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Nowadays, as more and more associations between microRNAs (miRNAs) and

diseases have been discovered, miRNA has gradually become a hot topic in the

biological field. Because of the high consumption of time and money on carrying

out biological experiments, computational method which can help scientists choose

the most likely associations between miRNAs and diseases for further experimental

studies is desperately needed. In this study, we proposed a method of Graph

Regression for MiRNA-Disease Association prediction (GRMDA) which combines known

miRNA-disease associations, miRNA functional similarity, disease semantic similarity,

and Gaussian interaction profile kernel similarity. We used Gaussian interaction profile

kernel similarity to supplement the shortage of miRNA functional similarity and disease

semantic similarity. Furthermore, the graph regression was synchronously performed in

three latent spaces, including association space, miRNA similarity space, and disease

similarity space, by using two matrix factorization approaches called Singular Value

Decomposition and Partial Least-Squares to extract important related attributes and filter

the noise. In the leave-one-out cross validation and five-fold cross validation, GRMDA

obtained the AUCs of 0.8272 and 0.8080 ± 0.0024, respectively. Thus, its performance

is better than some previous models. In the case study of Lymphoma using the recorded

miRNA-disease associations in HMDD V2.0 database, 88% of top 50 predicted miRNAs

were verified by experimental literatures. In order to test the performance of GRMDA

on new diseases with no known related miRNAs, we took Breast Neoplasms as an

example by regarding all the known related miRNAs as unknown ones. We found that

100% of top 50 predicted miRNAs were verified. Moreover, 84% of top 50 predicted

miRNAs in case study for Esophageal Neoplasms based on HMDD V1.0 were verified

to have known associations. In conclusion, GRMDA is an effective and practical method

for miRNA-disease association prediction.
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INTRODUCTION

MicroRNA (miRNA) is a small non-coding, single stranded
and endogenous RNA molecule (containing 21∼24 nucleotides)
found in plants, animals, and some viruses, which functions
in regulation of the gene expression by targeting mRNAs for
cleavage or translational repression at the post-transcriptional
level (Ambros, 2001, 2004; Bartel, 2004; Meister and Tuschl,
2004). The first miRNA was discovered in the early 1990s (Lee
et al., 1993; Wightman et al., 1993). However, miRNAs were
not recognized as a distinct class of biological regulators until
the early 2000s (Pasquinelli et al., 2000; Reinhart et al., 2000;
Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros,
2001). Nowadays thousands of miRNAs from a wide variety of
species have been found (Jopling et al., 2005; Kozomara and
Griffiths-Jones, 2011). Furthermore, increasing researches have
demonstrated that the miRNAs play crucial roles at multiple
stages of the biological processes (Lee et al., 1993), such as early
cell growth, proliferation (Cheng et al., 2005), differentiation
(Miska, 2005), development (Karp and Ambros, 2005), aging
(Bartel, 2009), apoptosis (Skalsky and Cullen, 2011), and so on.
The dysregulation of the miRNAs has been confirmed as a main
reason of aberrant cell behavior and important human complex
diseases by many studies (Griffiths-Jones et al., 2006). More and
more miRNAs have been verified to have associations with the
development processes of many human diseases in experiments
(Lynam-Lennon et al., 2009; Meola et al., 2009). For example,
studies have implicated that epigenetic modulation of the miR-
200 family has relevance to transition to a breast cancer stem cell-
like state (Lim et al., 2013). Besides, recent study demonstrated
that in human colorectal cancer cells, miR-186, miR-216b, miR-
337-3p, and miR-760 could work in synergy to induce cellular
senescence by targeting alpha subunit of protein kinase CKII
(Kim et al., 2012). Therefore, identifying disease-related miRNAs
is important and beneficial to treat, diagnose, and prevent human
complex diseases. However, considering the huge amount of time
andmoney we have to spend in carrying out experiments to verify
a single miRNA-disease association, it is impossible to verify the
associations one by one. Thus, it is necessary and valuable to
choose the most likely associations to verify in the biological
laboratory first. Therefore, considering there are some verified
miRNA-disease datasets which can be treated as materials for
prediction, we can develop computational models to rank and
predict potential miRNA-disease associations.

