonstrates significantly improved performance over the existing point-wise detection

methods.

Keywords: machine learning, change point detection, non-stationary noisy time series, Bayesian methods,

Gaussian processes

1. INTRODUCTION

Various biological and medical settings require constant monitoring, collecting massive volumes
of data in time series typically containing confounding noise (Grassberger and Procaccia, 1983;
Sugihara and May, 1990; Barahona and Poon, 1996). This noise, as well as natural fluctuations
in the biological system, create non-stationary time series, known as piecewise locally stationary
time series, which are difficult to analyze in real time (Bodenstein and Praetorius, 1977; Corge and
Puech, 1986; Dowse, 2007; Ndukum et al., 2011). Immensely important in clinical and experimental
decision making is the accurate and timely detection of pathological changes in the observed time
series as they occur. Statistically, this may be interpreted as a change point detection problem for
piecewise locally stationary time series (Adak, 1998; Ombao et al., 2001; Davis et al., 2006).

The heavy contamination of noise due to measurement error and naturally varying phenomena,
however, make the detection of change points challenging, as existing techniques will often observe
non-pathological changes, resulting in false-alarms andmistrust of detection techniques (O’Carrol,
1986; Beneken and Van der Aa, 1989; Lawless, 1994)—the so-called cry-wolf effect. Extracting

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2017.01112
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.01112&domain=pdf&date_stamp=2018-01-05
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ngold5@my.yorku.ca
https://doi.org/10.3389/fphys.2017.01112
https://www.frontiersin.org/articles/10.3389/fphys.2017.01112/full
http://loop.frontiersin.org/people/405273/overview
http://loop.frontiersin.org/people/43205/overview
http://loop.frontiersin.org/people/102488/overview


Gold et al. Doubly Stochastic Change Point Detection

meaningful change points from naturally occurring fluctuations
and noisy corruptions remains a challenge.

The detection of change points in a non-stationary time
series is a well-studied problem, which has produced many
techniques (Basseville and Nikiforov, 1993; Adak, 1998; Takeuchi
and Yamanishi, 2006; Adams and MacKay, 2007; Last and
Shumway, 2008). Some of the first work in change point detection
is due to Basseville and Nikiforov (1993), where changes were
detected by comparing probability distributions of time series
samples over past and present intervals. This work was extended
by Takeuchi and Yamanishi (2006) (method TY), who proposed
a scoring procedure along with outlier detection, to compare past
and present probability distributions in real-time. The scoring
method is based on an automatically updating autoregressive
model, known as the sequentially discounting autoregressive
(SDAR)model. Points with scores above a user-defined threshold
are declared as change points.

Non-stationary time series may also be viewed as segments of
piecewise locally stationary time series (Adak, 1998). We follow
this spirit in our work for the Delta point method. In Adak
(1998), the locally stationary segments are broken into small
pieces and the distance between power spectra for two adjacent
pieces are calculated. A variety of distance measures between
power spectra exist such as the Kolmogorov–Smirnov distance
looking at the distance between cumulative power spectra, and
the Cramer-Von Mises distance between power spectra used by
Adak (1998). An extension was proposed by Last and Shumway
(2008) where the Kullback–Liebler discrimination information
between power spectra is used to identify change points. These
power spectra methods are particularly well-suited for time series
with periodic structure, as they compare power spectra in the
frequency domain. Additionally recent advances in real-time
change point detection have been made in the machine learning
community with promising results, such as relative density ratio
estimation method of Liu et al. (2013). Relative density ratio
estimation uses a divergence measure to estimate the divergence
between subsequent time series samples’ density ratios.

As the current change point detection methodology we
consider operates in a point-wise manner, temporal information
of change points is lost, such as how often they can be expected
to occur, and if they should occur in quick succession or
not. Especially in physiological time series, where temporal
information and patterns of change points may be highly relevant
to practitioners, a point-wise approach may be ill-suited to
these time series containing noise. To rectify this problem,
we propose a novel change point detection method to analyse
the pattern of change points and their inter-arrival times in a
small time window so as to observe additional information that
may be missed using a point-wise approach. It is our intention
this method will reduce the cry-wolf effect (Lawless, 1994) of
declaring all of the detected change points as change points
relevant to the user. Our method is designed for univariate,
piecewise stationary time series, where we seek to correctly
classify change points as false alarms or true changes depending
on the domain-specific application. The structure of the possibly
detected change points may be a shift in mean, change in
variance, or the introduction of a new trend to the time series.

While the existing methods (Basseville and Nikiforov, 1993;
Adak, 1998; Takeuchi and Yamanishi, 2006; Adams and MacKay,
2007; Last and Shumway, 2008), can determine the location of
change points, they are not able to extract meaningful change
points in time series with piecewise locally stationary structure
that contain minor changes and large noise corruption. Our
novel method, termed the Delta point method, extends the
Bayesian online change point detection method of Adams and
MacKay (2007) and later Turner (2011), to allow a meaningful
change point to be extracted. Our method uses fixed time
intervals to construct the joint distribution of the number of
change points per interval, and the average length of time
between change points in each interval. We demonstrate the
effectiveness of the Delta point method on three simulated time
series of our own design inspired by existing literature, the
widely usedDonoho–Johnstone Benchmark curves (Donoho and
Johnstone, 1994), nuclear magnetic resonance recordings from
well-log measurements (Ó Ruanaidh et al., 1994), annual lowest
water levels of the Nile River (Beran, 1994) an ECG recordings
from clinical setting (Chen et al., 2015), and an experimental
physiological data set of recordings of fetal sheep heart rate
variability during experiments mimicking human labor (Frasch
et al., 2009a; Ross et al., 2013; Wang et al., 2014). The fetal
sheep data set contains short time series with large amounts of
measurement noise, while the ECG dataset consists of short time
series, with varying features.

2. METHODS

In this section, we will describe the underlying change point
detection methodology our Delta point method extends, as
well as the theoretical background of these methodologies.
We begin with a notation section for the reader to refer to,
and subsequently describe the Bayesian online change point
detection methodology introduced by Adams and MacKay
(2007). Following this, we describe the Gaussian process time
seriesmodel of Turner (2011), which is used as a predictivemodel
for the Bayesian online change point method, and then introduce
our Delta point method. The section concludes with a description
of the statistical techniques used to analyse the data sets used for
testing and our results.

