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Computational models of cardiac electrophysiology have a long history in basic science

applications and device design and evaluation, but have significant potential for clinical

applications in all areas of cardiovascular medicine, including functional imaging and

mapping, drug safety evaluation, disease diagnosis, patient selection, and therapy

optimisation or personalisation. For all stakeholders to be confident in model-based

clinical decisions, cardiac electrophysiological (CEP) models must be demonstrated to

be trustworthy and reliable. Credibility, that is, the belief in the predictive capability, of a

computational model is primarily established by performing validation, in which model

predictions are compared to experimental or clinical data. However, there are numerous

challenges to performing validation for highly complex multi-scale physiological models

such as CEP models. As a result, credibility of CEP model predictions is usually

founded upon a wide range of distinct factors, including various types of validation

results, underlying theory, evidence supportingmodel assumptions, evidence frommodel

calibration, all at a variety of scales from ion channel to cell to organ. Consequently,

it is often unclear, or a matter for debate, the extent to which a CEP model can be

trusted for a given application. The aim of this article is to clarify potential rationale

for the trustworthiness of CEP models by reviewing evidence that has been (or could

be) presented to support their credibility. We specifically address the complexity and

multi-scale nature of CEP models which makes traditional model evaluation difficult. In

addition, we make explicit some of the credibility justification that we believe is implicitly

embedded in the CEP modeling literature. Overall, we provide a fresh perspective to

CEP model credibility, and build a depiction and categorisation of the wide-ranging body

of credibility evidence for CEP models. This paper also represents a step toward the

extension of model evaluation methodologies that are currently being developed by the

medical device community, to physiological models.
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INTRODUCTION

One of the most remarkable properties of the natural world is that is it can be understood
using mathematical equations—a property described by Eugene Wigner as “the unreasonable
effectiveness of mathematics in the natural sciences.” Once the appropriate mathematical
groundwork had been developed, it became possible to describe intricate andmulti-faceted physical
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phenomena using relatively simple mathematical equations,
e.g., fluid flow, deformation of solid bodies, electromagnetic
wave propagation, and phenomena at widely different scales
from atoms to galaxies. Computational models, which are
mathematical models solved bymeans of a computer, can be used
to solve governing equations underlying complex systems and
simulate their behavior. The remarkable predictive capability of
computational models based on the fundamental laws of physics
has enabled such models to be routinely used in a multitude of
engineering applications.

Biology, in contrast to physics, is less easily characterized by
simple or small numbers of mathematical equations. Primarily,
this is due to the complexity and variability in biological processes
which makes them inherently non-linear, multi-disciplinary and
multi-scale.While computational models of human physiological
processes have been developed and refined for decades, they
are not as predictive as computational models in engineering,
and likely never will be. Nevertheless, biomedical computational
models have without doubt the potential for revolutionizing
medicine just as physics-based models have forever changed
research, design, and evaluation in engineering.

One field which holds considerable promise for clinical
applications is cardiac modeling, owing to the maturity of the
field (Trayanova, 2011) (Winslow et al., 2012) and the fact
that heart disease is the leading cause of the death in the
industrialized world. Computational cardiacmodels can simulate
the electrophysiology and/or mechanical deformation of cardiac
myocytes, tissue, or the whole heart. This paper is focused on
cardiac electrophysiological (CEP) models. Figure 1 illustrates
the typical components to a CEP model, which are usually
multi-scale, containing as a fundamental unit a cellular model
of myocyte EP activity. Such “cell models,” of which over a 100
have been published of varying complexity and for a range of
mammalian species, are typically sets of ordinary differential
equations (ODEs), and predict the action potential (AP) and
many other cellular and sub-cellular quantities. Notable recent
human cell models include (Iyer et al., 2004; ten Tusscher et al.,
2004; ten Tusscher and Panfilov, 2006; Grandi et al., 2010) and
(O’Hara et al., 2011). For reviews of single cell models, see (Fink
et al., 2011; Noble, 2011; Noble et al., 2012). Cell models are often
composed of multiple sub-models, for different ion channels,
pumps and exchangers or representing subcellular processes such
as calcium handling. These sub-models are usually also systems
of ODEs. To simulate electrical wave propagation, including
arrhythmic activity, in tissue or the whole heart, cell models are
coupled to partial differential equations (PDEs) known as the
“bidomain” or “monodomain” equations (Clayton et al., 2011;
Franzone et al., 2014; Lopez-Perez et al., 2015); see Figure 1.
A further extension is to model the heart embedded in the
torso, which allows for simulation of the electrocardiogram
(ECG) (Richards et al., 2013; Zemzemi et al., 2013). In recent
years various imaging, modeling and computational advances
have enabled patient-specific heart models to be generated using
clinical data (see e.g., Smith et al., 2011; Chabiniok et al., 2016 for
discussions). Anatomical personalisation using clinical imaging
data is most common (e.g., Arevalo et al., 2016), although
personalisation of functional (Chen et al., 2016) or material

(Aguado-Sierra et al., 2011) parameters using clinical data has
also been performed. Patient-specificmodels can be used tomake
patient-specific clinical predictions and represent an important
step forward toward precision medicine.

All types of CEP model—ion channel or subcellular models,
cell models, tissue, and organ-level models—have proved
to be powerful tools complementing experiment in basic
cardiac electrophysiological research (Plank et al., 2009), for
understanding mechanisms behind both normal rhythm and
cardiac arrhythmias. However, CEP models also have potential
applications in all aspects of cardiovascular medicine, including
device design and evaluation, functional imaging and mapping,
drug safety evaluation, disease diagnosis, patient selection, and
therapy optimisation or personalisation. There are numerous
reviews covering the current and potential applications of CEP
models; (see e.g., Trayanova and Boyle, 2014; Davies et al., 2016;
Niederer and Smith, 2016). However, one aspect of the modeling
which has been inadequately covered in the current cardiac
modeling literature is rationale for when and why cardiac models
can be trusted.

