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Aquaporins (AQPs) are emerging, in the last few decades, as critical proteins regulating

water fluid homeostasis in cells involved in inflammation. AQPs represent a family of

ubiquitous membrane channels that regulate osmotically water flux in various tissues

and sometimes the transport of small solutes, including glycerol. Extensive data indicate

that AQPs, working as water channel proteins, regulate not only cell migration, but also

common events essential for inflammatory response. The involvement of AQPs in several

inflammatory processes, as demonstrated by their dysregulation both in human and

animal diseases, identifies their new role in protection and response to different noxious

stimuli, including bacterial infection. This contribution could represent a new key to clarify

the dilemma of host-pathogen communications, and opens up new scenarios regarding

the investigation of the modulation of specific AQPs, as target for new pharmacological

therapies. This review provides updated information on the underlying mechanisms of

AQPs in the regulation of inflammatory responses in mammals and discusses the broad

spectrum of options that can be tailored for different diseases and their pharmacological

treatment.
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INTRODUCTION

The inflammatory process and the complex mechanisms governing its regulation have always
attracted scientific interest, focusing on the role of the various parties involved. Inflammation is a
multifaceted phenomenon involving the body’s physiological response to injury. The inflammatory
tissue damage can be determined, among others, by trauma, heat, chemicals, toxins, and microbes.
Both acute and chronic inflammatory process implicates an enormous expenditure of metabolic
energy, loss of function, tissue damage, and destruction, involving different immune cells. Many
signals orchestrate all inflammatory responses and a pivotal role is played by the immune system.
Generally, it can be divided into two interconnected subsystems. The innate or non-specific
immune system includes cells and processes that protect the host from infections by pathogen
organisms, detecting and signaling the occurrence of infection (Takeda et al., 2003; Medzhitov,
2007). These signals are necessary to trigger the inflammatory cascade and to activate the adaptive
immune response, the second subsystem. During activation, numerous substances released by the
injured tissues induce alterations to the surrounding uninjured tissues. Simultaneously, cells of
hematopoietic origin are recruited to damaged sites in order to resolve the inflammation and
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initiate tissue repair. Several of the products released from these
cells, differing in origin and composition, constitute the real
messengers of the inflammation process, and have been often
viewed as drug targets.

It is interesting to examine the mechanisms and the mediators
underlying the initiation of inflammation starting by the
alteration of cellular and tissue homeostasis: an important
role is played by the membranes that contribute to maintain
the equilibrium in the microenvironment. Indeed, the cells
normally modulate their internal environment in response to
external changes; the loss of their ability to regulate fluid
movement through the membrane lead to severe alteration of cell
physiology (Loo et al., 1996). This cellular disorder affects, as a
direct consequence, numerous biochemical processes, including
alterations of protein structure and function and hence enzyme
activity (Brocker et al., 2012). During homeostasis perturbation,
as in conditions characterized by local or systemic inflammation,
disease susceptibility appears and this phenomenon is associated
with abnormal ion transport (Kotas and Medzhitov, 2015). In
addition, many inflammatory signals, including cytokines and
chemokines, can modify tissue/cell homeostasis by changing
their sensitivity to homeostatic signals or by modifying gate
or channel access (Medzhitov, 2008). The swelling of cells and
tissues with a surplus of extracellular fluids (edema), is a clear
sign of homeostasis disturbance and inflammation.

Aquaporins (AQPs) represent a new class of proteins
extensively distributed on cell membrane that form pores and
primarily act in several transporting and trafficking processes.
Growing data have addressed their possible involvement in
inflammation, participating as regulators of innate host defense
at cell membrane level. AQPs could be involved in inflammasome
activation regulating cell volume (Compan et al., 2012). Indeed,
NALP3 inflammasome activation is induced by sodium overload
and water influx, both features of cell swelling (Schorn et al.,
2011), that represents a clear inflammatory response involving
pro-inflammatory cytokine synthesis.

Here, we report recent data on the potential role of AQPs
in the inflammatory process, as an adaptive response to the
loss of cellular homeostasis or tissue damage. In addition, the
function or alteration of AQPs in different inflammatory diseases
or animal models is also discussed.