In fact, scientists have already developed some computational

methods in predicting miRNA-disease associations (Chen et al.,
2012b, 2016c; Mork et al., 2014; Chen, 2016; Zeng et al., 2016;
You et al., 2017). Many computational methods are based on a

credible assumption that functionally similar miRNAs tend to

have associations with phenotypically similar diseases to predict
the potential associations between miRNAs and diseases. For
example, Pasquier and Gardes (2016) constructed an vector space
to predict miRNA-disease associations. They representedmiRNA
and disease distributional information with high-dimensional
vectors respectively and then defined associations between
miRNAs and diseases in terms of their vector similarity. Jiang
et al. (2010) used a human phenome-microRNAome network to

obtain the priority of miRNA-disease associations. Its weakness
is that there was a high proportion of false positive and false
negative samples in the miRNA-target interactions dataset on
which this method extremely depended. To make up these
weakness, a random walk algorithm-based model in protein-
protein interaction (PPI) network was proposed (Shi et al.,
2013). This method predicted potential associations between
the miRNAs and diseases through combining the miRNA–
target interactions, disease–gene associations, and PPIs. Mork
et al. (2014) presented a miRNA-Protein-Disease Associations
(miRPD) method which combined protein-disease association
scores and miRNA-protein association scores to rank candidate
miRNAs. Xu et al. (2014) introduced a systematic miRNA
prioritization method based on known disease–gene associations
and context-dependent miRNA-target interactions. Nonetheless,
because of the high false positive and false negative samples
existing in miRNA-target interactions and the incomplete
disease-gene association network, the aforementioned methods
could not provide sufficiently accurate prediction results.

Furthermore, based on the observation that miRNAs with
similar functions are normally associated with similar diseases
and vice versa, an effective prediction algorithm based on
weighted k most similar neighbors for Human Disease MiRNAs
prediction (HDMP) was proposed by Xuan et al. (2013) to
predict the disease-related miRNAs using the miRNA functional
similarity, disease semantic similarity, disease phenotype
similarity, and the knownmiRNA-disease associations. However,
the HDMP is not suitable to detect the association about a new
disease which has no known related miRNAs. What’s more, for
a disease, if the number of its known related miRNAs is not
enough, the prediction result will be not so satisfactory. Chen
et al. (2012b) presented the first global network similarity-based
computational model called Random Walk with Restart for
MiRNA–Disease Association prediction (RWRMDA) by making
use of the random walk algorithm based on the information
of human miRNA functional similarity and known human
miRNA–disease associations. RWRMDA obtained an excellent
prediction performance. However, there is a non-negligible
limitation that this method could not work for new diseases with
no known related miRNAs. Chen et al. (2016b) proposed another
model called Within and Between Score for MiRNA-Disease
Association prediction (WBSMDA), which could effectively
predict the potential miRNAs related to new diseases without
any known related miRNAs and potential diseases related to
new miRNAs without any known associated diseases. Recently,
Chen et al. (2016c) developed a novel computational called
Heterogeneous Graph Inference for MiRNA-Disease Association
prediction (HGIMDA), using an iterative process with the initial
probability vector, which can overcome the weakness that not
being able to predict diseases with no known related miRNA,
occurred in other methods.

Nowadays, machine learning has been applied in vast
research fields and has great performance in many research
problems (Chen et al., 2012a, 2016a,d; Huang et al., 2016;
Zhang et al., 2017). Therefore, more and more studies have
focused on using machine learning to solve problems of miRNA-
disease association prediction. For instance, Xu et al. (2011)
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proposed a MiRNA-Target Dysregulated Network (MTDN)
and constructed Support Vector Machine (SVM) classifier to
identify positive miRNA-disease associations. However, since
it is hard to obtain the negative miRNA-disease associations,
the lack of negative samples would influence the accuracy of
this method. Chen et al. (Chen and Yan, 2014) provided a
method called Regularized Least Squares for MiRNA-Disease
Association prediction (RLSMDA) which predicted potential
disease-related miRNAs using semi-supervised learning method.
RLSMDA could predict miRNAs associated with diseases without
any known associated miRNAs and meanwhile it did not use
negative associations between miRNAs and diseases. However,
the choice of parameters for RLSMDA and the ways of combining
the classifiers in different spaces together may influence
prediction result to a large extent. Chen et al. (2015) further
developed a computational model of Restricted Boltzmann
Machine for Multiple types of MiRNA-Disease Association
prediction (RBMMMDA), which can obtain both new miRNA-
disease associations and their corresponding association types.
Nevertheless, it is also difficult to make decision on the
parameter values. Recently, Chen et al. (2017) proposed amethod
named Ranking-based KNN for MiRNA-Disease Association
prediction (RKNNMDA) which integrated several trustable
biological datasets to obtain a large data pool. However, this
method may cause bias to those miRNAs that have more
known associated diseases. Based on the fact that the miRNA-
disease association matrix is low-rank, Li et al. (2017) presented
Matrix Completion for MiRNA-Disease Association prediction
(MCMDA). However, the optimal parameters of MCMDA are
still in suspense.