The credibility of a computational model has been defined
as the belief in the predictive capability of the model for a given
intended use (ASME, 2017) or the willingness of people to trust
a model’s predictions (Patterson and Whelan, 2017). Typically,
credibility of a computational model is founded upon validation

results. Validation is the process of testing a model by comparing
model predictions to experimental or clinical data. (A more
precise definition is provided below). However, other types of
evidence (non-validation evidence) can also be used to argue
that a model is sufficiently credible for its intended use. As we
explain below, the credibility of CEP models is typically founded
upon a wide range of factors, and consequently it can be very
unclear, or a matter for debate, the extent to which a cardiac
model can be trusted for a given application. In fact, many papers
in the literature leave implicit why, and to what extent, the model
predictions can be considered credible.

The aim of this article is to clarify and discuss reasons
that could support the trustworthiness of CEP models. We
will do so by reviewing different types of evidence that have
been presented to support CEP model credibility, or are
otherwise relevant to the assessment of credibility, hereafter
referred to as CEP model credibility evidence. The review
will include: (i) discussion of common practice regarding CEP
model validation; (ii) examples of strategies taken for performing
CEP model validation; and (iii) discussion of other credibility
evidence for CEPmodels, including historical evidence that often
implicitly supports simulation studies. The review will not aim
to evaluate specific cardiac models or in any way judge the
quality of any validation results or other evidence. Such decisions
require difficult judgements based on careful consideration of
all available evidence, in the context of the precise application
that model is to be used for (including assessment of the risks
associated with inaccurate predictions NASA, 2009) and are
therefore beyond the scope of this review. In other words, we
are not claiming or implying that any CEP model “is” or “is not
trustworthy”; nor do we argue that any modeling approach or
process is or is not trustworthy. Instead, our focus will be on types
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FIGURE 1 | Components of a multiscale cardiac electrophysiology (CEP) model. (Left): equations and sample output for a Hodgkin-Huxley formulation of the rapid

sodium current. Multiple such sub-cellular models can be used to define a cell model. (Center): schematic of sub-cellular processes included in a hypothetical cell

model, together with the differential equation governing the transmembrane voltage, and sample output. Cell models differ in their formulation of the ionic current Iion
and can be made up of dozens of ordinary differential equations. (Right): Cell models can be incorporated into the bidomain equations and solved on a computational

mesh of the heart [top right: high-resolution rabbit biventricular mesh of Bishop et al. (2010)], to simulate normal or arrhythmic cardiac activity (bottom right).

of evidence that could, in principle, support the trustworthiness
of a model for a given intended use.

In previous work we advocated that engineering model
assessment approaches known as verification, validation, and
uncertainty quantification (VVUQ) could be important in the
advancement of cardiac CEP modeling (Pathmanathan and
Gray, 2013) and explored verification (Pathmanathan and Gray,
2014) and uncertainty quantification (UQ) for CEP models
(Pathmanathan et al., 2015). This paper continues this line of
work by focusing on validation-related activities. Only activities
related to comparison of the model to the real world are
within the scope of this review. Therefore, activities such
as code verification, calculation verification, and sensitivity
analysis, while important for overall assessment of credibility and
receiving increasing interest in the field (Sobie, 2009; Niederer
et al., 2011; Chang et al., 2015) are outside the scope of this
paper. Additionally, while uncertainty quantification is related
to validation as will be described in section Why Trust a
Computational Model?, research on the process of performing
uncertainty quantification with CEP models is also outside the
scope of the review, though this is also receiving increasing recent
interest in CEP; (see e.g., Konukoglu et al., 2011; Johnstone et al.,
2016; Chang et al., 2017).

In fact, there is enormous current interest across
computational science in methods and best practices for
demonstrating or evaluating the reliability of computational
models (National Research Council, 2012). The medical device
community is collaborating on a Standard for assessing
credibility of computational models for medical device
applications (ASME, 2017). However, this Standard and related

medical device Guidances (Food and Drug Administration,
2016) are motivated by traditional “physics-based” engineering
models in biomedical applications [e.g., models based on
solid mechanics (Pelton et al., 2008), fluid dynamics (Stewart
et al., 2012), or electromagnetism (Angelone et al., 2010)].
The relevance of such approaches to the evaluation of complex
physiological models such as CEPmodels is limited. In particular,
while both (Food and Drug Administration, 2016) and (ASME,
2017) address validation, they do not account for the possibility
of multiple sources of different types of validation evidence, or
other evidence which could support credibility. In this paper, we
demonstrate how a large body of evidence will generally support
a CEP model. By exposing and discussing this wide range of
potential credibility evidence for CEP models, this paper is a
necessary first step toward the extension of the above approaches
to cardiac and other physiological models.

The paper is organized as follows. In section Why Trust a
Computational Model? we categorize and discuss different types
of credibility evidence, and discuss validation in detail. Section
Credibility of CEPModels at Different Spatial Scales then reviews
credibility evidence for CEP models organized by spatial scale.
Section Discussion summarizes and discusses our conclusions.

WHY TRUST A COMPUTATIONAL MODEL?

Figure 2 provides an overview of the concepts discussed
throughout this section. Various types of rationale could be
used to argue for the credibility of a computational model. The
following are three distinct categories of evidence that could
support some level of confidence in a model:
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FIGURE 2 | Illustration of how a multiscale CEP model may be supported by multiple sources of credibility evidence (that is, evidence relevant when assessing the

credibility of the model), taken from model evaluation at multiple scales. The overall model (i.e., organ-level model), the underlying cell models (here it is assumed that

the organ-level model incorporates two different cell models, one for epicardial tissue, one for endocardial), and all underlying sub-cellular models may all be

supported by the different types of evidence presented in the right of the figure. See section Why Trust a Computational Model? for full discussion.