AQUAPORINS

AQPs constitute a group of integral membrane proteins
characterized by six transmembrane helices, that are organized
in monomers, dimers, and tetramers, forming pores in the
membrane of biological cells (Verkman, 2013). The first
aquaporin discovered, initially called CHIP28 and later renamed
as Aquaporin (AQP)1, was isolated in human erythrocytes
(Denker et al., 1988; Preston and Agre, 1991) and in renal
proximal tubule membranes. Since this discovery, many other
proteins belonging to the same aquaporin family were described
not only in mammalian cells, but also in all kingdoms of
life, including bacteria (Kayingo et al., 2001), plants (Maurel
et al., 2008), and fungi (Pettersson et al., 2005). Forming pores

at the level of biological membranes, AQPs act as selective
channels allowing the water transportation (aquaporins) and
small molecules or solutes (aquaglyceroporins) (Agre et al., 1998)
(Figures 1A,B). In the great family of aquaporins constituted by
13 proteins, a newly group named unhortodox aquaporins has
been defined (Ishibashi et al., 2011). These last proteins are less
understood and, in part, differ from the other groups for their
structure and subcellular distribution. The widely distribution
of AQPs in cells and tissues has increased the scientific
interest toward their structural and functional characterization
contributing to strength the idea that the water permeability is
required for a variety of physiological processes. This observation
is based on the consideration that water constitutes the major
component of a living organism and that continuous exchange
of water takes place in almost all body-tissues.

Accordingly, many data demonstrate that AQPs show a role
in maintaining the homeostasis of many physiological processes
related to secretive and absorptive activities of several tissues,
such as kidney, salivary gland, lung, skin, sweat glands, and
intestine (Laforenza, 2012; Pelagalli et al., 2016b). Moreover,
these proteins participate in maintaining a constant water
homeostasis in whole organism as essential prerequisite for
their life. More recently, emerging evidence have confirmed that
other cellular processes are controlled by AQPs, including cell
adhesion, signaling, volume regulation and protein expression
(Kitchen et al., 2015).

Moreover, the ability of these channel proteins to regulate cell
volume, as well as cell migration and apoptosis, all related to
the inflammation process, makes them useful tools to investigate
their relevant role in physiological and pathological status.

AQUAPORINS AND INFLAMMATION

Immune system and host-pathogen communication work
together in host-pathogen interplay.

In particular, cells involved in inflammation can undergo
modifications of osmotic microenvironment causing an increase
in cell hydraulic permeability and size and thus, alterations
in cytoskeletal structure (Maidhof et al., 2014). In some cases,
weak bacterial stimuli can induce tissue impairment, but also
a more intense response and damage that results in a chronic
inflammation.

Many articles have highlighted the possible involvement
of AQPs in the development of inflammatory processes also
considering that several of them are expressed in cells of innate
and adaptive immunity (Ishibashi et al., 1998; Moon et al., 2004).
In particular, AQPs are involved in the phagocytic functions, and
also in specific processes related to immune cells (i.e., activation
and migration) (De Baey and Lanzavecchia, 2000; Jablonski et al.,
2004; Zhu et al., 2011; Rabolli et al., 2014).

Aquaporins and Phagocytic Functions of
Immune Cells
Cell volume and shape modifications of macrophages promptly
occur during phagosome development (Clarke et al., 2010; Tollis
et al., 2010), modulating water transport and volume regulation
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FIGURE 1 | Organization of aquaporins (AQPs). (A) AQPs are proteins structurally organized in monomers that assemble in a tetrameric structure in membranes to

form a pore. AQPs, as membrane channels, facilitate the transport of water and small neutral solutes across biological membranes of most living organisms

depending on the size of the pore. Several stimuli or aquaporin inhibiting drugs, can act closing these channels. (B) The aquaporin family is constituted by 13 water

channel proteins in mammals (AQP0–AQP12) subdivided into three classes: (i) aquaporins transporting exclusively water; (ii) aquaglyceroporins transporting not only

water but also small solutes, and (iii) unorthodox aquaporins with a yet unknown function, poor water permeability but permeable to other small uncharged solutes.