Notation
Throughout the remainder of the article, we use the following
notation (we omit descriptions in this section). Vectors are
denoted in bold, e.g., y. rt is the run length of the change point
detection algorithm. y1:t is a vector of time series observations
from time s = 1, . . . , s = t, with the component yt the
observation at time t. y(r) denotes the vector of time series
observations since the previous change point. τ ∈ [1, t − 1]
is a time index denoting the time since the last change point.
p(·) represents the probability of an event occurring, with p(·, ·)
denoting a joint probability, and p(·|·) a conditional probability.
f ∼ GP(µ, k) represents a function drawn from a Gaussian
process, with µ the mean function, and k(·, ·) is the covariance
function or kernel for a Gaussian process. c = c[ti ,tj] denotes the
number of change points in an interval [ti, tj]. r̄k represents the
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average run length of the change points in the interval [ti, tj]. α
is a computation parameter, and ℓ is a computation parameter
for the input length scale. ǫt is Gaussian white-noise, and σ 2

is the standard deviation of the noise. k∗ is a vector computed
by the covariance function, and K is a matrix computed by the
covariance function.

Bayesian Online Change Point Detection
We begin with a review of the Bayesian online change point
detection (BOCPD) algorithm (Adams and MacKay, 2007).
Briefly, BOCPD is a recently introduced change point detection
methodology that employs Bayes’ rule to progressively update the
probability of observing a change point in time series data while
using a predictive model of the time series to make next time step
ahead predictions of the time series. The predicted value is then
compared with the observed value of the time series to determine
if a change-point has occurred.

In detail, BOCPD uses a combination of a predictive model
of future observations of the time series, an integer quantity, rt ,
known as the run length, or the time since the last change point,
and a hazard function p(rt|rt−1), which calculates the probability
of a change point occurring with respect to the last change point,
to calculate the probability of a change point occurring. Bayes’
rule is used to compute the posterior or past distribution of the
run length as

p(rt|y1:t) =
p(rt , y1:t)

p(y1:t)
(1)

where y1:t is a vector of past observations of the time series,
p(rt , y1:t) is the joint likelihood of the cumulative run length and
observations, calculated at each step, and p(y1:t) is the marginal
likelihood of the observations. The joint distribution p(rt , y1:t) is
computed with each new observation using a message passing
algorithm,

p(rt , y1:t) =
∑

rt−1

p(rt|rt−1)p(yt|rt−1, y(r))p(rt−1, y1:t−1) (2)

where p(rt|rt−1) is the hazard function, p(yt|rt−1, y(r)) is the
prediction model with observations y(r) since the last change
point, and p(rt−1, y1:t−1) is the previous iteration of the
algorithm.

Once the online message passing algorithm of Equation (2) is
computed, the probability of a change point having occurred or
not is given by,

p(rt = 0|, y1:t) =
∑

rt−1

p(rt|rt−1)p(yt|rt−1, y(r))

p(rt−1, y1:t−1) (3)

p(rt = rt−1 + 1, y1:t) = (1− p(rt|rt−1))p(yt|rt−1, y(r))

p(rt−1, y1:t−1), (4)

respectively.

Gaussian Process Time Series
The performance of the BOCPD algorithm is highly dependent
on the choice of predictive model for the next time step ahead

prediction of the time series data. State of the art performance
for the BOCPD algorithm was recently achieved by the use of
a Gaussian process time series predictive model (Turner, 2011).
With this in mind, we selected the Gaussian process time series
predictive model to be used as the predictive model for the
BOCPD algorithm.

A Gaussian process is a Gaussian distribution over
functions—that is, the distribution of the possible
values of the function follows a multivariate Gaussian
distribution (Rasmussen and William, 2006). Gaussian processes
are flexible and expressive priors over functions, allowing
patterns and features to be learned from observed data. A
Gaussian process is completely specified by a mean function,
µ(·), and a positive definite covariance function, or kernel, k(·, ·),
which determines the similarity between different observations.
The covariance function generates properties of the function
drawn from the Gaussian process, such as smoothness and
shape. In our work, we used the rational quadratic covariance
function (Rasmussen and William, 2006),

kRQ(y, y
′) = 1+

|y− y′|2

αℓ
(5)

where α is a computing parameter, and ℓ is the input scale,
or distance between inputs y and y′, which determines the
smoothness of the functions. These parameters are set by an
Empirical Bayes procedure or Type-II Maximum Likelihood
estimation where the marginal likelihood of the observations
given these parameters is maximized via gradient descent
techniques. For full details of this procedure, see Chapter 5 of
Rasmussen and William (2006). The performance of Gaussian
process models is indeed dependent upon properly setting these
parameters, and this remains an active area of research in the
machine learning community.

In the Gaussian process time series model we used, the time
index t is used as the input to the function f drawn from the
Gaussian process, and the time series observation yt is the output.
This is collected in the model,

yt = f (t)+ εt , f ∼ GP(0, k), εt ∼ N(0, σ 2) (6)

where εt ∼ N(0, σ 2) is white-noise in the regression model, and
f ∼ GP(0, k) denotes that the function f is drawn from a GP with
mean 0 and covariance function k.

To predict future observations of the time series, we
appeal to Bayes’ rule, using the GPTS predictive model as a
prior over functions. By the rules of conditioning Gaussian
distributions (Rasmussen and William, 2006), the predictive
distribution for the next time series observation used in the
BOCPD model (Equation 2) is given by a Gaussian predictive
distribution, p(yt|rt−1, y(r)) = N(µt , σ 2

t ), where

µt = k⊤∗ (K + σ 2I)−1y(r), (7)

σ 2
t = k∗,∗ − k⊤∗ (K + σ 2I)−1k∗. (8)

where k∗ = k(y(r), yt) is an (τ − 1) × 1 vector, where τ is
the time since the last change-point, K = k(y(r), y(r)) is an
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(τ − 1) × (τ − 1) matrix, and k∗.∗ = k(yt , yt). The mean and
covariance of the Gaussian predictive distribution, given above in
Equations (7) and (8), respectively, are derived by conditioning
the previous Gaussian distributed observations on the current
observation, which due to the Gaussian process model also
follows a Gaussian distribution. For a formal derivation of these
formulae, see Bishop (2006).