Category 1: Evidence related to the validity of assumptions

underlying the model governing equations, together with
evidence related to the accuracy/fidelity of model parameter

values and other inputs. These are grouped together because
if the equations are considered appropriate, but there is
no confidence that the parameters are accurate, then there
will be little confidence in model predictions, and vice
versa.

Category 2: Calibration evidence. Calibration is the process
of tuning, fitting or optimizing parameters in a model so that the
model results match experimental or clinical data. Calibration
is primarily performed to determine model parameter values
that cannot be directly measured. However, if the results from
calibration demonstrate a good match between model and the
experimental/clinical data, the results could potentially also be
used as evidence for credibility of the model.

Category 3: Evidence generated from testing the predictive
capability of the completed model. This includes validation

evidence, that is, comparison of model predictions to
independent real-world data not used in the construction
of the model (Roache, 2009). Validation is discussed in detail
later in this section.

These are distinct types of evidence and may provide very
different levels of confidence in a model. The first category is
based on model equations, assumptions and parameter values,
but not on actual model outputs or results, with no actual
testing of the model. This category includes historical evidence
supporting the governing equations that were used in the model.

It also includes evidence regarding the quality of data used to
determine model parameters. The second category is based on
comparing model outputs with experimental/clinical data, but
allows for model parameters to be altered for the model to
match the data. Calibration results are regularly used, either
implicitly and explicitly, as evidence for credibility of biological
computational models. If a model’s parameters can be chosen so
that the model reproduces certain experimental data, this ability
to fit the data or to reproduce phenomena could be used in
support of the model—especially when a complex phenomenon
is reproduced using a model with only a few parameters. The
last category—validation and related evidence—is obviously the
strongest test of the model: it assumes the model has been
completely defined and then its ability to reproduce the real world
is tested.

For many applications—in particular the basic science
applications of hypothesis generation and mechanistic insight—
use of a model that has no supporting validation evidence may
be perfectly appropriate. Mathematical models in biology can be
thought of a means in which existing knowledge or hypotheses
are integrated (Brodland, 2015), in which case running a
simulation is simply an efficient means of determining the
logical consequences of those knowledge/hypotheses, impossible
through mental deduction alone for complex systems. This is
one of the reasons why mathematical modeling has proven
a successful complement to experiments in understanding
biological processes (Noble, 2011). However, when a model
is to be used in decision-making, and in particular for

Frontiers in Physiology | www.frontiersin.org 4 February 2018 | Volume 9 | Article 106

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pathmanathan and Gray Validation of Cardiac Electrophysiological Models

high-risk applications such as safety-critical clinical applications,
validation becomes very important. (Carusi et al., 2012) provide
a discussion on the meaning of CEP models as representations.
Patterson and Whelan (2017) provide an excellent general
discussion on models as representations vs. as predictive tools,
and propose a high-level framework for deciding how to evaluate
models along this spectrum.

Validation
Validation has been described as “the assessment of the accuracy
of a computational simulation by comparison with experimental
data” (Oberkampf et al., 2004). One definition initially proposed
by the Department of Defense (DoD) and commonly used by
the engineering community and elsewhere (Oberkampf et al.,
2004; Roache, 2009; National Research Council, 2012), including
increasingly within the medical devices community (Food and
Drug Administration, 2016), (ASME, 2017), is: “the process
of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended
uses of the model.” This definition emphasizes that the validation
process is dependent on the specific “intended use” of the model,
also referred to as the “model application” or the “context of
use” (COU). (Roache, 2009) provide a good discussion of the
DoD definition of validation, and explains how many different
interpretations of it are made even within the engineering
community. Moreover, there is no inter-disciplinary consensus
on a precise definition of validation, and different communities
may have very different understandings of what constitutes
model validation. (Bellocchi et al., 2010) list 20 definitions of
model validation proposed between 1960 and 2010. (Eddy et al.,
2012) describe a categorisation of validation used in the health
economics and outcomes community. (Patterson and Whelan,
2017) describe a broad concept of validation of biological models,
which includes but is more expansive than the engineering/DoD
understanding of validation. (Viceconti, 2011) refer to model
“falsification,” rather than validation, based on the contention
that models can only be invalidated (falsified). One common
feature ofmost of the different interpretations of validation is that
validation must involve new data not used in the construction of
the model, i.e., “calibration is not validation” (Roache, 2009).

The DoD definition arguably presents a contradiction
regarding validation of CEP models—especially cellular
models—because they are typically developed as general-

purpose models, i.e., without a specific COU in mind. When
novel cell models are published, predictions of model outputs
and derived quantities—for example, action potential shape,
action potential duration (APD) restitution, ionic concentration
transients and others—are usually compared to experimental
data. This arguably does not constitute validation according
to the DoD definition since no COU (intended use) has been
prescribed. Incidentally, this could be considered a limitation
of the DoD definition; see (Roache, 2009) for a discussion.
Note though that regardless of the definition of validation, it
is vital to recognize the importance of the COU in evaluation
of a computational model. In particular, the COU must be
specified for the “final” evaluation of a model, and any claim
that a general-purpose model is a “validated model” cannot

be justified, since it is the COU that determines what level
of agreement between model and experiment can be deemed
acceptable (Roache, 2009; National Research Council, 2012).

