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Major part of a pancreatic islet is composed of β-cells that secrete insulin, a key hormone

regulating influx of nutrients into all cells in a vertebrate organism to support nutrition,

housekeeping or energy storage. β-cells constantly communicate with each other using

both direct, short-range interactions through gap junctions, and paracrine long-range

signaling. However, how these cell interactions shape collective sensing and cell behavior

in islets that leads to insulin release is unknown. When stimulated by specific ligands,

primarily glucose, β-cells collectively respond with expression of a series of transient

Ca2+ changes on several temporal scales. Here we reanalyze a set of Ca2+ spike

trains recorded in acute rodent pancreatic tissue slice under physiological conditions. We

found strongly correlated states of co-spiking cells coexisting with mostly weak pairwise

correlations widespread across the islet. Furthermore, the collective Ca2+ spiking activity

in islet shows on-off intermittency with scaling of spiking amplitudes, and stimulus

dependent autoassociative memory features. We use a simple spin glass-like model for

the functional network of a β-cell collective to describe these findings and argue that

Ca2+ spike trains produced by collective sensing of β-cells constitute part of the islet

metabolic code that regulates insulin release and limits the islet size.

Keywords: collective sensing, pancreatic islets, spin glassmodels, metabolic code, Ca2+ imaging, Ca2+ signaling,

correlations, intercellular communication

1. INTRODUCTION

Endocrine cells in vertebrates act both as coders and decoders of metabolic code (Tomkins, 1975)
that carries information from primary endocrine sensors to target tissues. In endocrine pancreas,
energy-rich ligands provide a continuous input to a variety of specific receptor proteins on and
in individual β-cells and initiate signaling events in and between these cells (Henquin, 2009).
In an oversimplified medical physiology textbook interpretation, glucose is transported into a
β-cell through facilitated diffusion, is phosphorylated and converted within a metabolic black
box to ATP, leading to closure of KATP channels, cell membrane depolarization and activation of
voltage-activated calcium channels (VACCs), followed by a rise in cytosolic Ca2+ to a micromolar
range and triggering of SNARE-dependent insulin release (Ashcroft and Rorsman, 1989). However,
glucose may influence β-cells signaling through several additional routes. There may be alternative
glucose entry routes, like for example active Na-glucose cotransport (Tomita, 1976; Trautmann
and Wollheim, 1987), alternative calcium release sites, like ryanodine (Islam, 2002) and IP3
receptors (Lang, 1999) or glucose may directly activate the sweet taste receptor and initiate
signaling (Henquin, 2012), to name a few. Activation of a β-cell on a single cell level therefore
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likely involves triggering of a variety of elementary Ca2+

events (Berridge et al., 2000), which interfere in space and
time into a unitary β-cell Ca2+ response to support Ca2+-
dependent insulin release. This Ca2+-dependent insulin release
can be further modulated by activation of different protein
phosphorylation/dephosphorylation patterns (PKA, PKC, Cdk5,
etc.) (Mandic et al., 2011; Skelin and Rupnik, 2011) or other
protein modifications (Paulmann et al., 2009) to either reduce or
increase the insulin output.

One of the important features of the sensory collectives is
the optimization of the spatial relations between its elements
to maximize the precision of sensing (Fancher and Mugler,
2017; Saakian, 2017). In islets of Langerhans, β-cells dwell as
morphologically well defined cellulo-social collectives. These
ovoid microorgans are typically not longer than 150µm. The
relatively small and constant pancreatic islet size is an intriguing
feature in vertebrate biology. The size distribution of islets
is comparable in humans, rodents and wider within different
vertebrate species, irrespective of evident differences in overall
body and pancreas size as well as total β-cell mass (Kim et al.,
2009; Dolenšek et al., 2015). In mice, islet sizes range between 50
and 600 µm, with a median values below 150 µm (Lamprianou
et al., 2011). To accommodate differences in the body size,
there is nearly a linear relationship between the total number of
similarly sized islets and body mass across different vertebrate
species (Montanya et al., 2000; Bouwens and Rooman, 2005).
However, why are islets so conserved in size is unknown.