The GPTS predictive model was then used as the predictive
model for the BOCPD algorithm to make next time step ahead
predictions of the time series.

Delta Point Method
Now that we have reviewed the previous change point detection
method and Gaussian process time series predictive model,
we can introduce the newly proposed Delta point method.
The BOCPD algorithm with the Gaussian process time series
predictive model returns a vector of change points. We term the
change points stored in this returned vector suspected change
points. The BOCPD algorithm with the Gaussian process time
series predictive model is typically effected by confounding noise
in the time series, which in real-world applications is often due
to sensor movement or other corrupting sources. Considering
the predictive mean and variance from the Gaussian process
time series model, Equations (7) and (8), respectively, noise
in the observed time series will highly influence the accuracy
of predictions. The covariance matrices and vectors in the
Gaussian process model are computed on past observations
of the time series to be used for forecasting. Highly varied
time series observations will thus result in extremely varied
future forecast values. The Hazard function in the change point
algorithm, p(rt|rt−1), is then updated in the message-passing
scheme (Equation 2) with highly varying information. The
probability of change points occurring, as computed by the
posterior run length distribution given by Equation (1), will be
set artificially high due to this, thus resulting in over-detection of
change points.

The Delta point method is designed to classify, with highest
probability, from a vector of suspected change points, the change
point most representative of a significant change in the generative
process of the time series, and not those given by confounding
noise.

The method consists generally of dividing the time series into
intervals of user-specified, domain specific length for which a
suspected change point may be contained. The number of change
points and average run length of the change points in each
interval containing a declared change point is then computed,
and the interval with the fewest change points and longest average
run length is selected as the interval with the highest probability
of containing the change point most relevant to the user—the
Delta point.

Given a vector of suspected change points from the BOCPD
algorithm, we can view the observed change points as a
realization of a doubly stochastic point process, that is, a point
process where the intensity rate determining inter-arrival times
of events is itself a stochastic process. As the Delta point method
is concerned with determining the probability of finding the
fewest number of change points and longest average run length

in an interval, the point process view is natural to take. This
framework allows us to determine explicit probabilities of each
suspected change point being the change point of interest, by
computing the probabilities of a specific number of change points
occurring in each interval. Rather than following a homogeneous
point process with a constant and deterministic intensity rate,
the Delta point method must have a stochastic intensity rate.
The doubly stochastic term arises naturally from the intensity
function of the change point process being generated from the
BOCPD algorithm, which returns a probability of change points
occurring.

Let {N(t)}t>0 be a counting process representing the number
of change points which are declared by the BOCPD algorithm.
For clarity of exposition, we begin with a rapid review of the
Poisson counting process. A Poisson process with rate or intensity
λ is a counting process {N(t)}t>0 with independent increments,
and for which the number of events in a time interval of length
t follows a Poisson distribution, Poisson(λt). As we mention
above, since the BOCPD method declares change points in a
probabilistic fashion, the change point intensity rate must be
stochastic, giving rise to a doubly stochastic Poisson process.
Thus we assume that {Nt}t>0 is a doubly stochastic Poisson
process, where the intensity {3(t)}t>0 is itself a stochastic
process (Lefebvre, 2007; Diggle et al., 2013). Thus, for t2 > t1 >

0, we have

N(t2)− N(t1)|{3(t), t > 0} ∼ Poisson(m(t2)−m(t1)) (9)

where,

m(t) =
∫ t

0
3(s) ds. (10)

The probability distribution of the intensity process, {3(t)}t>0,
is given by the posterior run length distribution p(rt|y1:t). Since
the intensity process is a continuous stochastic process, we need a
continuous version of the posterior run length distribution from
the BOCPD algorithm, which is given by combining Equations
(1) and (2). This is given as,

p(3(t)) = p(rt|y1:t) =
p(rt , y1:t)

p(y1:t)

(11)

p(3(t)) =
1

p(y1:t)

∫

rt−1

p(rt|rt−1)p(yt|rt−1, y(r))

p(y1:t−1, rt−1) drt−1. (12)

In the time interval (ti, ti+1], where i = 1, . . . M
j where M is the

length of the time series, and j is the length of each time interval,
the probability of observing k change points is,

P(N(ti+1)− N(ti) = k|{3(t), 0 6 ti 6 t 6 ti+1)

=
1

k!

(∫ ti+1

ti

3(t) dt

)k

exp

{

−
∫ ti+1

ti

3(t) dt

}

. (13)
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The expected value of a doubly stochastic point process {N(t)}t>0

is computed as in a standard Poisson process, however there
is a complication due to the stochastic intensity rate {3(t)}t>0.
Consider the doubly stochastic point process N(t)|{3(t), 0 6

s 6 t}. The expectation of a point process is given by the
rate of intensity multiplied by the duration of the interval being
considered. Therefore, from the stochastic intensity rate,

E[N(t)] = E[N(t)|{3(t), 0 6 s 6 t}] = E

[∫ t

0
3(s) ds

]

=
∫ t

0
E[3(s)] ds. (14)

For the Delta point algorithm, the length j of the time interval
(ti, ti+1] as defined above is user-defined. Let Ci be the number
of change points in the interval (ti, ti+1]. Thus, Ci = N(ti+1) −
N(ti), where {N(t)} is the doubly stochastic point process defined
above. The average run length r̄i of each interval is computed by
the arithmetic mean,

r̄i =
1

Ci

Ci
∑

n=1

rn (15)

where rn is the run length associated with each change point in
the interval.

Following the average run length computation, we then
consider the joint probability distribution of Ci and r̄i, p(Ci, r̄i)
for each interval (ti, ti+1]. The average run length is conditioned
by the probability of observing Ci many change-points in the
interval (ti, ti+1],

p(r̄i|Ci) = p(r̄i,Ci)p(Ci) = p

(

1

Ci

Ci
∑

n=1

rn,Ci

)

p(Ci) (16)

=
1

Ci!
p

(

1

Ci

Ci
∑

n=1

rn,Ci

)

(∫ ti+1

ti

3(t) dt

)Ci

exp

{

−
∫ ti+1

ti

3(t) dt

}

(17)

The conditioned averaged run length probability is computed
for each interval. Due to the Gaussian process predictive model
properties, for a noisy time series, once a change point has been
observed in an interval, the probability of more change points
being detected in that interval increases. Further, the average run
length of that interval decreases accordingly. In the traditional
point-wise methods, this will result in many false positives. To
avoid this difficulty, we take the opposite approach by observing
that the interval with the fewest number of change points
and the longest average run length has the highest probability
of containing a representative change in the system, and not
erroneous change points introduced by noise; that is, it contains
a Delta point.