To distinguish between different types of evidence, we
introduce the terminology general validation evidence to
describe scientific evidence obtained by comparing model
predictions with real world data when no particular COU
has been specified. This could also have been called “baseline
validation.” Examples of general validation for CEP models
include initial validation of a novel general-purpose cell model
(discussed in detail in section Cell Models), general testing vs.
experimental/clinical data of previously published cell models
(regularly carried out in the cardiac modeling community), and
the comparison against data of activation patterns predicted
by general-purpose ventricular, atrial or whole-heart models
(discussed in section Organ-Level Models). There is almost
unlimited scope for such evaluation, since modern CEP cell
models are very complex, and therefore there is an ever-growing
volume of literature incorporating general validation of CEP
models.

We define COU-driven validation evidence using the DoD
definition, as scientific evidence obtained by comparing model
predictions with real world data for the purposes of evaluating
the predictive capability of the model for a specific, prescribed,
application (COU) of the model. A simple example of this would
be comparing APDs of a model to experimental values, when
the COU is prediction of drug effects on APD. Another example
is comparison of whole-heart model predictions of number
of phase singularities during ventricular fibrillation, against
clinical data, when the COU is to use the model to understand
mechanisms behind ventricular fibrillation (see section Organ-
Level Models). We include in this category validation of model-
derived quantities, including: drug pro-arrhythmic risk indices
(see sections Cell Models and Organ-Level Models); sudden
cardiac death (SCD) risk indices (see section Organ-Level
Models); and ablation targets (see section Organ-Level Models).

Note that a terminology complication can arise when
considering validation of patient-specific models, which are
often generated using a workflow that may be mostly or fully
automated. One could distinguish between validation of the
simulation software only, and validation of model predictions
using the full workflow; there is therefore a potential for different
interpretations of what constitutes “model validation” in this
context. In this paper, we will include validation of the full
workflow (for example, evaluation of the predictive ability of a
workflow that takes in patient imaging data and outputs a clinical
prediction) within our broad interpretation of model validation.

Comparator, Quantities of Interest, and
Method of Comparison
Validation involves comparison of model predictions with real
world data of some form. (Note that comparison against
results of a different computational model is generally not
considered validation, but see Roache, 2009 for a discussion).
The comparator is defined as the source of the real world data.
For CEP models this is usually experimental or clinical data.
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Important aspects of experimental comparators in CEP model
validation include species, experimental conditions including
temperature, and whether the data is historical (taken from
the literature) or obtained from new experiments performed
for the purpose of model validation. Important aspects of
clinical comparators include patient demographics, patient
cardiac myopathies, and co-morbidities. For patient specific
CEP models that make patient specific clinical predictions, the
validation comparator has to be clinical data taken from the
same patient (distinct to the data used for personalisation of the
model). Regardless of whether the comparator is experimental or
clinical data, there are often significant challenges to obtaining
high quality data, especially in vivo data under physiological
conditions, which can impose severe constraints on the ability
to perform high quality validation. These experimental/clinical
challenges are covered elsewhere in the CEP literature, and
therefore will not be a main focus of the present review.

Another important aspect of validation is which outputs
of the model, or derived quantities—here referred to as
quantities of interest (QOIs)—are compared to the real-
world data. Commonly validated QOIs for cell models include
transmembrane voltage and the APD restitution curve. For
whole-heart models, validation QOIs can be global (e.g., the
ECG) or local (e.g., activation patterns). Validation using global
QOIs only provides indirect evidence on the credibility of local
QOIs.

There are various possibilities for themethod of comparison

between the model and comparator. (Oberkampf et al., 2004)
provide a good introduction to this topic; here we only provide a
very brief overview. The comparison can be qualitative (often the
case in physiological modeling) or quantitative. If quantitative,
the comparison could take into account experimental error,
model uncertainty, both, or neither. Model uncertainty is
accounted for by performing uncertainty quantification (UQ),
where uncertainty in model parameters (due to, for example,
measurement uncertainty or inherent physiological variability) is
quantified using probability distributions, and then the resultant
uncertainty in the QOI(s) are computed (Smith, 2013; Mirams
et al., 2016). Various validation metrics for quantifying the
difference between experimental data and model predictions
taking into account error estimates and simulation uncertainty
have been proposed in the engineering literature; (see e.g.,
Oberkampf and Barone, 2006). For some CEP model-derived
outputs such as risk indices or model-based biomarkers, other
analytic or statistical comparison methods (different to those
used in traditional model validation) may be appropriate, such
as measures of specificity and specificity, receiver operating
characteristic (ROC) curves, biomarker validation methods, etc.

Sometimes a CEP model is stated as matching known
physiological phenomena, for example in statements such as “the
AP shows the characteristic spike notch dome architecture found
for epicardial cells” (ten Tusscher et al., 2004) or discussion of
re-entrant waves breaking up into sustained fibrillation under
pro-arrhythmic conditions (Krishnamoorthi et al., 2014). This is
perhaps not validation per se, as there is no explicit comparator—
or more precisely, arguably not validation according to the
engineering/DoD understanding of validation; it is arguably

“epistemic validation” using the broader definition of Patterson
and Whelan (2017). Nevertheless, it is important and relevant
evidence for assessing the model’s predictive ability for a COU.
This type of evidence, which we will refer to as reproduced

phenomena, may be especially important in evaluation of
biological models since biological systems exhibit emergent
phenomena, and therefore a powerful test of a model is whether
such it predicts such phenomena.

Validation of Multiscale Models
For multiscale models we can distinguish between evidence at
different spatial scales, and in particular at which scales validation
was performed (see Figure 2). For a multiscale model of the
whole-heart, there may be validation evidence available for
model sub-components (i.e., all sub-cellular models and the cell
model), and/or for the system-as-a-whole (whole-heart model).
If validation is only performed for sub-models but not the
overall system, credibility of system-level predictions is founded
(perhaps implicitly) on the sub-model validation results and
belief in the theory underlying how sub-models interact. For
example, most cardiac cell models assume that ionic currents are
independent and can therefore simply be added together. System-
level validation may be especially important with physiological
models, since physiological systems exhibit emergent behavior
that cannot be predicted from understanding all sub-system
behavior. “Hierarchical validation,” in which validation is
performed for all model sub-components, sub-systems and the
entire system, is recommended in the engineering validation
literature so that the model provides the “right answer for the
right reasons” (Hills et al., 2008).