All β-cells within an islet collective represent a single
functional unit, electrically and chemically coupled network,
with gap junction proteins, Connexins 36 (Cx36) (Bavamian
et al., 2007), for short-range interactions and with paracrine
signaling (Caicedo, 2013) for long-range interactions between
cells. The unitary cell response in one β-cell influences
the formation of similar responses in neighboring β-cells
and contributes to coordination of a large number of β-
cells (Cigliola et al., 2013; Stožer et al., 2013a). Explorations of
these functional β-cell networks, constructed from thresholded
pairwise correlations of Ca2+ imaging signals (Stožer et al.,
2013b; Markovič et al., 2015; Johnston et al., 2016; Gosak
et al., 2017a), showed that strongly correlated subsets of β-
cell collective organize into modular, broad-scale networks with
preferentially local correlations reaching up to 40 µm (Markovič
et al., 2015), but understanding of mechanisms that lead to these
strongly correlated networks states in β-cell populations is still
lacking. We argue that β-cells sense, compute and respond to
information as a collective, organized in a network similar to
sensory neuron populations (Schneidman et al., 2006; Tkačik
and Bialek, 2016), and not as a set of independent cells strongly
coupled only when stimulation is high enough.

Here we reanalyze pairwise correlations of Ca2+ spike trains
(unitary β-cell responses on the shortest temporal scale) in β-
cell collective recorded in fresh pancreatic tissues slice under
changing glucose stimulation conditions (6 mM subthreshold–
8 mM stimulatory) using methodological approaches previously
described (Stožer et al., 2013b; Markovič et al., 2015; Gosak et al.,
2017a,b). We specifically look at weak correlations between β-
cells which we found to be widely spread across the islet (Azhar

and Bialek, 2010). Guided by the use of statistical physics models
in describing populations of neurons (Schneidman et al., 2006;
Tkacik et al., 2009), we use a simple spin glass model for Ca2+ β-
cells activity and show that it well captures the features observed
in the measured data. In a way, we recognize this efficiency of
simple models in both neuronal and endocrine cell collectives as
one manifestation of the “beauty in function” (Rasmussen, 1970).

2. SPIN MODEL OF A β-CELL COLLECTIVE

Spin models have been borrowed from statistical physics to
describe the functional behavior of large, highly interconnected
systems like sensory neurons (Schneidman et al., 2006; Tkacik
et al., 2009; Tkačik et al., 2014), immune system (Parisi, 1990),
protein interactions (Bryngelson and Wolynes, 1987), financial
markets (Bornholdt, 2001; Krawiecki et al., 2002), and social
interactions between mammals (Daniels et al., 2016, 2017).

The model of the islet consist of N cells; at time t each of the
cells can be in one of two states, spiking or silent, represented
by a spin variable Si(t) = ±1, (i = 1, ...,N). The discrete time
steps in model computations correspond to 2 s binning size of
the Ca2+ data. The effective field Ei of the i-th cell has two
contributions: one from the cell interacting with all other cells
with interaction strength Jij, and one from external field hi. We
assume that interactions extend over the whole system.

Ei(t) = hi(t)+

N∑

j=1

JijSj(t) (1)

At the next moment (t + 1) each cell updates its state Si(t) with
the probability p to Si(t+ 1) = +1 and with the probability 1− p
to Si(t+1) = −1. The probability p depends on the effective field
Ei that the i-th cell senses:

p =
1

1+ exp(−2Ei)
. (2)

The interaction strength Jij is a fluctuating quantity with
contributions from amplitude J common to all links and from
the pairwise contributions with amplitude I (Krawiecki et al.,
2002): Jij = Jλ(t) + Iνij(t). Here are the fluctuations λ(t) and
νij(t) random variables uniformly distributed in the interval
[−1, 1]. The external field hi(t) = η(t) is also a random variable,
uniformly distributed in the interval η(t) = [hmin, hmax]. In the
mean-field approximation the average state of the systemm(t) =
1
N

∑
j Sj, evolves with time according to Krawiecki et al. (2002):

m(t + 1) = tanh(Jλ(t)m(t)+ hmf (t)), (3)

where we hmf = η(t)/N. In the Results section below we
demonstrate that the model describes the important features
observed in the data well. In all computations we used a model
with N = 200 spins, and we set, following the original
model (Krawiecki et al., 2002), the pairwise interaction amplitude
to I = 2J. The values of the remaining three free parameters
of the model, J, hmax and hmin, were chosen to fit the model
computations to the qualitative features of the Ca2+ data as
described in the next section.
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3. RESULTS