In this study, we introduced a novel scoring method named
Graph Regression for MiRNA-Disease Association prediction
(GRMDA) to predict the potential miRNA-disease associations.
We combined the Gaussian interaction profile kernel similarity
and disease semantic similarity to get more complete integrated
disease similarity. Integrated miRNA similarity was calculated
in a similar way. We mapped three matrixes including miRNA-
disease association matrix, integrated miRNA similarity matrix
and integrated disease similarity matrix, into three graphs that
were miRNA-disease association graph, miRNA similarity graph
and disease similarity graph respectively. Then we synchronously
applied graph regression on the three graphs, which involved
three low-rank decompositions for projecting each of the three
graphs into three latent spaces and two regressions between the
three graphs. Finally, we got the scoring matrix by searching
the minimum value of graph regression formula. Assuming that
the five items of the formula are independent, we can calculate
the minimum values of each item separately using Singular Value
Decomposition (SVD) for low-rank decomposition and Partial
Least-Squares (PLS) for graph regression. Furthermore, we used
Leave-one-out cross validation (LOOCV) and five-fold cross
validation to evaluate the effectiveness of GRMDA. As a result,
GRMDA got an AUC of 0.8272 in LOOCV and obtained an
average AUC with standard deviation of 0.8080 ± 0.0024 in five-
fold cross validation.What is more, we applied three types of case
studies to test the performance of GRMDA, including associated
miRNA prediction for diseases based on known miRNA-disease

associations from HMDD V2.0 database, for new diseases with
no known related miRNAs and for the diseases based on
known miRNA-disease associations from HMDD V1.0 database
respectively. GRMDA performed well in the above validations
and case studies, which means that GRMDA is practicable and
effective in predicting potential miRNA-disease associations.

RESULTS

Performance Evaluation
We implemented LOOCV and five-fold cross validation to
evaluate the performance of GRMDA. Both of LOOCV and
five-fold cross validation are implemented using the recorded
miRNA-disease associations in HMDD V2.0 database. During
LOOCV, each one of the known miRNA-disease associations
will be left out in turn to be considered as test sample. After
calculating association scores of all the miRNA-disease pairs by
GRMDA, we compared the score of the test sample with all the
candidate pairs including all the miRNA-disease pairs which have
no known associations to observe whether the rank of the test
sample was above the threshold given in advance. Moreover,
we plotted the true positive rate (TPR, sensitivity) vs. the false
positive rate (FPR, 1-specificity) at different thresholds to obtain
the Receiver operating characteristic (ROC) curves, which were
shown in Figure 1. Sensitivity means the percentage of the
positive samples correctly identified among all the positives;
specificity refers to the percentage of negative samples correctly
identified among all the negatives. Area under the ROC curve
(AUC) is calculated as an index of the prediction ability of
GRMDA, the value of which is between 0 and 1. Higher the
AUC is, better the prediction performance will be. If AUC is
smaller than 0.5, it means that the model performs not better
than random prediction. As a result, GRMDA obtained the
AUC of 0.8272 in the LOOCV as shown in Figure 1. The
AUCs of WBSMDA and RKNNMDA in LOOCV are 0.8030,
0.7159 respectively. Therefore, according to the LOOCV results
of these methods, we can intuitively observe the improvement of
predicting the miRNA-disease associations with GRMDA.

During five-fold cross validation, we firstly randomly divided
the known miRNA-disease associations into five parts with the
same size. Then, each one of the five parts was treated as
test samples in turn and the other four parts were treated as
training samples. All of those miRNA-disease pairs that have
no confirmed associations are candidate samples. After applying
GRMDA, every score of test samples would be taken out to be
compared with all the scores of candidate samples. Then we can
get the rankings of test samples. In order to make the validation
more accurate, we have repeated this procedure 100 times.
Compared with RKNNMDA whose average AUC was 0.6723 ±
0.0027, average AUC of GRMDA in five-fold cross validation was
0.8080± 0.0024. The result confirmed that the GRMDA superior
to RKNNMDA is able to predict miRNA-disease associations.

Case Studies
Based on two well-known miRNA-disease association databases,
namely dbDEMC (Yang et al., 2010) and miR2Disease (Jiang
et al., 2009), we studied Lymphoma to examine the practicability
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FIGURE 1 | AUC of GRMDA in LOOCV compared with WBSMDA and RKNNMDA. As a result, GRMDA achieved AUC of 0.8272, which exceed the previous models.

FIGURE 2 | Flowchart of GRMDA model to predict the potential miRNA-disease associations based on the known associations in HMDD V2.0 database.

of GRMDA. In the end, we counted the number of the verified
miRNAs in the top 10, top 20, and top 50 ones to evaluate the
effectiveness of GRMDA.