Often, validation is performed at one scale to provide
confidence that the model is sufficiently credible for it to be
used as a sub-model in a larger scale (e.g., develop a cell model,
perform validation of cell model, and then proceed to tissue
model if validation results are favorable). Even if this is the case,
the sub-model validation results may be relevant in evaluation of
the final model for a COU.

It should now be clear how a CEP model may be supported
by multiple sources of credibility evidence, taken from model

evaluation at multiple scales (see Figure 2). Table 1 lists
different sources of evidence and provides examples for ion
channel, cell and organ-level models. We reiterate that we are
not making any assertions regarding what evidence is necessary
when assessing cardiac models for a COU. Our motivation is
simply to describe how multiple sources of evidence may exist
and be relevant when assessing the credibility of a CEP model for
a specific COU. Confidence in a model tends to increase with the
body of evidence available to support it (Patterson and Whelan,
2017). Therefore, when a complex model is evaluated, ideally the
model should be treated as a “glass box” (the opposite of a “black
box”), so that the most informed decision is made. Any or all
of the types of evidence in Table 1 may be relevant in glass box
cardiacmodel evaluation. Themost important source of evidence
for a whole-heart model will likely be organ-level COU-driven
validation evidence, if available. Strong validation results of the
full model, if highly “applicable” (Pathmanathan et al., 2017) to
the COU, reduce the relative importance of the other factors
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TABLE 1 | Different types of evidence relevant to the credibility of a cardiac EP model, with ion channel, cell, and organ-level examples.

Category Type of credibility

evidence

Examples

Ion channel Cell model Organ-level model

Category 1 Evidence regarding validity

of model assumptions or

supporting the model

formulation

Successes of Hodgkin-Huxley

formulation for modeling ion

channels—see section Ion channel

models

Evidence supporting the formulation

of cell membrane as a parallel

resistor-capacitor electric circuit

The successes of the bidomain

equations, in particular predictions

made that were later experimentally

observed—see section Organ-level

models

Evidence regarding

accuracy/fidelity of model

parameters/inputs

Evidence supporting accuracy of

steady-state inactivation

parameters—see section Ion Channel

Models

Rationale behind standard choice of

membrane capacitance equal to 1

uF/cm2.

Evidence on fidelity of geometry used

and on fidelity of fiber/sheet

specification—discussed in section

Organ-Level Models.

Category 2 Calibration results Results showing agreement between

ion channel model and experimentally

recorded current-voltage relationship

when ion channel parameters are

calibrated using this data

Results showing agreement between

the model action potential and

experimental recordings when

maximal conductances are tuned to

achieve the match

Results showing activation patterns

match experiment if fast sodium

current maximal conductance (which

controls conduction velocity) chosen

to maximize agreement

Category 3 Reproduced (emergent)

phenomena

Simulation results demonstrating that

a rapid sodium current model can

exhibit damped oscillations

Simulation results demonstrating that

a cell model reproduces action

potential spike and dome morphology

Simulation results demonstrating that

ECG predicted by a heart and torso

model exhibits realistic-looking QRS

complex and T wave

General validation results Comparison of a general-purpose ion

channel model predictions to new

voltage-clamp data not used in the

construction of the model.

Comparisons of model results with

experimental data for a novel

general-purpose cell model, e.g., all

such results in O’Hara et al. (2011).

Discussed in detail in section Cell

Models

Excitation patterns of general purpose

bi-ventricular model compared to

experimental/clinical data.

ECG of general-purpose heart and

torso model compared to

experimental/clinical data.

COU-driven validation

results

Evaluation of a hERG model to predict

pharmaceutical pro-arrhythmic risk

Evaluation of a cell model-based

biomarker to predict pharmaceutical

pro-arrhythmic risk (e.g., CiPA,

discussed in section Cell Models)

Number of phase singularities during

ventricular fibrillation (VF) compared

to clinical data, when the model will

be used to understand mechanisms

behind VF—see section Organ-Level

Models.

Clinical evaluation of a whole-heart

model which uses patient-specific

information to predict optimal ablation

targets to terminate arrhythmias—see

section Organ-Level Models

(including reducing the need for evidence supporting model
assumptions (Patterson and Whelan, 2017).

CREDIBILITY OF CEP MODELS AT
DIFFERENT SPATIAL SCALES

We now discuss credibility evidence of CEP models at each of
the spatial scales. The scope of the following review is limited
to the most common types of CEP model: zero-dimensional
models (i.e., systems of ODEs) of ionic channels and of the
cell, and tissue/organ models that utilize the monodomain
or bidomain formulation. Therefore, models that explicitly
represent the spatial structure of ion channels or cardiac
myocytes are out of scope of the review, including molecular
dynamics models. Due to space limitations, we will only
discuss ion channel models; other types of sub-cellular model
such as calcium handling models are not included. We only

consider models which are at least partially motivated by bio-
physical understanding, excluding phenomenological models,
or statistical models such as those developed using neural
networks or machine learning techniques. We re-iterate that this
paper is focused on electrophysiology only; models of cardiac
mechanics or hemodynamics are out of scope, although similar
principles are expected to apply. Note that the scope of the
following review is still quite broad and it is therefore not
possible to describe or cite all publications that have performed
validation of CEP models. The papers cited below were chosen
to provide selected examples of approaches to CEP model
validation.