The functional multicellular imaging (fMCI) records a full
temporal activity trace for every cell in an optical plane of an
islet from which meaningful quantitative statements about the
dynamics of unitary Ca2+ responses and information flow in
the β-cell collective are possible (Dolenšek et al., 2013; Stožer
et al., 2013a). Briefly, after the stimulation with increased glucose
level, first asynchronous Ca2+ transients appear, followed by a
sustained plateau phase with oscillations on different temporal
scales, from slow oscillations (100–200 s) to trains of fastest
Ca2+ spikes (1–2 s). As the relation between the rate of insulin
release and cytosolic Ca2+ activity shows saturation kinetics
with high cooperativity (Skelin and Rupnik, 2011), the insulin
release probability is significantly increased during these Ca2+

spikes.
Initially, fMCI has been done at the glucose concentrations

much higher than those at which β-cells usually operate.
The main reason for this was to ensure comparability of the
results with the mainstream research in the field using mostly
biochemical approaches. At 16mM glucose, a collective of β-cells
responds in a fast, synchronized, and step-like manner. Therefore
the first interpretation has been that gap junction coupling
between neighboring β-cells presents a major driving force for
the β-cell activation and inhibitory dynamics (Hraha et al., 2014;
Markovič et al., 2015). Accordingly, the removal of Cx36 proteins
does cause hyperinsulinemia at resting glucose levels and blunted
responses to stimulatory glucose concentration (Speier et al.,
2007). Since β-cells in fresh pancreatic tissue slices are sensitive
to physiological concentration of glucose (6–9 mM) (Speier
and Rupnik, 2003), we here focused on this less explored
concentration range. We looked at the spiking part of the Ca2+

imaging signals for which it has been previously shown to contain
enough information to allow reconstruction of functional cell
networks (Stetter et al., 2012).

For the present analysis we reused a dataset of individual
Ca2+-dependent events from N = 188 ROIs with known
positions from the central part of the fresh rodent pancreatic
oval shaped islet (370 um in length and 200 um wide),
representing β-cells, recorded with fMCI technique at 10 Hz
over period of 40 min (for methodological details see Stožer
et al., 2013b; Markovič et al., 2015; Gosak et al., 2017a,b).
During the recording the glucose concentration in the solution
filling the recording chamber has been increased from 6–8
mM, reaching equilibration at around 200 s after the start of
the experiment, and then decreased to initial concentration
near the end of experiment at around 2,000 s (dashed red
lines in Figures 4, 5 represent points where glucose levels were
completely equilibrated in the recording chamber). We applied
ensemble empirical mode decomposition (Luukko et al., 2016)
on recorded traces to isolate the Ca2+ spiking component of the
signal. Finally, based on previous experiments in our laboratory,
we binarized the signals using 2 s wide bins (Figure 1, left panel)
and obtained binary spike trains Sj(t) ± 1, (j = 1...N), of β-
cells’ Ca2+ activity, each cell represented as a spin. As can be seen
from the Figure 1 the chosen bin width adequately describe the
unitary events seen in the calcium traces. An example of spiking

dynamics of 30 randomly chosen spins is shown as a raster plot
in the right panel of Figure 1.

Statistical methods based on mostly pairwise correlations
between neurons populations have been successfully used in
predicting spiking patterns in cell populations (Schneidman
et al., 2006; Tkacik et al., 2009; Tkačik et al., 2014; Ferrari
et al., 2017). It may seem surprising that models with first and
second-order correlation structure work not only when the cell
activity is very sparse so the correlations could be described
by perturbation theory (Roudi et al., 2009), but can reproduce
the statistics of multiple co-spiking activity (Barton and Cocco,
2013; Merchan and Nemenman, 2016; Ferrari et al., 2017). We
computed truncated correlations

c(i, j) = 〈SiSj〉 − 〈Si〉〈Sj〉 (4)

for all pairs of cells. The pairwise correlations found are mostly
weak with the distribution shown in Figure 2 (left panel),
but they extend widely over the distances up to 170 µm
across the islet, which is larger than an average vertebrate
islet size (Figure 2, right panel). At distances larger than 170
µm the correlations decrease sharply toward zero. Such weak
and long-ranging pairwise correlations could be the root of
criticality and of strongly correlated network states in biological
systems (Schneidman et al., 2006; Azhar and Bialek, 2010; Mora
and Bialek, 2011; Tkačik et al., 2015).