Lymphoma is a group of blood cell tumors that develop
from lymphocytes (a type of white blood cell) (Anagnostopoulos
et al., 2000). According to the type of oncocyte, Lymphoma
is divided into Hodgkin lymphoma (HL) and Non-Hodgkin
Lymphoma (NHL) (Good and Gascoyne, 2008). About 90

percent of people who suffer Lymphoma have NHL (Alizadeh
et al., 2000). Recent experimental studies showed the effect of
re-expression of miRNA-150 on the formation of EBV-positive
Burkitt lymphoma (Chen et al., 2013). A distinct set of five
miRNAs (miR-150, miR-550, miR-124a, miR-518b, andmiR-539)
was shown to be differentially expressed in gastritis as opposed to
MALT lymphoma (Thorns et al., 2012). After applying GRMDA
method on Lymphoma, we got the result that 8 out of top 10,
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TABLE 1 | Prediction of the top 50 predicted miRNAs associated with lymphoma

based on known associations in HMDD V2.0 database.

miRNA Evidence miRNA Evidence

hsa-mir-223 dbdemc hsa-mir-34b dbdemc

hsa-mir-125b Unconfirmed hsa-mir-29a dbdemc

hsa-mir-34a dbdemc hsa-mir-128 dbdemc

hsa-let-7a dbdemc hsa-mir-23b dbdemc

hsa-mir-9 dbdemc hsa-mir-199b dbdemc

hsa-mir-221 dbdemc;

miR2Disease

hsa-mir-30a dbdemc

hsa-mir-142 Unconfirmed hsa-mir-222 dbdemc

hsa-mir-183 dbdemc hsa-mir-106a dbdemc;

miR2Disease

hsa-mir-106b dbdemc hsa-mir-22 dbdemc

hsa-mir-195 dbdemc hsa-mir-132 dbdemc

hsa-mir-182 dbdemc hsa-mir-30e dbdemc

hsa-mir-145 dbdemc;

miR2Disease

hsa-mir-30d dbdemc

hsa-mir-96 dbdemc hsa-mir-141 dbdemc

hsa-let-7b dbdemc hsa-mir-335 dbdemc

hsa-mir-29b dbdemc hsa-mir-191 dbdemc

hsa-mir-181b dbdemc hsa-mir-194 dbdemc

hsa-mir-34c Unconfirmed hsa-mir-199a dbdemc

hsa-mir-205 dbdemc hsa-mir-15b dbdemc

hsa-let-7c dbdemc hsa-mir-214 dbdemc

hsa-let-7e dbdemc;

miR2Disease

hsa-let-7f dbdemc

hsa-mir-1 dbdemc hsa-mir-27b dbdemc

hsa-mir-146b Unconfirmed hsa-mir-103a Unconfirmed

hsa-mir-143 dbdemc;

miR2Disease

hsa-let-7i dbdemc

hsa-let-7d dbdemc hsa-mir-429 Unconfirmed

hsa-mir-148a dbdemc hsa-mir-192 dbdemc

The first column records top 1–25 related miRNAs. The second column records the top

26–50 related miRNAs.

17 out of top 20, and 44 out of top 50 potential miRNAs in the
prediction result list for Lymphoma have been experimentally
verified according to dbDEMC and miR2Disease (see Table 1).
Compered with RKNNMDA and WBSMDA whose confirmed
results are respectively 29 and 42within top 50 predictedmiRNAs
for Lymphoma, GRMDA presents a more powerful predictive
ability.

In order to help scientists to make use of our method
and predictive results more efficiently, we have provided the
prediction list of the whole potential miRNAs associated with
all the human diseases and their association scores predicted by
GRMDA (see Supplementary Table 1).

To estimate the applicability of GRMDA on the new diseases
which do not have any known associations with miRNAs, we set
all of the associations which involve the test disease as unknown
ones. After implementing GRMDA, we obtained the ranking of
the miRNA-disease association prediction scores. We use Breast
Neoplasm as an example, the predicted result of which is shown
in Table 2. From the result, we can see that 10, 20, and 50 related

TABLE 2 | Prediction of the top 50 predicted miRNAs associated with Breast

Neoplasms based on known associations in HMDD V2.0 database by setting all

of the associations which involve Breast Neoplasms as unknown ones.

miRNA Evidence miRNA Evidence

hsa-mir-302b dbdemc; HMDD hsa-let-7c dbdemc; HMDD

hsa-mir-302d dbdemc; HMDD hsa-mir-27b dbdemc; HMDD

hsa-mir-181b dbdemc; miR2Disease;

HMDD

hsa-mir-96 dbdemc; miR2Disease;

HMDD

hsa-mir-302a dbdemc; HMDD hsa-mir-195 dbdemc; miR2Disease;

HMDD

hsa-mir-302c dbdemc; HMDD hsa-mir-298 HMDD

hsa-mir-338 dbdemc; HMDD hsa-mir-339 dbdemc; HMDD

hsa-mir-135b dbdemc; HMDD hsa-mir-199b dbdemc; HMDD

hsa-mir-149 dbdemc; miR2Disease;

HMDD

hsa-mir-30b dbdemc; HMDD

hsa-mir-106b dbdemc; HMDD hsa-mir-1 dbdemc; HMDD

hsa-mir-218 dbdemc; HMDD hsa-mir-221 dbdemc; miR2Disease;

HMDD

hsa-let-7f dbdemc; miR2Disease;

HMDD

hsa-mir-18a dbdemc; miR2Disease;