Ion Channel Models
There is a long history of modeling the dynamics of
transmembrane ion channels using the Hodgkin-Huxley
(HH) formulation (Hodgkin and Huxley, 1952). In the HH
formulation, transmembrane current is taken to be the product of
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a maximum conductance, dynamic gating variables representing
probabilities of channels gates being in an open state, and a
driving force. Gating variable dynamics are modeled using
ODEs, with dynamics determined by the voltage-dependent
steady-state activation/inactivation and voltage-dependent “time
constant” relationships for each gating variable (see Figure 1,
which includes the equations for a HH formulation of the
rapid sodium current with three gating variables m, h, and j).
The HH formulation has in fact become so integral to cardiac
electrophysiology that experimentalists regularly present data
by publishing HH-based model parameters. Markov models of
ionic currents are a more general formulation. For more details
(see e.g., Fink et al., 2011).

Generally speaking, validation of novel ion channel models is
not common practice (Fink et al., 2011). Here, we are referring
to validation of the novel channel in isolation, not as part of a
larger cell model. While voltage clamp data is used to develop
and calibrate themodels, those calibratedmodels are typically not
then tested to new data. In fact, generally simulations are not even
performed to show that the models predict the voltage-clamp
results that they were based on, and surprisingly, simulations
of voltage clamp protocols from which parameters are derived
do not necessarily match the original data (Carro et al., 2017).
(This can happen for a variety of reasons, such as the assumption
of inactivation being much faster than activation not holding).
Such observations demonstrate the value of ion channel model
evaluation including validation. It can be difficult to determine
in publications if results presented correspond to validation,
because calibration and validation are often not clearly separated
in presentation of results. An example of genuine validation
is (Yang et al., 2015), in which validation of a new model of
the late sodium current INaL is performed by comparing model
predictions of the INaL current-voltage relationship under a
slow depolarising voltage ramp, against experimental recordings
under the same protocol. Another is the L-type calcium current
model in O’Hara et al. (2011). As shown in Figure 3, validation
of the calibrated ICaL model was performed by comparing model
with experimental data using an action potential clamp protocol.
(Beattie et al., 2017) proposes a novel approach to developing cell-
specific models of the rapid delayed rectifier potassium current
IKr . Eight seconds of data using a novel sinusoidal voltage clamp
protocol was used to calibrate the cell-specific IKr models, which
were then validated against 5min of data taken from the same
cell, covering a range of voltage clamp protocols.

When no validation evidence is presented, the credibility
of novel ion channel models is essentially founded—often
implicitly—on a range of other factors, including the maturity of
the HH formulation and related historical evidence, calibration
evidence, and evidence regarding the accuracy of identified
parameters. We discuss these in the remainder of this
section.

The model of squid giant axon excitability proposed by
Hodgkin and Huxley (Hodgkin and Huxley, 1952) is considered
one of the greatest successes in twentieth century biophysics
(Häusser, 2000; Schwiening, 2012). This is due to the ability
of the relatively simple set of equations to reproduce a variety
of phenomena (Häusser, 2000) and the fact that the HH

modeling approach was then successfully applied to a wide range
of excitable cells, including cardiac cells (Noble, 1962). The
ideas and equations behind the HH model are now standard
building blocks in electrophysiology (Schwiening, 2012). HH-
based cardiac models have contributed greatly to understanding
of cardiac electrophysiology, with various predictions made
using cardiac models that were later experimentally verified.
Examples include the existence of non-sodium inward currents
and stoichiometry of the Na+/Ca2+ exchanger; see (Noble, 2011)
for a detailed review. However, despite these successes, there
are several caveats that should be stated regarding use of a
general HH formulation for a given ion channel. First, for some
ion channels and some applications, such as the rapid delayed
rectifier potassium current IKr and drug-binding applications,
a Markov model based approach may be more appropriate
(Clancy and Rudy, 1999). Additionally, there is still a lack of
consensus and ongoing research into a variety of details of
specific formulations. For example, for the fast sodium current
INa, while the originally-proposed (Hodgkin and Huxley, 1952)
and commonly-used m3 formulation of activation can be argued
to have a justification at the molecular level (Armstrong, 2006),
it is unclear how to simultaneously represent the various modes
of INa inactivation (fast, slow, and persistent; Nesterenko et al.,
2011). Similarly, for the L-type calcium channel ICaL., there is not
a unique approach to simultaneously quantifying both voltage-
and calcium-dependent inactivation (Grandi et al., 2010).

Once a HH-based model formulation is proposed and
justified, model parameters need to be estimated. This includes
parameters representing the voltage-dependent steady-state
activation/inactivation and time-constant functions for each gate,
which are estimated using voltage clamp data. Evidence on the
accuracy of these parameters is important in evaluating model
credibility, especially if no validation is performed. However,
before asking about the accuracy of parameter values, one can
ask if ion channel model parameters are uniquely identifiable
from experimental data in the first place. A parameter cannot
be claimed to be accurate if it is provably unidentifiable
given the data. Although the methodology for nonlinear model
identifiability has been extensively studied (Rothenberg, 1971;
Jacquez and Greif, 1985; Walter and Pronzato, 1996), their
utilization in the field of CEP modeling has been limited. The
conditions under which model parameters can be identified
has been studied in the context of single current sub-models
(Beaumont et al., 1993; Wang and Beaumont, 2004; Lee et al.,
2006; Csercsik et al., 2012; Raba et al., 2013) and more recently
incorporated into a multi-scale framework using a simplified
action potential model (Shotwell and Gray, 2016).