To check for the existence of strongly correlated states in
weakly correlated β-cell collective we computed probability
distributions PN(K) of K simultaneously spiking cells in groups
of N = 10, 20, 30 cells. Here, we used the entire dataset, the
low and the high glucose concentration parts, from which we
sampled cells signals. While the PN(K) of randomly reshuffled
spike trains expectedly follows Poisson distribution (left panel
in Figure 3, black crosses and dashed line for N = 10 spins),
the observed co-spiking probabilities are orders of magnitude
higher (diamonds in left panel of Figure 3 for N = 10 spins)
than corresponding probabilities in groups of independent spins.
The statistics of these co-spiking events were described by an
exponential distribution (Schneidman et al., 2006), by finding
the effective potential (Tkačik et al., 2013, 2014) matching
the observed PN(K) and adding it to the hamiltonian of the

FIGURE 1 | (Left) A Ca2+ trace showing a short train of spikes after

ensemble empirical mode decomposition with overlaid binary form with 2 s

wide bins. (Right) Spin raster plot of 30 randomly picked β-cells.
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model, or by using beta-binomial distribution (Nonnenmacher
et al., 2017) PN(K) = C(N,K)B(α + K,β + N − K)/B(α,β)
where C(N,K) is binomial coefficient and B(α,β) is the beta
function.

We next run the spin model of 200 β-cells and then sampled
the computed spike trains to obtain PN(K) from the model for
N = 10, 20, 30. Despite its simple structure, the model matches
order of magnitude of the observed PN(K) well when we set the
interaction strength at J = 2.0, as shown in the left panel of
Figure 3 (red pluses and red dashed line), particularly for larger

FIGURE 2 | (Left) Distribution of pairwise correlations of β-cell collective

computed from Ca2+ imaging spiking signals. (Right) Pair correlations

distribution over distance. Weak correlations extend over the whole system up

to 170 µm. Black line shows the average values of correlations at particular

cell-cell distances.

FIGURE 3 | (Left) Probability distributions of K cells among N spiking

simultaneously. Randomly shuffled spike trains (black crosses, N = 10) with

dashed line - Poisson distribution; N = 10 (diamonds), N = 20 (squares),

N = 30 (open dots); model (red pluses + red dashed line with J = 2.0 used for

the entire dataset, Nspins = 200 spins, hmin = −2.65, hmax = −1.65),

beta-binomial model (Nonnenmacher et al., 2017) (black dashed line,

α = 0.38, β = 11.0); (Right) Scaling of mean field return: open dots - data,

red pluses - mean field approximation from the spin model of β-cells

computed with J = 2.0, hmf = η(t)/N. Dashed line P(G) ∼ G−2.0

K values. In the model here we did not treat the low and the
high glucose concentration part separately, we used J = 2.0 for
the entire dataset. For comparison, we also show how the beta-
binomial model fits to the observed data using the parameters
α = 0.38, β = 11.0 in all N = 10, 20, 30 cases. These values are
also close to the best-fitting parameters (α = 0.38, β = 12.35) to
the simulated and observer correlated neural population activity
data as reported in Nonnenmacher et al. (2017).

The microscopic model of interacting spins with interactions
randomly varying in time (Krawiecki et al., 2002), adopted
here to describe interacting β-cell collective, exhibits scaling
of price fluctuations (Bornholdt, 2001) observed in financial
markets (Gopikrishnan et al., 1999) and on-off intermittency
with attractor bubbling dynamics of average price (Krawiecki
et al., 2002). Following this idea, we looked at the logarithmic
return of average state of β-cell collective at time t (Bornholdt,
2001):G(t) = log(m(t))− log(m(t−1)). As presented in the right
panel of Figure 3, the distribution P(G) (of positive G values) can
indeed be approximated with a scaling law: P(G) ∼ G−γ with
γ = 2.0. There is an analytical relationship (Krawiecki et al.,
2002) between J and exponent γ of the distribution of amplitudes
of the return of the mean field, J = γ 1/(γ−1), which gives J = 2.0
for γ = 2.0. We used this as a consistency check between the
model computations and mean field approximation. Computing
the average state with the Equation (3) of the model, we can
reproduce the observed distribution by setting on the interaction
strength to J = 2.0 at ton = 400 s and off to J = 0 at toff =

2,200 s. The amplitude of the interaction J is consistent with the
computation of the co-spiking probability.