Once this interval has been determined, the interval is then
searched to look up the associated run length with each interval.
The declared change point with the longest average run length rn
is declared as the Delta point.

The only parameter in the Delta point method is the user-
defined length of the interval (ti, ti+1], or j, as defined above.
In this way, the length of the interval generalizes the pointwise
change point detection methods, as one can recover the point-
wise detection methods by setting the interval length to 1.
Conversely, setting the interval length to the length of the time
series M, will result in selecting the declared change point
with the longest run length as the delta point. This follows
immediately from taking the arithmetic average of the run
lengths. Our method is quite robust to changes in this value,
however the best results will be achieved by incorporating expert
domain level knowledge to best set the length of the interval,
deciding over with time course is of most interest.

In future work, we will explore the structure of the doubly
stochastic Poisson process of declared change points in greater
detail. As the intensity function is determined predominately by
the predictive model, the kernel of the Gaussian process is a
natural place to begin investigation. Further, we aim to derive
rigorous results on the interval length for optimal performance.

3. RESULTS

We tested the Delta point method on several simulated and real
world time series data sets. The simulated time series consist of
three synthetic time series of our own design, and twowidely used
benchmark curves. The real world data sets are made up of well-
log recordings from geophysical drilling measurements, annual
water levels of the Nile river and 100 clinical ECG recordings.
We compared the Delta point method to three competing non-
stationary change point detection algorithms, namely Takeuchi
and Yamanishi (TY) (Takeuchi and Yamanishi, 2006), Last and
Shumway (LS) (Last and Shumway, 2008), and Liu et al. (L) (Liu
et al., 2013) which were discussed in the Introduction section
as popular existing change point detection methods. It is not
possible to do a direct comparison with the proposed Delta
point methodology and the BOCPDmethod itself, as the BOCPD
method returns a vector of suspected change points, without
information as to whether or not the suspected change points are
the change point of interest to the user. Hence, it is not feasible to
make a direct comparison between the twomethods, as we would
have to manually select from the vector of suspected change
points given by BOCPD the change point of interest, rather than
do so in an algorithmic fashion. The Delta point method gives
such a way to determine the change point of interest.

Statistical Analysis
To compare the Delta point method to competing methods,
we performed several statistical tests on declared change points
from each method. For the simulated data, we computed the
mean square error (MSE) for each method, taking the absolute
temporal difference between the user labeled change point and
the declared change point. We then performed two-sided t-tests
to compare the mean absolute detection times of each method
to the Delta point method, with the null hypothesis that the
mean detection times of other methods will not differ from the
Delta point method’s time. For the clinical ECG recording data
set, we computed the absolute differences in detection times for
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each method between the user-labeled change points, and the
MSE for each method. We also performed two-sided t-tests to
compare the mean absolute detection times between methods
with the null hypothesis that the mean detection times of other
methods will not differ from the Delta point method’s time. For
the experimental data sets, we performed a Fisher’s exact test to
compare successful change point detection for each method. In
addition, we generated Bland-Altman plots for the fetal sheep
physiological data set to compare the accuracy of each method to
the user defined change point of interest and the declared change
point.

Simulation
To test the efficacy of the Delta point method, we produced 1,000
simulations of three different time series, each 500 data points in
length. Each time series was designed to simulate change points
that may be seen in real world settings, and to have a specific
change point that is of more interest than others in the time
series. By change point of interest we are are referring to either a
change in mean in the case of simulated Series 1 and Series 2, and
the introduction of a linear trend in the data in Series 3. These
cases are chosen so as to be representative of changes that may
occur in real world settings such as sensor failure, or a changing
physiological condition.

Series 1 has two change points, with the change point of
interest occurring at t = 150. This time series simulated the
change from a scaled random walk to an autoregressive model,
and then back to a scaled random walk. This is a relatively subtle
change point to detect, and was inspired from Last and Shumway
(2008). Series 1 is given as,

Xt =

{

ǫt/
√
3, if 1 ≤ t < 150 and 350 < t ≤ 500

ρ1Xt−1 + ǫt , if 150 ≤ t ≤ 350,
(18)

where ǫt ∼ N(0, 1), is Gaussian noise, and ρ1 values are
uniformly sampled from [0,1].

Series 2 is a simulated autoregressive model with a large
jump, and then a return back to the original process. The
change point of interest was chosen as the onset of the
jump (t = 175). This time series was used to simulate
sensor shocks or faults, or a change in the generative
parameters of the time series distribution. Series 2 is given
as,

Xt =

{

ρ2Xt−1 + ǫt , if 1 ≤ t < 175 and 325 < t ≤ 500

ρ2Xt−1 + 3+ ǫt , if 175 ≤ t ≤ 325,
(19)

where, ǫt ∼ N(0, 1), is Gaussian noise, and ρ2 values are
uniformly sampled from [0,1].

Series 3 is a simulated autoregressive moving average model
with an introduced linear trend and subsequent return to the
autoregressive moving average model. The change point of
interest was chosen as the beginning of the linear trend (t = 225).
This is a difficult change point to detect, as the noise added to
the data obscured the introduction of the trend. This time series

FIGURE 1 | Simulation time series 1, ρ1 = 0.7.

FIGURE 2 | Simulation time series 2, ρ2 = 0.4.

simulated the accumulation of some product in a system. Series 3
is given as,

Xt =











ρ3Xt−1 + ǫt + 0.5ǫt−1, if 1 ≤ t < 225

ρ3Xt−1 + ǫt + 0.5ǫt−1 + 0.02t − 4, if 225 ≤ t ≤ 375

ρ3Xt−1 + ǫt + 0.5ǫt−1 + 4, if 375 ≤ t ≤ 500,
(20)

where, ǫt ∼ N(0, 1), is Gaussian noise, and ρ3 values are
uniformly sampled from [0,1].