Returning to parameter estimation, voltage-dependant
steady-state (in)activation relationships for many currents are
typically well-approximated using sigmoidal functions using
standard voltage clamp protocols, however obtaining data for
accurate characterisation of voltage-dependent time constants
is considerably more difficult. Assumptions underlying voltage
clamp protocols should be well understood by model developers
and may be questionable for protocols used to identify certain
parameters (e.g., the assumption that inactivation is much faster
than activation for protocols used to identify INa steady state
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FIGURE 3 | Calibration and validation of the L-type Ca2+ current of O’Hara et al. (2011). Left figures show calibration results (circles/squares/diamonds—experiment;

solid lines—simulation), including fitting of steady-state activation and inactivation (top row) and time constants (second row). Right figures are qualitative validation of

the formulated ICaL model by comparison of simulation and experiment under an identical action potential clamp. Quantitative validation of peak current is also

provided in original paper. (Adapted from Figure 1 of O’Hara et al. (2011) with permission under Creative Commons license).

gating activation parameters Csercsik et al., 2012). Manual
recording from single cells using well-established voltage clamp
protocols remains the gold standard for obtaining high-quality
current-voltage relationships (Elkins et al., 2013). Nevertheless,
there are numerous (often “hidden”) details regarding the specific
procedures and protocols in the laboratory to isolate individual
currents and to minimize recording artifacts (e.g., accounting
for liquid junction potentials and capacitive compensation).
Technical advances has improved the ability to measure rapid
transients, however, it is still not possible to characterize
activation for the fast sodium current steady-state activation
from adult myocytes under physiological conditions (Berecki
et al., 2010). Experimental reproducibility and variability
between cells also present challenges (Pathmanathan et al., 2015).
Regarding the voltage dependence of time constants, there is
not even consensus on the appropriate functional forms, unlike
steady state parameters. In general, fits to time constant data are
much poorer than to steady-state (in)activation data [compare
steady state and time constant fits in (e.g., ten Tusscher et al.,
2004) or (O’Hara et al., 2011); also see Figure 3]. The quality of
such fits is rarely quantified.

Overall, if a novel ion channel model is developed but no
validation is performed, given the numerous issues described

above there may be significant uncertainty regarding the true
predictive capability of the ion channel model. This is especially
true for simulations using conditions that are quite different
to the conditions used for model calibration. Often, however,
novel ion channel models are developed as one component of a
cell model, and validation is instead performed at that level, as
described in the next section.

Cell Models
Regarding validation of cardiac cell models, we first make two
remarks. First, it should be noted that the majority of cell models
are developed as general-purpose tools, as opposed to for a
specific COU. Any initial testing against experimental data of
a general purpose cell model therefore falls under the category
of “general validation.” Second, it can be especially difficult to
determine in publications whether results presented are obtained
by calibration or are genuinely validation evidence. For example,
simulated and experimental action potentials may be presented
in papers to demonstrate a close match between simulation and
experiment, but it can be unclear if any parameters (e.g., ion
channel maximal conductances) were tuned to obtain the match.

There is an enormous range in the extent of general
validation performed when novel cell models are published.
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They can vary in terms of which model outputs are compared
to experiment, which pacing protocols are applied, the source
of the experimental/clinical data, and the type of comparison
between model and experiment (e.g., qualitative vs. quantitative).
As an example, for validation of their human cell model,
(ten Tusscher et al., 2004) first present action potential and
calcium transient time courses under 1Hz pacing, stating
how the AP reproduces the characteristic spike notch dome
of epicardial cells and the calcium transient reproduces
the experimentally observed rounded-off triangular shape
(“reproduced phenomena” evidence as discussed in section Why
Trust a Computational Model?). They then semi-quantitatively
compare several AP properties and diastolic/systolic calcium
concentration with experiment, qualitatively compare APD
restitution and conduction velocity restitution results with
experiment, as well as present several other validation-related
results, including at the tissue level (after coupling the cell
model with the monodomain equations). This is arguably more
extensive validation than presented for most other cell models.
The most comprehensive set of validation tests for a new cell
model is, as far as we aware, that presented in the original O’Hara-
Rudy-dynamic (ORd) model paper O’Hara et al. (2011), in which
validation was performed for all of the following QOIs: AP shape
under multiple pacing rates, resting voltage, maximum voltage,
maximum upstroke velocity, APD restitution properties (steady
state; dynamic; with and without channel-specific blockers; single
cell and in tissue), APD alternans and accommodation, AP shape
with induced early after-depolarisation (EAD), peak intracellular
sodium and calcium ion concentrations at multiple rates,
calcium transient at multiple rates, and various current voltage
relationships under various voltage/potassium/sodium/calcium
clamps. This extensive validation, together with the use of human
data for model development, are reasons why the ORd model is
one of the most highly regarded of modern cell models, although
we emphasize that even this model should not be considered
a “validated cell model,” both because of the issues with such
terminology (see section Validation and Roache, 2009), and also
because of certain ways it does not match clinical observations
(Mann et al., 2016; Dutta et al., 2017).

In general it is important to note that modern cell models
may simulate dozens of quantities (i.e., have dozens of state
variables), of which usually only a handful have been directly
compared to experimental data; this is certainly true even of the
ORd model. Credibility in QOIs not compared to experiment
is therefore based on “indirect” validation. It should also be
appreciated that most cell models are typically not validated
using data directly related to the initiation and maintenance of
arrhythmias, although there are notable exceptions such as the
validation involving EADs in O’Hara et al. (2011) or Nordin and
Ming (1995) and involving reentrant waves in ten Tusscher et al.
(2004).