In Figure 4 we show the plots of both, observed and
computed, returns of average state of interacting β-cells for
comparison. The glucose concentration was changed during
the experiment in a stepwise manner: from 6 to 8 mM at
the beginning and back to 6 mM near the end of recording
period. The effect of both changes is nicely visible in the

FIGURE 4 | (Upper) Observed logarithmic return of the average state of of

β-cell collective G(t), (Lower) logarithmic return of the average state

computed from the model with J = 2.0 for ton < t < toff , denoted with vertical

dashed lines in figures. Dashed red lines represent points where glucose levels

were completely equilibrated in the recording chamber.
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G(t) plot (upper panel, Figure 4) where the on-off intermittent
dynamics of the average state starts around ton = 400 s
and lasts until around toff = 2, 200 s in the experiment.
Both observed events are delayed with respect to the times of
glucose concentration change due to the asynchronous Ca2+

transients (Stožer et al., 2013a). We expect that the response
of β-cell collective to the stimulus increase must be visible
in the variance of average state Var(m) which is in Ising-like
model we are using here equal to susceptibility of the system
χ = Var(m) = 〈m2〉 − 〈m〉2. We used the low glucose
concentration part (6 mM) of the data to estimate the boundaries
of the external field interval [hmax, hmin] to describe the first
part of susceptibility. Using the maximal and minimal spiking
rates of cells (mmax,mmin) in 6 mM glucose from the data and
the mean-field approximation with J = 0 corresponding to
the non-stimulatory glucose regime we have [hmax, hmin] =

[tanh−1(mmax), tanh
−1(mmin)] = [−1.65,−2.65]. In upper panel

of Figure 5 (open black dots) we show the plot of susceptibility
as a function of recording time, focusing around the transition to
increased glucose concentration during the experiment. There is
a sharp increase of susceptibility at around ton, the same time the
on-off intermittency starts to appear in G(t). Using mean field
approximation of the spin model Equation (3) for computation
of susceptibility (averaged over many runs) and setting J = 0
for t < ton and J = 2.0 for t > ton we can well describe
the observed evolution of susceptibility and capture the rapid
onset of increased sensibility of the islet (red line in upper part
of Figure 5).

FIGURE 5 | (Upper) Susceptibility of β-cell collective around transition to

stimulatory glucose level. Open dots are the experimental data, red line shows

the result of the mean field computations with J = 2.0 onset at

t = ton(blackdashedline). Dashed red line represent the point where glucose

level completely equilibrated during the 6–8 mM transition in the recording

chamber. (Lower) Normalized conditional entropy. Open dots are

experimental data at 8 mM glc, open squares at 6 mM glc. Red pluses show

the results of the spin model computations with Nspins = 200 spins, and the

parameters: hmin = −2.65, hmax = −1.65, J = 2.0 for the upper, and J = 0

for lower the lower part.

Pairwise correlation structure enables error-correction
features of population coding in neural systems (Schneidman
et al., 2006). To check for memory-like or error-correcting
properties in islets, we use the conditional entropy H(Si|S), the
measure for the information we need to determine the state of
N-th cell (i.e., spiking or not) if we know the states of N − 1 cells
(S = Sj 6= i) in a group of N cells. If the state of the N-th cell
is completely determined by other N − 1 cells, the conditional
entropy is zero H(Si|S) = 0 and the error correction is perfect.
When Sj are independent random states, the conditional entropy
equals the entropy of the N-th cell H(Si).

We computed the quantity 1 − H(Si|S)/H(Si) (normalized
mutual information) as a function of number of cells (for small
groups of cells) and extrapolate the trend toward the limit
H(Si|S) = 0 that determines the critical number of cells, Nc,
needed to predict the state of another cell. As seen in the
lower panel of Figure 5, the predictability is a glucose-dependent
parameter. With non-stimulatory glucose concentration, the
complete set of data is required for predictions, whereas at 8
mM glucose we find that order of magnitude smaller number
of measured cells are needed to predict the states of other
cells.