necessary for phagocytic cup formation. The participation of
AQP3 in phagosome formation has been proposed (Zhu et al.,
2011), postulating a mechanism similar to that observed in
immature human dendritic cells (De Baey and Lanzavecchia,
2000). This mechanism identifies the glycerol transport as a

key element for macrophage phagocytosis. Indeed, in a model
of bacterial peritonitis a greater mortality in AQP3-deficient
mice was observed respect to wild-type mice (Zhu et al.,
2011). In peritoneal macrophages obtained from AQP3(−/−)
mice, water and glycerol permeability was reduced compared
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to those obtained from AQP3(+/+) mice. Moreover, glycerol
supplementation partially recovered the ATP content and the
impairment of macrophage function in AQP3(−/−) mice. AQP3
was identified as a novel key element in macrophage immune
function, facilitating water and glycerol transportation, and its
subsequent participation in phagocytic and migration activity.
A crosstalk in glycerol and glucose metabolic pathways was
also evidenced in AQP3 effects. Similar data for glucose and
glycerol content modification were also observed in AQP3 (−/−)
keratinocytes (Hara-Chikuma and Verkman, 2008), identifying a
possible new role for glycerol in macrophage energy metabolism.

Recent evidence has indicated an innovative AQP9
role for bacteria (Pseudomonas aeruginosa)–macrophage
communication and for the sensing system in this process
(Holm et al., 2015). In particular, it has been demonstrated that
macrophages presenting AQP9 expression and infected by P.
aeruginosa undergomodification of AQP9, and subsequent water
fluxes, affect their shape and protrusive activity. These results
confirm the role of AQP9 in macrophages during infection,
clarifying how these proteins, participating as mediators to
relationship between bacteria and macrophages, can affect the
development of infection, inflammation, and the progression of
the disease.

Aquaporin Involvement in Migration of
Immune Cells
The first demonstration of AQPs involvement in cell migration
was reported by Loitto et al. (2002) indicating an impaired
neutrophil migration after AQP9 blockage. Subsequently, other
studies confirmed the AQP role in cell migration, showing
AQP1 and AQP4 localization at the leading edge in migrating
CHO cells and astroglial cells, respectively (Saadoun et al.,
2005a,b). Other data have largely demonstrated that several AQPs
facilitate migration of immune cells (Papadopoulos et al., 2008).
In particular, chemokine-dependent T cell migration requires
AQP3-mediated hydrogen peroxide uptake (Hara-Chikuma
et al., 2012), regulating downstream intracellular signaling in
cutaneous immune response (Miller et al., 2010). AQP3 is also
expressed in macrophages (Zhu et al., 2011) and is regulated
by several factors and conditions (TNFα, PPARγ, calcium, and
low pH) (Horie et al., 2009; Jiang et al., 2011). These results
demonstrate AQP3 involvement in the inflammatory process.

More recently, a study focusing on AQP1 has demonstrated
its effect on macrophage migration, suggesting that some
phenotypic and migratory modifications of these cells may be
regulated by this water channel that results crucial for the switch
of M0/M2 phenotype (Tyteca et al., 2015).

POTENTIAL ROLE OF AQUAPORINS IN
DIFFERENT MODELS OF INFLAMMATION

Potential Role of Aquaporins in Models of
Lung Injury and Inflammation
Numerous evidence clearly demonstrates that the mammalian
lung expresses at least three AQPs whose role in lung damage or
inflammation has been in part investigated (Table 1).

In particular, AQP1 is expressed in microvascular endothelia
and pneumocytes (Nielsen et al., 1993; Folkesson et al., 1994).
AQP4 and AQP5 were detected in airway and alveolar epithelial
cells, respectively (Nielsen et al., 1997) and their distribution
and physiological role has been reviewed in lung (Verkman
et al., 2000). Thereafter, Liu et al. (2007) evidenced AQP3
expression in healthy and cancer lung, demonstrating that this
AQP is extensively expressed in respiratory tract regulating
water homeostasis. AQP3 seem to be implicated into tumor
differentiation and processes related to clinical stage in lung
adenocarcinomas (Liu et al., 2007). On this regard, the specific
distribution of various AQPs in lung adenocarcinoma (AQP1,
AQP3, and AQP5) has suggested that these proteins could
be involved in different and distinct aspects of the cancerous
process. In particular: (1) AQP1 localized on lung capillaries
could be involved in the development of angiogenesis; (2)
AQP3 could participate in several regulatory pathways, while
(3) AQP5 could promote cell proliferation and tumor invasion
(Wang et al., 2015).