Simulated time series from Series 1–Series 3 are displayed
in Figures 1–3, respectively. The parameter values used for the
simulation are ρ1 = 0.7, ρ2 = 0.4, and ρ3 = 0.5.

The BOCPD method learned parameter values through
training, so we only list the values we used to initiate the method.
For Series 1, Series 2, and Series 3, we used a training set of 200
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FIGURE 3 | Simulation time series 3, ρ3 = 0.5.

data, taken at the beginning of the time series. The Gaussian
process model used a non-biased parameter initialization, with
an assumed standard normal distribution prior for Series 1, Series
2, and Series 3. The hazard rate parameter used for the hazard
function for initial training for each time Series is θh = −3.982.
The Delta point interval length for each time series was set at 40
for training, as this should protect against the BOCPD possibly
declaring too many erroneous change points, by being set too
short. Setting the interval length to longer should produce similar
results. The techniques TY, LS, and L all require a threshold
value above which a change point will be declared.We performed
cross-validation of several threshold values for each method,
choosing the value for each time series that allows the most
accurate detection of the change point of interest. We select
the change point declared by each method that is closest to the
significant change point described above.

The results of eachmethod are displayed inTable 1. We report
results for ρ1 = 0.7, ρ2 = 0.4, and ρ3 = 0.5, respectively; the
results for different values are ρ1, ρ2, and ρ3 are not significantly
different. For Series 1, the Delta point method significantly
(p < 0.001) outperformed methods TY and LS in the mean
absolute difference (absolute difference) of detection time, and
had a significantly lower MSE. This difference in performance
is confirmed by a two sided t-test with a null hypothesis that
other methods do not have a significant mean absolute difference
from the Delta point method. In our simulations, method L
had a slightly smaller mean absolute difference (8.953) compared
to the Delta point method (9.718), however the distribution of
declared change points had a larger standard deviation (12.783
compared to 9.881). As well, the Delta point method had a lower
MSE. The two sided t-test confirmed that both methods had
indistinguishable performance (p = 0.135). For Series 2, the
Delta point method significantly (p < 0.001) outperformed all
methods. For Series 3, method TY performed the best, with the
lowest mean absolute difference. Figures 4–6 display box plots of
the results of each method for Series 1–3, respectively.

TABLE 1 | Simulation results.

Method Abs. Diff.

(mean ± st. dev.)

MSE ×103 Significance (p-value) [CI]

SERIES 1

Delta 9.718± 9.881 0.192 N/A

TY 40.110± 28.367 2.413 1 (p < 0.001) [−32.255, −28.539]

LS 8.953± 12.783 0.243 0 (p = 0.135) [−0.237, 1.767]

L 59.459± 25.713 4.196 1 (p < 0.001) [−51.449, −48.033]

SERIES 2

Delta 3.399± 12.099 0.158 N/A

TY 13.802± 10.7298 0.306 1 (p < 0.001) [−11.906, −9.406]

LS 6.205± 9.6699 0.132 1 (p < 0.001) [−3.7662, −1.8458]

L 27.728± 22.961 1.296 1 (p < 0.001) [−25.938, −22.719]

SERIES 3

Delta 63.603± 30.762 4.991 N/A

TY 54.645± 39.358 4.534 1 (p < 0.001) [5.860, 12.056]

LS 65.263± 63.469 8.284 0 (p = 0.457) [−6.304, 2.714]

L 69.911± 30.418 5.812 1 (p < 0.001) [−8.991, −3.625]

TY, Takeuchi and Yamanishi (2006); LS, Last and Shumway (2008); L, Liu et al. (2013).

Comparison of methods for detecting significant change point for 1,000 simulations of

simulated time series: Series 1, 2, 3, respectively; 500 observations in length each.

Mean ± standard deviation of absolute difference (Abs. Diff.) between labeled times and

detected time of each method are given. Mean Square Error (MSE) of each method

is displayed where the lowest value displayed had the least detection error. Results of

null hypothesis two-sided t-test comparing absolute differences to Delta point method

displayed with p-values and confidence intervals [CI].

Donoho-Johnstone Benchmark
To further analyse the performance of the Delta point method,
we tested it and the existing methods on the Donoho-Johnstone
Benchmark non-stationary time series (Donoho and Johnstone,
1994). The Donoho-Johnstone Benchmark is a classic collection
of four non-stationary time series designed as a test for neural
network curve fitting. The curves are known as the Block, Bump,
Doppler, and Heavisine, and are 2,048 data points in length
each. We adapted the curves with the introduction of noise to
test for change point detection. As the Delta point method is
not designed to function with time varying periodic data, rather
piecewise locally stationary time series, we did not test with the
Doppler and Heavisine curves.

For training for the Delta point method, we used a standard
normal distribution prior for the Gaussian process, and hazard
rate parameter θh = −3.982. We set the Delta point interval to
50 for the Bump curve and the Block curve. We selected 50 time
points for the interval length so that we could observe sufficient
temporal structure for the doubly stochastic Poisson process.
The training set consisted of the first 800 data of each curve, to
correspond to the rule of thumb of using the first 35–40% of time
series data for training (Turner, 2011).

The results of the methods for the Bump and Block curves are
displayed in Table 2. The Delta point method performed very
well in these cases, declaring the change point of interest very
close to the user-labeled point. The Bump curve was a more
difficult curve to detect change points in, due to noise. The Delta
point method and LS curve have about the same performance
for the bump curve (absolute difference of 5 and 4, respectively).
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FIGURE 4 | Simulation series 1 boxplot. TY, Takeuchi and Yamanishi (2006); LS, Last and Shumway (2008); L, Liu et al. (2013). Boxplot of absolute differences of

detected change points for 1,000 simulations of simulation data set Series 1. The true change point location is located at 0.

FIGURE 5 | Simulation series 2 boxplot. TY, Takeuchi and Yamanishi (2006); LS, Last and Shumway (2008); L, Liu et al. (2013). Boxplot of absolute differences of

detected change points for 1,000 simulations of simulation data set Series 2. The true change point location is located at 0.
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FIGURE 6 | Simulation series 3 boxplot. TY, Takeuchi and Yamanishi (2006); LS, Last and Shumway (2008); L, Liu et al. (2013). Boxplot of absolute differences of

detected change points for 1,000 simulations of simulation data set Series 3. The true change point location is located at 0.