4. DISCUSSION

Pancreatic β-cell continuously intercepts a variety of energy-
rich or signaling ligands using the whole spectrum of specific
receptors on the cell membrane, as well as in metabolic and
signaling pathways within the cell. The cell converts these
signals into a binary cellular code, for example a train of
Ca2+ spikes, which drive insulin release that fits current
physiological needs of the body. This allow already a single
cell to sense its chemical environment with extraordinary,
often diffusion limited precision (Bialek and Setayeshgar,
2005), however, judging by their heterogeneous secretory
behavior in cell culture, the precision of sensing among
the individual β-cells is quite diverse (Hiriart and Ramirez-
Medeles, 1991). Recent experimental evidence and modeling
have shown that cell collectives sense better compared to
an individual cell. The precise mechanism of this collective
sensing improvement depends on cell-cell communication type,
which can be short-range with direct cell contacts or long-
range with paracrine signaling (Fancher and Mugler, 2017;
Saakian, 2017). Furthermore, also long-range interaction have
its finite reach which can poise a limit to the cell collective
size and therefore determines its optimal as well as maximal
size. As mentioned in the Introduction here, it is intriguing
how well conserved the pancreatic islet size is in vertebrates of
dramatically different body dimensions (Montanya et al., 2000).
In a single vertebrate organism the size of the islets can be
bigger that 150 um, but functional studies revealed that the
islets bigger than 200 um secrete 50% less insulin after glucose
stimulation (Fujita et al., 2011). These functional differences
between small and large islets have been partially attributed to
diffusion barriers for oxygenation and nutrition, limiting the
survival of core β-cells in bigger islets after isolation. However,
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reducing these diffusion barriers had no influence on insulin
secretory capacity (Williams et al., 2010) suggesting that other
factors, like diffusion of paracrine signaling molecules (Caicedo,
2013), could limit the collective β-cell function in bigger islets.
This dominance of a long-range information flow, likely limited
to some physical constraints, has indicated the use of the
mathematical equivalency with spin glass-like systems (Tkačik
and Bialek, 2016).

We strongly believe that advanced complex network analysis
based on strong short-range correlations can continue to provide
valuable information regarding the β-cell network topologies,
network on network interactions and describe the functional
heterogeneity of individual β-cells (Gosak et al., 2015, 2017a;
Markovič et al., 2015; Johnston et al., 2016). However, the main
goal of the present study was to determine the influence of
weak long-range correlations between pairs of β-cells on the
probability of activation of single β-cells. Recently has been
shown that it suffice to use pairwise correlations to quantitatively
describe the collective behavior of cell collectives (Merchan
and Nemenman, 2016). The typically small values of pairwise
correlation coefficients with the median values below 0.02,
would intuitively be ignored and β-cells described as if they
act independently, however in larger populations of cells this
assumption completely fails (Schneidman et al., 2006). In fact,
at physiological stimulatory glucose levels between 6 and 9
mM, β-cell collectives are entirely dominated by weak average
pairwise correlations (Figure 2). Nevertheless, this is the glucose
concentration range, where β-cells are most responsive to the
nutrient to, as a collective, compute their activity state and
pulsatile insulin release, and to meet the organismal needs
between the environmental and behavioral extremes of food
shortage and excess (Schmitz et al., 2008)?

Based on the range of the calculated weak pairwise
correlations of up to 170 um (Figure 2), we predict that β-
cells collective falls into a category of sparse packed tissues
with dominant paracrine interactions and that cell-cell distances
contribute to optimal sensing and functional response in creating
the metabolic code governing the release of insulin. It remains
unclear whether and how the position of β-cells within an islet
is controllable. As many other cells, β-cells are polarized and
possess a primary cilium (Gan et al., 2017), which should have a
primary role in sensory function, i.e., insulin sensing in paracrine
signaling (Doğaner et al., 2016), and not in cell motility. It is quite
interesting though, that the ciliopathies are highly associated
with reduced β-cell function and increased susceptibility to
diabetes mellitus (Gerdes et al., 2014). Future experiments are
required to test for the possible motility of β-cells within the
islet to adopt an optimal separation of key sensitive β-cells.
To further extrapolate the collective sensing idea, it is also
possible that the diffuse arrangement of a collective of islets
within different parts of pancreas, which are exposed to different
vascular inputs (Dolenšek et al., 2015), serves to optimize
nutrient sensing experience, yet on a higher organizational level,
providing a topological information regarding the nutrient levels
in different parts of the gastrointestinal tract. The nature and
level of interactions between individual islets in the pancreas are
currently also unknown.