All the data available demonstrate an interesting contribution
given by lung AQPs in regulating fluid trafficking between the
air space and cellular, interstitial or vascular compartments. In
addition, evidence shows that expression of AQPs is modulated
by growth factors, inflammatory mediators, and osmotic stress in
the respiratory physiology (King et al., 1997; Borok et al., 1998;
Towne et al., 2000).

However, after pulmonary infection, numerous processes
altering the lung physiology occur (Peteranderl et al., 2017).
In particular, autocrine and/or paracrine mediators cause
several pathophysiological modifications of the alveolar–capillary
barrier and of epithelial ion channel and pump expression
altering vectorial ion gradient. Among these mediators, pro-
inflammatory cytokines (TGF-β, TNFα, interferons, IL-1β) are
released after infection by different bacteria (i.e., Streptococcus
pneumoniae, Klebsiella pneumoniae, orMycoplasma pneumonia)
or virus. These inflammatory players can induce edema
formation and reduce alveolar fluid clearance, modifying the
expression of: (i) epithelial Na,K-ATPase, (ii) epithelial ion
channels, and (iii) fibrosis membrane conductance regulator
(Peteranderl et al., 2017). This alteration can represent also the
result of altered gas exchange involved in the modulation of
the alveolar–capillary fluid homeostasis modulated by AQP5
and AQP4 (Musa-Aziz et al., 2009) or AQP1 (Al-Samir et al.,
2016).

Towne et al. (2000) demonstrated a marked and significant
reduction of AQPs (AQP1 and AQP5) in lung directly correlated
with an increase in tissue wet-to-dry weight ratios in a model
of mice infected with adenovirus. The reduction in AQP1 and
AQP5 expressions was noticed at sites distant from that of
infection, suggesting a humoral regulation of these AQPs. Albeit,
these data did not define the precise activity of AQP1 or AQP5
in infective process, they give an important contribution in the
field, confirming AQP involvement in the pathophysiological
processes of the respiratory tract (King et al., 2000).

Further data supports these findings showing that Th2
cytokines and IL-4, both involved in mucin gene expression,
are down-regulated in AQP5 knockout mouse (Karras et al.,
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TABLE 1 | Summary of studies illustrating the possible involvement of AQPs in animal experimental models of inflammatory-based diseases.

Animal

species

Inflammation

type

Method for induction AQP

analyzed

Methods adopted for the

AQPs determination

References

Rat lung injury LPS AQP1 IHC, WB Li et al., 2007

Rat lung injury Ventilation AQP1, AQP5 mRNA expression, WB Fabregat et al., 2016

Rat lung injury Hyperoxia AQP5 IHC, mRNA expression Tan et al., 2006

Mouse lung injury LPS (5mg/kg);

HCl (0.1N); Ventilation

AQP1, AQP4, AQP5,

AQP9

RT-PCR, WB Vassiliou et al., 2017

Mouse lung injury LPS AQP1, AQP3, AQP4,

AQP5

IHC, RT-PCR, WB Li et al., 2008

Rat brain edema Hypoxia AQP4 mRNA expression, WB Song et al., 2016

Rat neuromyelitis

optica

IgGAQP4+ AQP4 IHC, TEM, WB Marignier et al., 2016

Mouse Parkinson

disease

MPTP/probenecid PD models AQP4 IHC, mRNA expression, WB,

biochemical assays

Sun et al., 2016

Rat Colitis TNBS (2.5 mg/ml in 50% methanol) (7 days) AQP3, AQP8 IHC, mRNA expression, WB Zhao et al., 2014