HMDD

hsa-mir-10b dbdemc; miR2Disease;

HMDD

hsa-mir-10a dbdemc; HMDD

hsa-mir-210 dbdemc; miR2Disease;

HMDD

hsa-mir-137 dbdemc; HMDD

hsa-mir-206 dbdemc; miR2Disease;

HMDD

hsa-let-7b dbdemc; HMDD

hsa-mir-708 HMDD hsa-mir-20a miR2Disease;

HMDD

hsa-mir-187 dbdemc; HMDD hsa-let-7d dbdemc; miR2Disease;

HMDD

hsa-let-7e dbdemc; HMDD hsa-mir-143 dbdemc; miR2Disease;

HMDD

hsa-mir-516a HMDD hsa-let-7i dbdemc; miR2Disease;

HMDD

hsa-mir-219 dbdemc; HMDD hsa-mir-101 dbdemc; miR2Disease;

HMDD

hsa-mir-125a dbdemc; miR2Disease;

HMDD

hsa-mir-214 dbdemc; HMDD

hsa-mir-499a HMDD hsa-mir-663a HMDD

hsa-mir-25 dbdemc; HMDD hsa-mir-204 dbdemc; miR2Disease;

HMDD

hsa-mir-19b dbdemc; HMDD hsa-mir-429 dbdemc; miR2Disease;

HMDD

hsa-mir-152 dbdemc; miR2Disease;

HMDD

hsa-mir-107 dbdemc; HMDD

hsa-mir-146b dbdemc; miR2Disease;

HMDD

hsa-mir-20b HMDD

The first column records top 1–25 related miRNAs. The second column records the top

26–50 related miRNAs.

miRNAs out of the top 10, 20, and 50 have been confirmed
by at least one of the three databases HMDD, dbDEMC and
miR2Disease. The result that all the top 50 associations had been
confirmed means that our method has a wonderful performance
in this aspect. For example, hsa-mir-302b is ranked at top 1,
which exhibits high frequency genomic alternations in human
Breast Neoplasm (Zhang et al., 2006).
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TABLE 3 | Prediction of the top 50 predicted miRNAs associated with

Esophageal Neoplasms based on known associations in HMDD V1.0 database.

miRNA Evidence miRNA Evidence

hsa-mir-184 Unconfirmed hsa-mir-125a dbdemc

hsa-mir-196a dbdemc; miR2Disease;

HMDD

hsa-let-7d dbdemc

hsa-mir-221 dbdemc hsa-mir-150 dbdemc; HMDD

hsa-mir-19a dbdemc; HMDD hsa-let-7f Unconfirmed

hsa-mir-99b dbdemc; HMDD hsa-mir-29b dbdemc

hsa-mir-24 dbdemc hsa-mir-34b dbdemc; HMDD

hsa-mir-376a dbdemc hsa-mir-96 dbdemc

hsa-mir-301b Unconfirmed hsa-mir-188 dbdemc

hsa-mir-301a dbdemc hsa-mir-409 dbdemc

hsa-mir-449b Unconfirmed hsa-mir-140 dbdemc

hsa-mir-449a Unconfirmed hsa-let-7e dbdemc

hsa-let-7a dbdemc; HMDD hsa-mir-302c dbdemc

hsa-mir-203 dbdemc; miR2Disease;

HMDD

hsa-mir-192 dbdemc;miR2Disease;

HMDD

hsa-mir-299 dbdemc hsa-let-7b dbdemc;HMDD

hsa-mir-28 dbdemc; HMDD hsa-mir-424 dbdemc

hsa-mir-222 dbdemc hsa-mir-107 dbdemc; miR2Disease

hsa-mir-20b dbdemc hsa-mir-198 dbdemc

hsa-mir-144 dbdemc hsa-mir-337 Unconfirmed

hsa-mir-495 dbdemc hsa-mir-100 dbdemc; HMDD

hsa-mir-375 dbdemc; miR2Disease;

HMDD

hsa-mir-130a dbdemc; HMDD

hsa-mir-376c Unconfirmed hsa-mir-135a dbdemc

hsa-mir-154 dbdemc hsa-mir-491 dbdemc

hsa-let-7c dbdemc; HMDD hsa-mir-371 Unconfirmed

hsa-mir-20a dbdemc; HMDD hsa-mir-342 HMDD

hsa-mir-17 dbdemc hsa-mir-186 dbdemc

The first column records top 1–25 related miRNAs. The second column records the top

26–50 related miRNAs.

Finally, we used HMDD V1.0 to test GRMDA and observe
whether our method has a good robustness by observing whether
our method can keep a good performance in other dataset.
According to the statistical results, we can see that 7, 16, and
42 respectively out of top 10, 20, and 50 miRNAs predicted to
be related to the Esophageal Neoplasms have been confirmed
by three databases mentioned above (see Table 3). For example,
hsa-mir-196a which ranks the second in the top 50 has been
confirmed that its binding-site SNP (rs6573) can regulate RAP1A
expression, which contributes to the risk and metastasis of
esophageal squamous cell carcinoma (Wang et al., 2012).