TABLE 2 | Donaho-Johnstone Benchmark curves results.

Method Detected time Abs. Diff.

Bump Labeled: 440

Delta 445 5

TY 475 34

LS 444 4

L 468 28

Block Labeled: 1331

Delta 1332 1

TY 1348 17

LS 1353 22

L 1335 24

TY, Takeuchi and Yamanishi (2006); LS, Last and Shumway (2008); L, Liu et al. (2013).

Comparison of change point detection results for two Donaho-Johnstone Benchmark

curves (Bump and Block) with user-labeled change points. User-labeled change points

are selected to represent a drastic change in the time series (Bump), or a significant shift

in the mean (Block).

The Delta point method outperformed methods TY, LS, and L
for accurate detection in the Block curve (absolute difference
compared to 17, 22, and 24, respectively).

Well-Log and Nile Recordings
The well-log data set consists of 4,050 nuclear magnetic
resonance measurements obtained during the drilling of a
well (Ó Ruanaidh et al., 1994). These data are used to deduce

the geophysical structures of the rock surrounding the well.
Variations in the mean reflect differences in stratification of the
Earth’s crust (Adams and MacKay, 2007). The well-log data set is
a well studied time series for change point detection (Ó Ruanaidh
et al., 1994; Adams and MacKay, 2007; Turner, 2011). We
selected the largest jump in the mean of the time series as the
most significant change point (i= 1,070).

The Nile river time series consists of a record of the lowest
annual water levels between 622 and 1,284 CE, recorded on
the Island of Roda, near Cairo, Egypt (Beran, 1994). The
Nile river data set has been used extensively in change point
detection (Turner, 2011), making it an effective benchmark
for the Delta point method. Geophysical records suggest the
installation of the Nilometer in 715 CE, a primitive device for
more accurate water level measurements. As such, we selected
this as the change point of significance.

For training for the Delta point method for both time series,
we used a standard normal distribution prior for the Gaussian
process, and hazard rate parameter θh = −3.982. For the well-log
data, the Delta point interval was chosen as 30 due to the length
of the time series and sensor noise, and for the Nile river time
series, the Delta point interval was chosen to be 50, as the curve
is smoother. The training set consisted of the first 1,000 data for
the well-log series, and first 250 data for the Nile river set.

The results of each method are displayed in Table 3. The Delta
point method performed better than the other methods TY, LS,
and L for the well-log data set (absolute difference 2 compared
to 13, 15, and 33, respectively). For the Nile river data set, all
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methods performed well, with declared change points of interest
very close to the labeled installation of the Nilometer in 715
CE. The Delta point method for the well-log set is displayed in

TABLE 3 | Well-log and Nile River results.

Method Detected time Abs. Diff.

Well-log Labeled: 1070

Delta 1072 2

TY 1083 13

LS 1085 15

L 1103 33

Nile river Labeled: 715

Delta 720 5

TY 723 8

LS 722 7

L 725 10

TY, Takeuchi and Yamanishi (2006); LS, Last and Shumway (2008); L, Liu et al. (2013).

Comparison of detected change point of importance in nuclear magnetic resonance

measurements from a rock drill used to detect changes in rock stratification, and lowest

annual water levels of the Nile River from 622 to 1,284. The change point of importance

is selected as the first significant jump in the mean, indicating the presence of a change

in the ground rock, and the instillation of the Nilometer, respectively.

(Figure 7, Top panel), and the Delta point method for the Nile
river data set is displayed in (Figure 7, Bottom panel).

ECG Recordings
The ECG dataset consists of short time series, with varying
features. It is comprised of 100 clinical ECG recordings, each
136 data in length taken from a 67 year old patient Chen
et al. (2015). Each recording contains one QRS complex for
the patient, with the onset of the QRS complex user-labeled.
To determine the effectiveness of the Delta point method in
detecting a significant change point in short time series, we tested
each method’s accuracy in detecting the QRS complex, and the
difference between the labeled beginning and detected time. As
each time series is short, and the QRS complex rapidly begins and
ends in the recording, accurate detection of the change point was
considered very important.

For training for the Delta point method, we used a standard
normal distribution prior for the Gaussian process, and hazard
rate parameter θh = −3.982. Due to the short nature of these time
series, the training set length was selected to be the first 30 data
points; the training set never included the QRS complex for any
of the 100 instances. The Delta point interval was set to 5, as the
QRS complex is very short, and occurs rapidly in the series. The
time series rapidly changes here, so a shorter interval performed
best.

FIGURE 7 | Well-log and Nile River level Delta point method. Top: Delta point method for Well-log data set. The y-axis denotes NMR reading during well digging, and

the x-axis denotes the measurement instance. Suspected change points are denoted with red crosses, the user-labeled change point with a black cross (1070), and

the detected Delta point with an orange box (1072). Bottom: Delta point method for annual lowest levels of Nile River. The y-axis denotes the water level (mm), and

the x-axis denotes the years. Suspected change points are denoted with red crosses, the installation of the Nilometer (715) with a black cross, and the detected Delta

point with an orange box (720).
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The performance of each method is displayed in Table 4.
The Delta point method significantly outperformed the
TY and LS method in mean absolute difference from the
labeled detection times of the complex (p < 0.001 CI =
[−2.138,−1.002] and [−0.1339,−0.0611], respectively). Method
L had indistinguishable performance from the Delta point
method (p = 0.954 CI = [−0.709, 0.609]). The Delta point
method had the lowest MSE of all methods (14.13 compared to
32.2, 26.31, and 22.73, respectively). A box plot of the absolute
difference of all of the methods is displayed in Figure 8.

TABLE 4 | ECG (ECGFiveDays) QRS complex results.

Method Abs. Diff.

(mean ± st. dev.)

MSE Significance (p-value) [CI]

Delta 3.51 ± 1.352 14.13 N/A

TY 5.08 ± 2.54 32.2 1 (p < 0.001) [−2.138, −1.002]

LS 4.21 ± 2.944 26.31 1 (p < 0.001) [−1.339, −0.061]

L 3.53 ± 3.221 22.73 0 (p = 0.954) [−0.709, 0.609]

TY, Takeuchi and Yamanishi (2006); LS, Last and Shumway (2008); L, Liu et al. (2013).