As in retinal neuron networks, β-cells encode information
about the presence of energy-rich nutrients into sequences of
intermittent Ca2+ spikes. In a natural setting of sensory neural
networks with stimuli derived from a space with very high
dimensionality the coding seems challenging and interpretations
require some strong assumptions (Tkačik et al., 2014). We
currently do not understand the input dimensionality of a typical
ligand mixture around the β-cells, we simply assume it is not
high. As in retinal networks (Schneidman et al., 2006; Tkačik
et al., 2014), the predictability regarding the functional state of
individual β-cells is defined by the network and not the chemical
environment. This suggests that the sensory information at
physiological glucose levels is substantially redundant. It is likely
that the nutrient mixture presents a noisy challenge for the
information transfer which is typical for biological system. But
why study the insulin release pattern or the metabolic code? The
β-cell network possess associative or error-correcting properties
(Figure 5), so this idea from the sensory neuron networks can be
generalized also to populations of endocrine cells (Schneidman
et al., 2006), which may again influence the optimal islet size and
suggest the presence of functional subunits within the islet that
could adapt, for example, to changing environment in a dynamic
fashion. Furthermore, error-correction properties are glucose
dependent and can be physiologically modulated (Figure 5). The
trains of Ca2+ spikes at constant glucose stimulation (8 mM)
are inhomogeneous, display on-off intermittency (Figure 4) and
scaling of log returns of average state (Figure 3) analog to
models of financial time series (Krawiecki et al., 2002). For
the spin glass approach we also postulate that the sources of
stochasticity in an islet collective are various. On one hand,
the β-cells make decisions on activation under the influence of
the external environment and other β-cells. Second, also the
time-dependent interaction strength among β-cells is random,
which could reflect their socio-cellular communication network
and indicate that the external environment can be sensed
differently between different β-cells in an islet (Gosak et al.,
2017b).

Biological systems seem to poise themselves at criticality,
with a major advantage of enhanced reactivity to external
perturbations (Mora and Bialek, 2011). Often a limited number
of individual functional entities, cell or groups of cells as
found in pancreatic islets, appeared to be limiting to address
criticality. However, it has been recently demonstrated that
even in biological systems with small number of interacting
entities one can operationally define criticality and observe
changes in robustness and sensitivity of adaptive collective
behavior (Daniels et al., 2017). Our results suggest that β-cells
collective within the islet sits near its critical point and we could
determine the susceptibility in the islet. Stimulatory glucose
concentration (8 mM) has been decreasing distance to criticality
by increasing sensitivity (Figure 5). Smaller distance to criticality
at unphysiologically high glucose levels has its possible adverse
consequences in a phenomenon called critical slowing down as
the system takes more and more time to relax as it comes nearer
to the critical point (Mora and Bialek, 2011). Our preliminary
results show that at very strong stimulation (i.e., glucose levels
above 12 mM) the whole system freezes into a certain state where
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short-term interaction take over enabling global phenomena
within the islets, e.g., Ca2+ waves (Stožer et al., 2013b) requiring
progressively longer periods to relax to baseline with increasing
glucose concentrations.

Further work will be needed to exploit at what circumstances
deviations in islet size can contribute to islet malfunction
and pathogeneses of different forms of diabetes mellitus. Until
recently it has been thought that insulin release is no longer
functional in type 1 diabetes mellitus. We now know that even
in type 1 diabetic patients small and functional collectives of β-
cells persist in the pancreata of these patients even decades after
the diagnosis (Faustman, 2014). On the other hand, the β-cells
mass in an islet can be increased in type 2 diabetic patients in
the initial phases after the diagnosis (Rahier et al., 2008) or in
animal models (Daraio et al., 2017) and can only be reduced
in the later phases (Rahier et al., 2008). The detailed relations

between the reduced or increased insulin release, changed
islet size and therefore changed circumstances for paracrine
signaling in disturbed collective nutrient sensing and during the
aforementioned pathogeneses of diabetes mellitus remain to be
established.
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