In conclusion, the prediction performance of GRMDA
is satisfactory. Because of that, we can foresee that with
the development of experimental tools and the improvement
of experimental measures, more and more miRNA-disease
associations predicted by our method will be confirmed in the
medical laboratory.

DISCUSSION

We introduced GRMDA in this paper, which was based on
graph regression and similarity computational methods that
integrates Gaussian interaction profile kernel similarity and

disease semantic similarity or miRNA functional similarity.
Because we introduced Gaussian interaction profile kernel
similarity, the information of the disease similarity and the
miRNA similarity was fully excavated to improve the accuracy
of the prediction. To verify the accuracy of the GRMDA, we used
LOOCV and five-fold cross validation and three case studies of
human complex diseases. GRMDA has a good performance in all
the above validations and case studies.

Here are the reasons why GRMDA has better performance
than some previous methods. First of all, the miRNA similarity
matrix and disease similarity matrix in GRMDA can take
full advantage of the information from known miRNA-disease
associations by introducing the Gaussian interaction profile
kernel similarity, which means that miRNA-disease association
matrix also takes part in the building of the above two similarity
matrixes. In that way, GRMDA makes full use of the assumption
that if two miRNAs affect the same disease, they tend to be
similar (It is the sameway for disease). Secondly, GRMDA applies
Singular Value Decomposition (SVD) and Partial Least Squares
Regression (PLS) during the graph regression to decompose
a series of matrixes including association matrix, miRNA
similarity matrix and disease similarity matrix. SVD and PLS
are two modified forms of Principle Component Analysis (PCA)
to collapse multidimensional data into low-dimension, which
reconstruct the information of the original dataset with reduced
components represented with vectors in latent spaces (Giuliani,
2017). In that way, our method can omit the less important
attributes to avoid noise and pay attention to the more important
attributes. For example, we will get three matrix U, 6, and
VT after applying SVD on similarity matrix. Since 6 is a
diagonal matrix in which every value represents the weight of an
attribute about how significant the attribute affects the similarity
between two miRNAs or two diseases, those small values can
be abandoned to retain the most important attributes in the
miRNA or disease similarity space. In the process of PLS, the
principle components of latent association matrix and latent
similarity matrix are extracted sequentially and then regressions
are constructed between them with considering maximum
correlation. In the end, because of our way of utilizing miRNA
similarity matrix and disease similarity matrix, GRMDA could
predict miRNAs for diseases with no one known related miRNA
and predict diseases for miRNAs not related to any diseases,
overcoming the limitations of some previous computational
models.

GRMDA also has its weakness. Firstly, though current studies
benefit from the increased known data, it is never a finished
work to expand data which means our prediction is always
under a data-lacking condition. Secondly, although GRMDA
has an improvement in accuracy compared with other methods,
the improvement is not enough. What’s more, there are some
difficulties in choosing parameters in SVD and PLS according to
the size of the matrixes.

MATERIALS AND METHODS

Human MiRNA-Disease Associations
We downloaded data about human miRNA-disease associations
between 383 diseases and 495 miRNAs from HMDD V2.0
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database, which includes up to 5430 associations. The miRNA-
disease association matrix A was built, where the entity A(i,j)
will be 1 if miRNAm(i) and disease d(j) compose an association,
otherwise 0. Variables nm and nd denote the number of miRNAs
and diseases respectively.

MiRNA Functional Similarity
The assumption that miRNAs with functional similarity tend
to be associated with diseases that have phenotypical similarity
is our basis to calculate the functional similarity score between
miRNAs (Wang et al., 2010). Combining known miRNA-disease
associations and disease similarity, the functional similarity
between two miRNAs could be obtained through measuring the
similarity between two disease sets that are related to the two
miRNAs. The data came from http://www.cuilab.cn/files/images/
cuilab/misim.zip, according to which we constructed the matrix
FS to represent miRNA functional similarity, in which the entity
FS(m(i), m(j)) denotes the functional similarity score between
miRNAsm(i) andm(j) with value from 0 to 1.