Comparison of methods for detecting onset of QRS complex in 100 short time ECG

recordings, 136 observations in length. Mean ± standard deviation of absolute difference

(Abs. Diff.) between labeled times and detected time of each method are given. Mean

Square Error (MSE) of each method is displayed where the lowest value displayed had

the least detection error. Results of null hypothesis two-sided t-test comparing absolute

differences to Delta point method displayed with p-values and confidence intervals [CI].

Fetal Sheep Model of Human Labor
We applied the Delta point method to a data set consisting
of 14 experimental time series of a measure of fetal heart rate
variability (HRV) known as the root mean square of successive
differences (RMSSD) of R-R intervals of ECG recorded during
umbilical cord occlusions (UCO) (Frasch et al., 2007, 2009b).
The RMSSD may be used a measure to study the relationship
between fetal systemic arterial blood pressure (ABP) and fetal
heart rate in a fetal sheep model of human labor (Frasch et al.,
2009a; Ross et al., 2013; Wang et al., 2014). RMSSD is a sensitive
measure of vagal modulation of HRV, and is known to increase
with worsening acidemia, a dangerous condition that may occur
during labor (Frasch et al., 2007, 2009b; Durosier et al., 2014; Xu
et al., 2014).

During UCO mimicking human labor, a hypotensive blood
pressure response to the occlusions manifests as the introduction
of a new trend in the recorded time series. This response is
induced by the vagal nerve activation triggered by worsening
acidemia during UCO as discussed in Frasch et al. (2015). These
points are detected by expert visual detection and are known
as ABP sentinel points. These sentinel points are defined as
the time between the onset of blood pressure responses and
the time when pH nadir (ph < 7.00) is reached. A change
point detection algorithm should be able to detect these sentinel
points from the non-invasively obtainable fetal heart rate derived
RMSSD signal in an online manner to assist in clinical decision
making.

FIGURE 8 | ECG (ECGFiveDays) boxplot. TY, Takeuchi and Yamanishi (2006); LS, Last and Shumway (2008); L, Liu et al. (2013). Boxplot of absolute differences of

detected QRS complexes for 100 short time series of ECG recordings. The true change point is located at 0.
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The experimental time series are short—<200 observations—
and confounded with a large amount of noise due to
experimental conditions and measurement error. The time series
are piecewise locally stationary, and contain naturally occurring
biological fluctuations due, for example, to non-linear brain-
body interactions (Berntson et al., 1997). These factors make the
detection of the expert sentinel point difficult for existing change
point techniques (Grassberger and Procaccia, 1983; Barahona
and Poon, 1996).

To avoid false alarms, we defined a clinical region of interest
(ROI) of 20min before the sentinel point where a declared change
point of interest is determined to be a success. We also took into
account detections that are at most 3 min posterior to the sentinel
point, as this is one experimental cycle late. The defined region of
interest is to assist clinicians in decision making, as it provides
a feasible window of time to provide clinical evaluation, as well
as reject false alarm. For training for the Delta point method,
we used a standard normal distribution prior for the Gaussian
process, and hazard rate parameter θh = −3.982. We trained
the Delta point method with 48 data points per time series,
corresponding to 2 h of recording. The Delta point interval was
set at 10 data, which corresponded to 25min of experiment time.
This interval was chosen to coincide with the clinical ROI.

The Delta point method significantly outperformed
competing methods, with 11 of 14 declared change points
in the ROI, compared to 3 of 14 for TY with Fisher’s exact
test statistic 0.007028, 5 of 14 for LS with Fisher’s exact test
statistic 0.054238, and 2 of 14 for L with Fisher’s exact test
statistic 0.001838. The Delta point method applied to one animal
from the data set (ID473378) is displayed in Figure 9, and
the results and detection times of each method are shown in
Table 5.

We also computed Bland-Altman plots for the experimental
time series to compare the Delta point method to each other
method. In Figure 10A, we display the Bland-Altman plot for the

Delta point method and TY with mean difference (6.93± 89.03).
Figure 10B displays the Bland-Altman plot for the Delta point
method and LS, withmean difference (−1.36± 62.6). Figure 10C
displays the Bland-Altman plot for the Delta point method and L,
with mean difference (14.4 ± 59.9). In Figure 10D, we display a
modified Bland-Altman plot of the differences in detection times
for each method, along with the upper and lower ROI.

TABLE 5 | Fetal sheep experiment results.

Animal Sentinel

(HH:MM)

Delta

(HH:MM)

TY (HH:MM) LS (HH:MM) L (HH:MM)

8003 15:56 00:07 −00:05 00:12 −00:15

473351 13:38 00:10 −00:43 −00:27 01:00

473362 11:05 00:02 −00:48 −00:03 −00:28

473376 12:36 −00:02 00:13 −01:02 −00:15

473726 12:04 00:14 00:25 00:20 −00:10

461060 12:43 00:12 −00:25 01:30 01:02

473361 12:51 00:15 −00:08 00:35 00:03

473352 13:17 00:24 00:36 00:17 −00:14

473377 12:12 −00:02 00:18 00:13 −00:13

473378 13:22 00:13 00:47 00:37 −00:12

] 473727 11:03 −00:07 00:05 −00:17 −00:45

5054 12:53 01:26 −00:30 01:14 00:44

5060 11:26 00:02 00:32 00:28 00:04

473360 13:59 00:07 01:07 −00:17 −00:42

Total 11/14 3/14 5/14 2/14

Sentinel, expert defined change point; TY, Takeuchi and Yamanishi (2006); LS, Last and

Shumway (2008); L, Liu et al. (2013). Comparison of methods in detecting expert defined

change point. Method times are displayed relative to expert Sentinel time (HH:MM), with

positive values representing change points of interest detected before the Sentinel time,

and negative values representing change points of interest detected after the Sentinel

time. Bolded results represent a change point of interest detected in the region of interest

20min to and 3min after the Sentinel time.

FIGURE 9 | Fetal Sheep ID473378 Delta point method. Delta point method for Fetal Sheep ID473378 RMSSD time series. The y-axis denotes the RMSSD of the

animal over the experimental course, and the x-axis denotes experimental time. Suspected change points are denoted with red crosses, the expert sentinel value with

a black cross (6:13), and the detected Delta point with an orange box (6:24).
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FIGURE 10 | Bland-Altman plots of methods for Fetal Sheep dataset. TY, Takeuchi and Yamanishi (2006); LS, Last and Shumway (2008); L, Liu et al. (2013).

