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A commentary on

Virtual In-SilicoModeling Guided Catheter Ablation Predicts Effective Linear Ablation Lesion

Set for Longstanding Persistent Atrial Fibrillation: Multicenter Prospective Randomized Study

by Shim, J., Hwang, M., Song, J.-S., Lim, B., Kim, T.-H., Joung, B., et al. (2017). Front. Physiol. 8:792.
doi: 10.3389/fphys.2017.00792

Shim et al. (2017) presented a prospective study on ablation therapy guided by computational
modeling results in the current “Frontiers in Physiology” research topic “Clinical Application of
Physiome Models.” In their study, patients with persistent atrial fibrillation (AF) scheduled for
ablation therapy were randomized to have either the physician or a computational model determine
the best ablation strategy out of a predefined set of five strategies. They derived patient-specific
anatomical surface models from left atrial CT images and induced atrial fibrillation (AF) in the
model by applying a specific rapid pacing protocol. A human operator applied point-wise virtual
ablation to the models by clicking in a graphical user interface according to each of the five
strategies: circumferential pulmonary vein isolation (CPVI), CPVI + posterior box ablation ±

anterior line, CPVI + roof line + left lateral isthmus line, CPVI + CFAE ablation based on the
electrograms derived from the model. The ablation strategy that led to earliest termination of AF
in the simulation was deemed optimal and applied in the patients.

Prospectively guiding catheter ablation for AF by means of personalized computational models
is a long desired (Krueger et al., 2013b; Boyle et al., 2016; Jacquemet, 2016), giant leap in the field
of computational cardiology that we want to congratulate on. Succeeding to do so in a multicenter
study in particular is a great accomplishment in terms of logistical, procedural, and presumably,
traditionalistic challenges. Shim et al. report a duration of <6 h from the time the CT was available
to the time the model suggested the optimal ablation strategy and all manual work was performed
during core working hours. Their results show that it is feasible to leverage computational modeling
in a clinical time scale and under clinical constraints. Besides feasibility, Shim et al. proved that
computationally guided ablation is not inferior in terms of procedure duration and complication
rate. These are great findings that will hopefully fuel translational efforts to exploit computational
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models in the field of cardiac electrophysiology (Boyle et al.,
2017). Despite these promising results, we want to highlight that
the results regarding efficacy of the ablation therapy (comparable
recurrence rates as for empirical ablation) should be considered
specific for the rather simplistic approach employed to choose a
particular ablation pattern using the computational model.

The models used by Shim et al. were individualized only
in terms of the anatomy of the endocardial wall. Differences
in myocardial wall thickness have been reported to influence
AF dynamics (Biktasheva et al., 2015; Whitaker et al., 2016).
These, as well as potential dissociation between layers in the
atrial wall (Verheule et al., 2014) can per definition not be
considered in a surface model of excitation spread. Moreover,
the properties of the atrial substrate play a crucial role for
virtually all mechanisms discussed to be potentially involved
in AF perpetuation. According to the circus movement reentry
concept (Schotten et al., 2011), the wavelength defined as the
product of the conduction velocity (CV) and the duration of
the effective refractory period (ERP) plays a crucial role. The
wavelength in relation to the atrial surface determines to a
large share how many reentrant activities can be sustained on
a given anatomical model (Deng et al., 2017). Thus, reduction
of wavelength (due to CV or ERP decrease) could compensate
for a large share of the effects of an enlarged LA (Qu, 2006).
Intracardiac electrograms can be used to derive patient-specific
information regarding the CV (Weber et al., 2011; Cantwell et al.,
2015), the ERP (Corrado et al., 2017), zones of slow conduction or
block (Trächtler et al., 2015), and low voltage areas as a surrogate
for fibrotic regions (Jadidi et al., 2016). However, time constraints
cause the spatial resolution of these measurements to be rather
coarse and they can only be derived during the procedure.
Thus, either the time window for the computational evaluation
would shrink significantly or the measurements would need to
be acquired during an extra procedure. Substrate information
that can be obtained non-invasively is late gadolinium-enhanced
MRI as a surrogate for fibrotic tissue. Particularly the spatial
distribution of fibrotic tissue has been shown to crucially impact
AF dynamics in computational models (McDowell et al., 2015;
Zahid et al., 2016a). Other aspects that have been shown to affect
AF dynamics and can be considered in models as population-
level a-priori knowledge is gross myocyte orientation (Wachter
et al., 2015) and regional electrophysiological heterogeneity

(Colman et al., 2013; Krueger et al., 2013a). A non-homogeneous
atrial substrate is a prerequisite when simulating signals to
compute meaningful CFAE maps (Ashihara et al., 2012; Keller
et al., 2013). Known gene mutations (Loewe et al., 2014) and
e.g., blood electrolyte levels (Krueger et al., 2011) give room for
further personalization.

In addition to the possible improvements regarding model
fidelity and personalization, the virtual ablation method
and assessment of its success give opportunities for further
optimization. The set of ablation strategies to choose from was
rather limited in the study by Shim et al. and other approaches
could be required to obtain optimal results (Bayer et al., 2016;
Zahid et al., 2016b). Probably even more important, termination
of the specific AF episode that was induced in the model
as a sole success criterion might not be sufficient to predict
long-term success. Other aspects to consider are reinducability
of (potentially different) AF episodes and vulnerability to
subsequently develop atrial flutter, which is a common clinical
complication.

In conclusion, we would like to point out that the work
by Shim et al. is an outstanding example of translating
computational modeling to the clinical environment and
encourage everyone to follow down this road. On the other
hand, we want to highlight that the results on efficacy of
computationally guided ablation should be considered a lower
bound rather than a representative example of what value
personalized electrophysiological modeling can potentially add.
We hope that the work by Shim et al. will fuel the development
and facilitate the use of more sophisticated models under clinical
constraints to leverage the full power of computational modeling
approaches in the near future.
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