Disease Semantic Similarity Model 1
We use Directed Acyclic Graph (DAG) whose descriptor is
DAG(D) = (D,T(D),E(D)) to represent each disease, in which
T(D) is the node set composed of node D itself and its ancestor
nodes, E(D) is the edge set consisting of the direct edges from
parent nodes to child nodes (Wang et al., 2010). The formula to
calculate the semantic value of disease D is shown as below:

{

D1D
(

d
)

= 1 if d = D

D1D
(

d
)

= max
{

1∗D1D
(

d′
)
∣

∣d′ ∈ childrenof d
}

if d 6=D (1)

DV1(D) =
∑

d∈T(D)
D1D

(

d
)

(2)

Where 1 is the semantic contribution factor, whose value is
between 0 and 1. For example, for a certain disease D, it
contributes to the semantic value of itself with a value of 1. The
farther the distance is from disease D to the disease d in T(D),
the less the semantic contribution of d to D will be. Moreover,
contributions from diseases in the same layer to the semantic
value of disease D would be equal. The way to calculate semantic
similarity between disease d (i) and d (j) comes from a reliable
assumption that the larger part of the sharing of DAGs of two
diseases, the larger the semantic similarity between them will
be. The formula shown below is the semantic similarity between
disease d(i) and d(j):

SS1
(

d (i) , d
(

j
))

=
∑

t∈T(d(i))∩T(d(j)) (D1d(i) (t) + D1d(j)(t))

DV1
(

d (i)
)

+ DV1(d(j))
(3)

Disease Semantic Similarity Model 2
In this section, we calculated the disease semantic similarity
following the method given in the reference (Xuan et al., 2013).
The method in Disease semantic similarity model 1 has a good
performance, however, it has a weakness. For example, if different
diseases d1and d2are in the same layer ofDAG(D), then as a result
of disease semantic similarity model 1 defined in the section

above, d1and d2 have the same contribution to the semantic value
of disease D. But in certain circumstances, d1 may appear in less
disease DAGs than d2. If that happens, it is easy to realize that d1
is more specific than d2 and should have a higher contribution to
the semantic value ofD. Therefore, we defined the contribution of
disease t inDAG(D) to the semantic value of diseaseD as follows:

D2D(t) = − log

[

the number of DAGs including t

the number of diseases

]

(4)

The semantic value of disease D in model 2 is calculated in the
similar way as in equation (2). The way to calculate semantic
similarity between disease d(i) and d(j) also has same formation
with method 1. The formulas are shown below:

DV2 (D) =
∑

d∈T(D)

D2D(t) (5)

SS2
(

d (i) , d
(

j
))

=
6t∈T(d(i))∩T(d(j))(D2d(i)(t) + D2d(j)(t))

DV2
(

d (i)
)

+ DV2(d(j))
(6)

SS2 is the disease semantic similarity matrix calculated based on
model 2 and its entity SS2(d(i),d(j)) in row i column j is the
disease semantic similarity between disease d(i) and d(j) based
on disease semantic similarity model 2.

Gaussian Interaction Profile Kernel
Similarity for Diseases
It is observed that functional similar miRNAs always tend to be
associated with similar diseases. Based on this observation, we
could utilize the topologic information extracted from the known
miRNA-disease association network to compute the Gaussian
interaction profile kernel similarity for diseases. First, we defined
a binary vector IP(d(i)), the same value as the ith column
of our miRNA-disease association matrix A, to represent the
interaction profiles of disease d(i). The formula to calculate
Gaussian interaction profile kernel similarity between disease d(i)
and d(j) was shown below:

KD
(

d (i),d
(

j
))

= exp
(

−γd
∥

∥IP
(

d (i)
)

− IP(d(j))
∥

∥

2
)

(7)

γd =
γ ′

d
(

1
nd

∑nd
i=1

∥

∥IP(d(i))
∥

∥

2
) (8)

The effect of parameter γd is to control the kernel bandwidth.
γ ′

d is usually set as 1. γd is calculated by normalizing γ ′
d by

the average number of known miRNA-disease associations for all
diseases. KD is the Gaussian interaction profile kernel similarity
matrix for diseases.

Gaussian Interaction Profile Kernel
Similarity for miRNAs
MiRNA Gaussian interaction profile kernel similarity matrix is
calculated in a similar way with disease Gaussian interaction
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profile kernel similarity:

KM
(

m (i),m
(

j
))

= exp
(

−γm
∥

∥IP (m (i)) − IP(m(j))
∥

∥

2
)

(9)

γm =
γ ′

m
(

1
nm

∑nm
i=1

∥

∥IP(m(i))
∥

∥

2
) (10)

IP(m(i)) has the same value with the ith row of our miRNA-
disease association matrix A to denote the interaction profiles of
miRNAm(i).