Mouse Colitis TNBS, DSS, CD4CD45RB transfer AQP8 microarrays Te Velde et al., 2008

Mouse Colitis DSS (2.5%) drinking water (7 days) AQP4, AQP7, AQP8

(colon)

IHC, mRNA expression, WB Hardin et al., 2004

Mouse Colitis DSS (4%) drinking water (8 days) AQP4 (caecum) RT-PCR, microarray-IF Hansen et al., 2009

Mouse Colitis DSS (6%) drinking water (4 days) AQP3 IHC, WB, biochemical assays Thiagarajah et al., 2007

Mouse Diarrhea 5-FU (50 mg/kg) (4 days) AQP4, AQP8 RT-PCR, WB Sakai et al., 2013

Mouse Diarrhea MgSO4 AQP2, AQP3 IHC, WB Liu et al., 2014

Rat Osteoarthritis Anterior cruciate ligament and medial

collateral ligament resection

AQP1 mRNA expression, RT-PCR, Gao et al., 2011

Rat Osteoarthritis Meniscus resection AQP1 IHC, RT-PCR, biochemical

assays

Fujitsuka et al., 2015

DSS, Dextran sodium sulfate; LPS, lipopolysaccharide; TNBS, 2,4,6-trinitrobenzene sulphonic acid; 5-FU, 5-floruracil; IHC, Immunohistochemistry; MPTP, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine; PD, Parkinson disease; RT-PCR, real time-PCR; TEM, transmission electron microscopy; WB, western blotting.

2007), thus suggesting the contribution of this channel protein
in effective Th2-driven responses to allergens. More recently, the
relationship between the AQP5 deletion and elevated IFN-α and
IL-2 production was evidenced, indicating that this protein acts
in the shift from Th2 toward Th1 response in a murine model
of mucous hyperproduction during antigen-induced airway
inflammation (Shen et al., 2011). It is well-known that Th2
cytokines operate in these pathologies with different mechanisms
such as eosinophil recruitment, airway hyper-responsiveness and
mucus hypersecretion (Tomkinson et al., 2001; Walter et al.,
2001).

More recently, AQPs were described as potential downstream

targets of altered gene expression in several murine models

of induced asthma (by allergen ovalbumin or IL-13) (Krane

et al., 2009). AQP3 and AQP5 gene expressions appear as

quite early modification in the lung response to mIL-13
induced airway constriction. Indeed, preclinical data showed that
AQP3 potentiates allergic airway inflammation in OVA-induced
asthma (Ikezoe et al., 2016). A significant reduction of airway
inflammation observed in AQP3 deficient mice, respect to wild-
type mice, was associated to in vivo and in vitro results, showing
that an increase of chemokines (i.e., CCL24 and CCL22) was
induced by AQP3 through a control mechanism of the cellular
H2O2 production in M2 polarized alveolar macrophages (Ikezoe
et al., 2016).

Involvement of Aquaporins in
Neuroinflammation
Accumulating evidence in humans and animals supports
physiological and pathological role of AQPs expression and
function in the nervous system (Table 1). The potential
contribute of these channel proteins in the neuroinflammation
has been widely investigated, examining several diseases caused
by a failure of innate immunity, such as neuromyelitis optica
(NMO) andmultiple sclerosis (Oklinski et al., 2016). The channel
protein AQP4 is expressed in astrocytes in CNS and regulates
the brain water flux, neuroexcitation, and astrocyte migration
(Verkman et al., 2006). In fact, lesions observed in NMO
patients show that specific autoantibodies targeting AQP4 are
expressed on astrocytic membrane and thus, alter cell functions
through different mechanisms. Among these, activation of
complement, cellular cytotoxicity mediated by an antibody-
dependent mechanism, or both mechanisms were evidenced
(Bennett et al., 2009; Bradl et al., 2009). AQP4 represents a
specific target for NMO-IgG (Fukuda and Badaut, 2012; Hinson
et al., 2012). Moreover, it has been clearly established that
APQ4 is involved in neuroinflammation (i.e., water intoxication
and ischemic stroke), evidencing a reduction of brain edema
and swelling of pericapillary astrocytic foot processes in AQP4-
deficient mice (Manley et al., 2000). These results indicate a key
role for AQP4 in controlling brain water transport, and propose
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that AQP4 blockage could be represent a new therapeutic strategy
for ameliorate conditions of cerebral edema at the basis of several
brain pathologies.