(A–C) Bland-Altman plot comparing Delta point method to TY, LS, L, respectively. The y-axis displays the differences in the detection times, and x-axis displays the

means of detection times for the two methods for each observation. The means (red) and two standard deviations (blue) are displayed with associated confidence

intervals (maroon;navy). (D) Modified Bland-Altman plot of difference of each method and expert labeled sentinel time. Dashed black lines 20 min above and 3 min

below sentinel time denote the clinical region of interest. Observations within this region are classified as a success.

4. DISCUSSION

We observed that the Delta point method is effective at finding
change points of interest in piecewise locally stationary time
series of different types. For the simulated time series of
our own design, the Delta point method performed better or
indistinguishably from the best performing methods for Series
1 and Series 2. For Series 1, the Delta point method had
the lowest MSE, which suggested it is accurately identifying
change points of interest. For Series 2, the Delta point
method significantly outperformed the competing methods
in terms of mean absolute difference in detection time for
labeled change points of interest. Although method LS had
a lower MSE for this series, its mean detection difference
is closer to 0. In Series 3, method L performed the best,
with the smallest mean absolute difference in detection time,
and MSE. Series 3 consisted of the introduction of the linear
trend to the autoregressive moving average model, of which
the introduction of the trend was obscured by added noise.
Since method L compares density ratios of the time series,
its good performance on this time series is likely due to
noticing these changing ratios before other methods noticed the
trend.

For the Donoho-Johnstone Bump curve, the Delta point
method performed nearly as well as the best performing
method—method LS—with a smaller absolute difference in
detection time compared to the other methods, TY and L. The
Delta point method performance for the Donaho-Johnstone
Block curve was better than the other methods, exemplifying
the strength of the Delta point method for piecewise locally
stationary time series. Our test results for the well-log data set
also provides evidence of the performance of the Delta point
method for piecewise locally stationary time series. For the Nile
river data set, as the installation of the Nilometer is the most
significant change point in the time series, and can even be
noticed visually, we expected that all methods should accurately
detect this change point with little variation. Indeed, our results
confirm this hypothesis.

For the clinical ECG data set, ECGFiveDays, the Delta point
method performs significantly better than methods TY and LS,
however has an indistinguishable performance difference with
method L, although the Delta point method has the lowest MSE.
Due to the rapidly varying nature of the time series when the QRS
complex begins, the ability of method L to compare density ratios
between components of the time series is beneficial and improves
its performance compared to other methods.
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With regards to the fetal sheep experimental data set,
the early detection of acidemia is better than late detection
from a clinical perspective. Hence, we defined the clinical
ROI according to expert physician input. The 20min
window before the expert-labeled sentinel point provides
adequate warning to clinicians to increase monitoring, or
expedite delivery, while the 3 min window posterior to
the expert-labeled sentinel point is sufficiently close to be
included in the experimental procedure. In clinical settings,
we believe that earlier detection is better, as it provides
longer decision making time, and justification for increased
monitoring.

The novelty of the current work is that our method
permits statistical-level predictions about concomitant changes
in individual bivariate time series, simulated or physiological
such as HRV measure RMSSD and ABP in an animal model
of human labor. Our method is able to predict cardiovascular
de-compensation by identifying ABP responses to UCO, a
sensitive measure of acidosis. These predictions are reliable
even in the instances when the signals are noisy. This is
based on our observation that here, to mimic the online
recording situation, no artifact correction for RMSSD was
undertaken as is usually done for HRV offline processing (Seely
et al., 2011). The 2 h training time used for the Delta point
method is also acceptable for delivery room settings, due to
the typical time length of human labor between 6 and 8 h
on average (Albers, 1999). To our knowledge, no comparable
statistical methods exist. Another benefit of the Delta point
method is the ability to automatically extract the change
point of interest with minimal user interaction, as opposed
to other methods which require user specific thresholds and
criteria.

Although the Delta point method performs well in settings
with noise, themethod is not designed to work accurately for time
series that exhibit periodic structure. Due to the Gaussian process
time series predictive model that is used for updating predictions,
the accuracy or predictions and thus detected change points by
the BOCPD algorithm depends on the kernel selected by the user.
Indeed, periodic kernels do exist, as shown in Rasmussen and
William (2006), however to be as general as possible, we did not
implement them. Another possible limitation of the Delta point
methodology is that the length of the interval for change point
identification is required to be set by the user. In future work, we
propose to establish an optimal window length, however this is
a difficult task, as the window length should be determined both
by the features of the time series, as well as the time scales over
which interesting phenomena occur.

We have intentionally focused our analysis on the change
point detection time, due to our interest in early detection of
possibly negative phenomena in biological systems. For this
reason, our analysis focuses only on the sensitivity of the method.
Other methods may be more ideally suited for analysis with a
certain specificity in mind. Additionally, it may be interesting
to consider different time series predictive models, such as the
dynamical Bayesian inference models of Duggento et al. (2012)
which allow for adaptations in real-time to changes, or Gaussian

process based Kalman filters given by Turner (2011). These
methods provide an interesting direction for future research as
they may be able to make better predictions of the time series
data.

5. CONCLUSION

We have developed a novel, change point detection method
for effectively isolating a change point of interest in short,
noisy, non-stationary, and non-periodic time series. Our method
is able to effectively extract clinically relevant changes in the
time series, allowing informed decision making, an essential
challenge posed by Seely and co-authors for the future of
intelligent monitoring (Seely et al., 2011; Seely, 2014). By
considering the joint distribution of the change points and
the number of change points in disjoint intervals, the Delta
point method remains robust to signal artifacts and confounding
noise. We demonstrated our method on three simulated time
series of our own design inspired by existing literature, curves
from the Donoho-Johnstone benchmark curve data set, nuclear
magnetic resonance reading from well-log measurements of
geophysical drilling, annual water levels of theNile river, a clinical
ECG recording data set, and a physiological data set of fetal
sheep recordings mimicking human labor. We compared the
performance of the Delta point method to three existing change
point detection methods. The Delta point method displays
useful performance benefits in accurately extracting ameaningful
change point to the user from a vector of suspected change-
points.
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