Integrated Similarity for miRNAs and
Diseases
In this work, the integrated disease similarity Sd were constructed
based on disease semantic similarity SS and Gaussian interaction
profile kernel similarity KD. Specifically, if disease d(i) and d(j)
have semantic similarity, for simplicity, we assume that two types
of semantic similarities between them are equally important.
Then the final integrated similarity is computed directly using
the average of SS1(d(i),d(j)) and SS2(d(i),d(j)), since both of
two types of disease semantic similarity are calculated based
on Directed Acyclic Graph (DAG) of diseases. Otherwise, if
disease d(i) and d(j) do not have any semantic similarity, the
integrated disease similarity equals to the Gaussian interaction
profile kernel similarity which is taken as a supplement to the
semantic similarity. The formula was shown as follows:

Sd
(

i, j
)

=






(SS1(d(i),d(j)) + SS2(d(i),d(j)))
2 d (i) and d

(

j
)

have
semantic similarity

KD
(

d (i),d
(

j
))

otherwise

(11)

Furthermore, by supplementing the miRNA functional similarity
with miRNA Gaussian interaction profile kernel similarity, we
obtained the integrated miRNA similarity as follows:

Sm
(

i, j
)

=
{

FS
(

m (i),m
(

j
))

m (i) andm
(

j
)

have funtional similarity
KM

(

m (i),m
(

j
))

otherwise

(12)

GRMDA
We use a graph regression (Hu et al., 2015) amongGr ,Gd, andGa

which represent graphs about miRNA similarity network, disease
similarity network and miRNA-disease association network
respectively, to predict unknown associations between miRNAs
and diseases (see Figure 2). Because the graph regression is
synchronously performed in miRNA similarity space, disease
similarity space and miRNA-disease association space, we can get
the following formula:

{

A
∗
r ,A

∗

d, F
∗
r , F

∗

d,B
∗
r ,B

∗

d

}

= argmin ||A− ArA
T
d ||

2 + ||Sm − FrF
T
r ||

2

+ ||Sd − FdF
T
d ||

2 + ||Ar − FrBr||2 + ||Ad − FdBd||2 (13)

The first three items in formula (13) denote three low-
rank decompositions to map Gr , Gd and Ga in three spaces
respectively. The first item helps to decompose A into two
parts, each part represents the information of Ga in miRNA
or disease aspect. The second item is used to convert Gr to
feature matrix about miRNA and the third item is used in the
same way for generating feature matrix about disease. The fourth
item means a regression between miRNA-disease association
space and miRNA similarity space, from which we can get the
regression matrix which can connect Ga and Gr . The fifth item
represents a regression betweenmiRNA-disease association space
and disease similarity space, fromwhich we can get the regression
matrix which can connect Ga and Gd. To be specific, we map the
miRNAs and diseases in Ga into an nm × r miRNA associating
matrixAr and a nd× r disease associatingmatrixAd respectively.
We map miRNAs in Gr into an nm × p miRNA latent feature
matrix Fr . We map diseases in Gd into a nd × q disease latent
feature matrix Fd. In the end, the p × r matrix Br and the
q × r matrix Bd are the corresponding regression coefficient
matrices.

It is an intricate problem to minimize the objective function
as a whole. However, since our goal is to make regression
between the latent association spaces and similarity spaces, it
is reasonable to divide the solution into two steps: obtaining
the latent matrices and regressing between the latent matrices.
To make the question easier, we assume that the five items
in the formula (13) are independent. Then we can easily
solve the above optimization problem by minimizing the items
individually. We applied SVD for low-rank decompositions
to generate Ar , Ad, Fr , and Fd respectively in the following
way:

M
SVDH⇒U6VT =

(

U
√

6

) (

V
√

6

)T
= LRT (14)

SVD is an important and widely used method to decompose
matrixes. SVD can condense the size of data and extract the
possible association attributes between what the column and
row represent. Σ is a diagonal matrix in which each value on
the diagonal represents the importance of its mapped attribute.
We can omit some attributes whose value is too small in Σ .
However, if too small number of attributes are selected, the
subtle information may be lost (Sharma, 2016). In this work,
according to the particular data structure, we have retained about
45% (Franceschini et al., 2016) components for disease similarity
space and miRNA similarity space. As a result, the parameters
were set as q= 170 and p= 220 respectively. And for association
space, the number of selected attributes was moderately set as
r = 180. We operated a canonical correlation analysis on the
principal components of miRNA latent feature matrix Fr and
miRNA associating matrix Ar , as well as disease latent feature
matrix Fd and disease associating matrix Ad respectively to
check for the mutual correlation between them. The results were
shown in Supplementary Figures 1, 2. After that we utilized
PLS regression on the latter two items in formula (13) to
generate Br and Bd individually. For the purpose to preserve
the predictive ability with small noise in PLS (Kreeger, 2013),
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the percentage of components to keep was set as 90% both for
regression between association space andmiRNA similarity space
and regression between association space and disease similarity
space.

According to the previous formulas, we know that Fr
represents the features of miRNA, Fd represents the features
of diseases, Br represents the relation between A and Fr , Bd
represents the relation between A and Fd. Then, BrB

T
d
builds a

bridge between the features of miRNAs, the features of diseases
and the associations between them. In the end, the confidence
scores of miRNA-disease pairs to be potential associations are
calculated in the following formula:

C = FrBrB
T
d F

T
d (15)

where, C is the confidence score matrix and C(i,j) represents the
associations core of miRNAm(i) and disease d(j). The higher the
score is, the more likely the association exists.
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