Papadopoulos et al. (2008) reviewed evidence that AQPs
facilitate cell migration both in vitro and in vivo in a variety
of cell types such as endothelial cells and astrocytes. In
particular, AQP1 deletion diminishes endothelial cell migration,
limiting tumor angiogenesis and growth, on the other hand,
AQP1-expressing tumor cells have enhanced local infiltration
and metastatic effects. AQP4 deletion reduces the migration
of reactive astrocytes, damaging glial scarring after brain
injury. AQPs modulating cell migration can be implicated
in several processes such as angiogenesis, tumor metastasis,
wound healing, glial scarring, and other events requiring
prompt cell movement. The mechanisms by which AQPs act,
is probably related to actin polymerization/depolymerization
and variation of transmembrane ionic fluxes and osmolality
(Papadopoulos et al., 2004). AQPs could thus increase osmotic
water flow in cell protrusions of the plasma membrane that
shape during cell migration. Indication for involvement of AQPs
in a similar process, i.e., secretory vesicle exocytosis, has been
previously described (Cho et al., 2002; Sugiya and Matsuki,
2006).

Pro-inflammatory role for AQP4 was confirmed by Li et al.
(2011) demonstrating that LPS, administered by intracerebral
injection, induced greater neuroinflammation in wild-type than
in AQP4-knockout mice, and cytokine (TNFα and IL-6)
production was reduced in astrocyte cultures obtained from
AQP4-knockout mice. These data suggested that astrocyte
swelling and cytokine release are AQP4-dependent in this cell
type. In this way AQP4 is involved in the communication
between microglia and astrocyte and their functions (Figure 2;
Ikeshima-Kataoka, 2016). For all these reasons, the decrease in
AQP4 water transport or AQP inhibitors could play a protective
role in neuroinflammation, modulating brain edema and cell
migration.

Aquaporins in Bowel Diseases
AQPs expression and their relevant role in physiological and
pathological processes have been evidenced in gastrointestinal
tract of human and mammalian species (Laforenza, 2012;
Pelagalli et al., 2016b). Gut involvement of AQPs was determined
in many mechanisms that mediate water transport (intestinal
permeability, and fluid secretion/absorption). Regarding AQPs
regulation, it is known that different substances (hormones and
dietary components) act modifying their expression and thus
alter fluid homeostasis and several local mechanisms (De Luca
et al., 2015; Squillacioti et al., 2015; Pelagalli et al., 2016a,b). In
this regulation, a role for cAMP was also addressed (Hamabata
et al., 2002).

Inflammatory bowel diseases (IBDs) are inflammatory
relapsing diseases of gastrointestinal tract with a chronic
aberrant stimulation of immune system, gut inflammation and
leakage of fluid, solutes, and lipids in bowel mucosa, involving
gut microflora (Mayer, 2010). IBDs have been also characterized
for a dysregulation in electrolyte and water transport with
resultant alteration of permeability and diarrhea (Dunlop et al.,

2006; Zhou et al., 2009; Martínez et al., 2012), for this reason
the relationship between colitis and AQPs have been extensively
investigated (Table 1). In particular, the remarkable increase of
intestinal membrane permeability observed in these diseases
has suggested the participation of AQPs (Figure 3). Moreover,
it is also well-known that cytokines, as important signaling
molecules of the intestinal immune system, are correlated to
the severity of inflammation (Kim, 2011; Strober and Fuss,
2011). Among them, TNFα and IL-1β play a pivotal role in gut
inflammatory processes directly, influencing intestinal epithelial
tissue behaving as a frontline between genetic, environmental,
and immunological factors (Hering et al., 2012; Keita and
Soderholm, 2012).

In 2007, Guttman et al. evidenced for the first time the
direct correlation between AQPs and diarrhea, defining AQP
contribution to diarrhea caused by attaching and effacing bacteria
(i.e., enterohemorrhagic Escherichia coli and enteropathogenic E.
coli) pathogenesis (Guttman et al., 2007). Very recently, Chao and
Zhang (2017) evidenced a possible relationship between AQPs
(AQP1, AQP3 and AQP8) expression and NF-κB pathway in
a model of IBD. Numerous findings indicate NF-κB pathway
as the main regulator of several processes (pro-inflammatory
cytokine production, leukocyte recruitment, or cell survival),
and its involvement in relation to AQPs (Ito et al., 2006;
Hasler et al., 2008). Regarding the possible link between TNFα
and AQPs, it has been evidenced that TNFα acts modulating
AQP3 expression (down- or up-regulation), according to the cell
type involved, through different signaling pathways (Tancharoen
et al., 2008; Horie et al., 2009).More recently, it was demonstrated
that AQP3 downregulation is mediated by the inhibition of
constitutive transcriptional activity at the AQP3 promoter in HT-
29 cells (Peplowski et al., 2017). In another cell line (CMT93)
(Dicay et al., 2015) demonstrated that IFNγ limits epithelial
AQP1 expression through the activation JAK/STAT3 pathway.
In addition, the authors provided data that demonstrated a
role for IRF-2 in the basal expression of AQP1, and that
IFNγ was able to regulate AQP1 expression (Dicay et al.,
2015).

Colitis, as gut IL-dependent inflammation, is mediated by
a Th1 cell response and AQPs affect it, interfering in the
proliferative activities of colon epithelial cells. In AQP3 null
mice, dextran sodium sulfate (DSS) induced severe colitis,
characterized also by hemorrhage in colon, marked epithelial
cell loss and death after 3 days, while wild-type mice showed
remarkably less severe colitis, surviving to >8 days (Thiagarajah
et al., 2007). Moreover, in AQP3 null mice, cell proliferation
was greatly reduced. A new role for AQP3 in enterocyte
proliferation was likely related to its glycerol-transporting
function. In fact, oral glycerol administration largely enhanced
survival of AQP3 null mice and reduced the severity of
colitis. These data identify AQP3 deficiency as the cause of a
reduced AQP3-facilitated glycerol transport, compromising cell
metabolism.

Recently, a detailed study focused on the possible role of
AQPs in both severe IBDs (Crohn’s disease and ulcerative colitis),
demonstrating a different distribution of these channel proteins
in the gut and the existence of a direct relationship between
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FIGURE 2 | AQP4 involvement in the interplay between astrocytes and microglia during neuroinflammation and brain edema. Microglia activation by osmotic stress

induces cytokine release affecting astrocyte activation by the AQP4 up-regulation. A bidirectional communication between astrocytes and microglia can be supposed.

FIGURE 3 | Role of AQPs on intestinal barrier in physiological or inflammatory conditions. In physiological condition an adequate intestinal permeability is present in

gut, with a functional epithelial cell proliferation and turnover, characterized by an adequate stress response and prompt epithelial restitution after injury. In

inflammatory condition (i.e., colitis or diarrhea) altered stress response is evident, with associated to a reduction of epithelial restitution after injury and dysregulation of

electrolytes and water transport mediated by AQPs.

intestine inflammation and physiological water/solute trafficking
and regulation (Ricanek et al., 2015).

Aquaporins and Bone and Cartilage
Diseases
Recently, data on several inflammatory diseases affecting bone
and cartilage has involved AQPs. It is well-known that the
principal pathological phenomena associated with rheumatoid
arthritis (RA) are characterized by enormously elevated levels

of inflammatory cytokines secreted by activated B and T
cells causing damage of the cartilage and bone. At the
same time, different AQPs have been found in cartilage
cells where they regulate the traffic of ions and molecules
(Mobasheri et al., 2004) and thus, regulate the cartilage
physiology.

In particular, Nagahara et al. (2010) evidenced that in
synovial tissues from patients with osteoarthritis (OA) and
RA, TNFα could regulate either AQP9 mRNA and protein
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expression (Nagahara et al., 2010). This result has suggested a
particular role for cytokines that, altering the activity of glucose
transporters, important for chondrocyte metabolism (Mobasheri
et al., 2002; Richardson et al., 2003), could influence AQP
function. According to this mechanism, AQP1 on chondrocyte
membrane could act as regulator of metabolic or extracellular
matrix water (Trujillo et al., 2004), suggesting that chondrocytes
might respond to changes in their ionic and osmotic environment
modifying volume regulatory behavior. The direct involvement
of AQPs in the pathogenesis of this disease was investigated in
a model of OA cartilage evaluating AQP1 mRNA by RT-PCR
and demonstrating that up-regulation of AQP1 was related to the
chondrocyte apoptosis (Table 1) (Gao et al., 2011).

Recently, for the first time, Cai et al. (2017), identified AQP4
as potential responsible of RA pathogenesis in adjuvant-induced
arthritis (AIA) rat model. The results showed that the reduced
mRNA levels of collagen type II and aggrecan, observed in
cultured AIA chondrocytes, were reverted by acetazolamide
treatment. AQP4 inhibition obtained with acetazolamide
promoted extra cellular matrix production of AIA chondrocytes
in vitro (Cai et al., 2017).

INFLAMMATORY DISEASES IN DOMESTIC
ANIMAL SPECIES: THE INVOLVEMENT OF
AQUAPORINS

In the recent last years, many studies have examined
inflammatory diseases in domestic animal species, albeit
available data are limited considering several limitations
for ethical problem in these species respect to laboratory
animals. However, evidence indicate that animals as well as
humans can suffer of several inflammatory diseases whose
possible mechanisms are not always well-defined. Even
if, different diseases have been investigated in domestic
species, few are the studies regarding the possible link
between AQPs and inflammation. The most investigated
species is the dog most likely because it is very similar to
humans.

In particular, inflammation-based diseases, in organs and

systems, like gut, central nervous system, and lung have been

investigated in dog species with the perspective to clarify their

pathophysiology finalized to adequate therapeutic protocols. On

this regard Cerquetella et al., 2010) studied some particular

aspects regarding dysbiosis networks in dog IBDs, evidencing

differences and similarities with humans. The results of this
study providing new important contributes for translational
medicine require further development of scientific research
for understanding differences between dog and human in
some bacteria species. In addition, an interesting study showed
an increase of AQP4 and IL6 levels in cerebrospinal fluid
(CSF) of dogs affected by idiopathic communicating internal
hydrocephalus and a reduction of these proteins after ventriculo-
peritoneal shunting (Schmidt et al., 2016). In addition, a study
on acute respiratory distress syndrome in beagle dogs showed

a clear inflammatory process characterized by TNFα increase
that can facilitate the secretion of cytokines, such as IL-1A,
IL-6, and IL-10 (Zhao et al., 2012). Moreover, the decreased
AQP1 and AQP5 expression observed as possible consequence
of pulmonary capillary membrane barrier damage suggests their
possible involvement in the regulation of these fluid trafficking
mechanisms along this membrane.

Moreover, in avian species AQPs expression has been
investigated at level of nasal gland and its fluid secretion. In
particular, AQP1 and AQP5 seem to play a role in modulating
nasal fluid secretion that it is always hypertonic, differently from
vertebrates. (Müller et al., 2006).

CONCLUSIONS

Described evidence suggest that AQPs are not only simple
transporting proteins, since their dysregulation occurs in
immune and epithelial cells in response to infectious and
inflammatory stimuli.

The discovery of AQPs involvement in inflammation
certainly can contribute to the knowledge of the complex
mechanisms regulating host-pathogen communications.
Overall, it seems clear that AQPs are new possible candidates
as therapeutic potential target in modulating edema, cell
migration and, inflammatory cytokines and mediators
release.

Future studies are needed to better understand the molecular
mechanisms driving osmotic stress-induced inflammatory
response and to clarify the unravel signaling pathways involved
in the regulation of AQPs functions. The acquisition of these
basic skills could help to clarify the importance of osmotic
imbalances not only in inflammation and inflammation
based-diseases but also in cancer.
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