The above are all examples of general validation; next we
consider validation of cell models for a prescribed COU, i.e.,
COU-driven validation. For single cell cardiac models, the
application (i.e., COU) with the greatest current research interest
is prediction of proarrhythmic risk of novel pharmaceutical
compounds (Davies et al., 2016). (Davies et al., 2012) develop

an ensemble of 19 cell models calibrated to data from 19
dogs for this COU. For validation, they first compare model
predictions of drug effect on action potential shape against
experimental data (using various compounds). They then test
the ability of the model ensemble to predict—blinded—whether
a drug will cause AP shortening, prolongation, or have no
effect, on a test set of 53 compounds and using measures of
sensitivity, specificity and predictivity. Other CEP model-based
biomarkers have also been recently proposed (Mirams et al.,
2011; Passini et al., 2017), and have been evaluated against
risk classifications scores using test sets of compounds. This
application area has matured rapidly, and recently regulators,
academia and the pharmaceutical industry have come together
in the Cardiac in vitro Proarrhythmia Assay (CiPA) program
(Cavero and Holzgrefe, 2014; Colatsky et al., 2016). The aim of
the CiPA program is to develop a novel framework for assessing
proarrhythmic risk. The proposed framework involves a series
of predominantly nonclinical assays, one of which utilizes a
cardiac cell model to integrate drug ion channel effects to the
action potential level. The ORd model is being modified for this
purpose, and the ultimate aim is to develop a model-based metric
that converts drug ion channel effects into a predictive risk index
(Dutta et al., 2017). Twelve drugs with well-characterized risk
are being used for model and metric development, and the final
metric will be validated (in a blinded fashion) using 16 different
drugs with well-characterized proarrhythmic risk.

When no validation evidence is available for a cell model,
which may be the case for a novel—or considerably modified—
cell model, credibility of model predictions is essentially founded,
perhaps implicitly, upon multiple factors. This includes the
consensus view that the cell membrane can be modeled as a
parallel resistor-capacitor electric circuit (Cole and Moore, 1960;
Mauro et al., 1970), together with any evidence supporting
credibility of each of the sub-cellular models incorporated (i.e.,
as discussed in section Ion Channel Models), and any calibration
evidence (e.g., ability to reproduce AP shape or characteristics
when model parameters are selected accordingly). In this case a
lot of subject matter expertise may be required to interpret and to
judge reliability of predictions.

Organ-Level Models
Tissue- and organ-level simulations have been used for many
years and with great success in basic science applications
(Trayanova et al., 2006; Bishop et al., 2009). These models involve
the solution of the bidomain or monodomain equations (Tung,
1978; Henriquez, 1993; Neu and Krassowska, 1993; Bourgault
et al., 2009), incorporating one or more specific cell models,
on a computational mesh that approximates the geometry of
interest (which can be a 2Dmonolayer (ten Tusscher et al., 2004),
3D slab of tissue, the atria (Seemann et al., 2006; Zhao et al.,
2013), the ventricles (Plank et al., 2009) or the whole heart (Deng
et al., 2012; Baillargeon et al., 2014). It is also possible to model
the heart in a conductive medium, such as saline bath or the
torso, which allows the electrocardiogram and defibrillation to
be simulated (Aguel et al., 1999; Richards et al., 2013; Zemzemi
et al., 2013; Okada et al., 2015). Tissue-level parameters that need
to be prescribed include intra- and extra-cellular conductivities
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(dependent on the local fiber and sheet directions Legrice et al.,
1995). For more details (see, e.g., Lopez-Perez et al., 2015),
which reviews 60 3D cardiac models developed over the past fifty
years.

In fact, themethodology for tissue- and organ-level simulation
studies is so well-established that simulation studies are routinely
published in which a model is used for EP research but
no validation results are presented, and no other rationale
for credibility is explicitly presented. For such studies, the
credibility of the model predictions is essentially based—
implicitly—on the following: (i) confidence in the model
governing equations (including historical evidence supporting
the bidomain formulation); (ii) confidence in the cell model
used; and (iii) the accuracy/fidelity of model parameters and
geometrical inputs. We discuss each of these below.

First, we note that bidomain equations have a strong
biophysical basis, being mathematically derived through a formal
homogenisation of an underlying set of governing equations
derived from Maxwell’s equations (Neu and Krassowska, 1993).
The underlying anatomical and physiological assumptions are
mostly considered reasonable, although there remains ongoing
research into alternative formulations that may better represent
electrical propagation through myocardium, for example the
fractional diffusion model of Bueno-Orovio et al. (2014), the
alternative homogenisation derived by Richardson and Chapman
(2011), or the hyperbolic bidomain model of Rossi and Griffith
(2017). The bidomain equations reduce to the monodomain
equations under the assumption that the intracellular and
extracellular conductivity tensors are aligned. While this is
known to not be the case in cardiac tissue, in the absence
of extracellular stimuli (such as defibrillatory shocks) solutions
of the monodomain equations can be very similar to those
of the bidomain (Potse et al., 2006; Clayton et al., 2011).
Perhaps the strongest evidence supporting the use of the
bidomain equations are the numerous historical examples of
quantitative predictions from bidomain simulations that have
been reproduced experimentally, including complex phenomena
that were predicted by simulation studies and only later observed
experimentally. The most famous example regards specific
virtual electrode patterns: simulations preceded experiment
in predicting that unipolar excitation can result in a “dog-
bone” shaped virtual cathode with regions of hyperpolarisation
(virtual anode) in the vicinity of the virtual cathode (Sepulveda
et al., 1989; Wikswo et al., 1991, 1995). This unexpected
phenomenon is the result of the unequal anisotropy ratios
of the intracellular and extracellular conductivity tensors.
(Wikswo and Roth, 2009) provide a detailed review and
numerous other examples of bidomain simulations matching
experiment.

Credibility of tissue-level predictions is also dependent on
the specific cell model used in the simulations. Credibility of
cell models was discussed in section Cell Models. However,
note that validation at the cell level does not necessarily imply
that simulations will reproduce tissue-level phenomena. For
example, (Gray et al., 2013) measured the action potential
upstroke shape during propagation and found that it differed
from that predicted in tissue simulations using a variety of

cell models. (Uzelac et al., 2017) show that current cell models
when incorporated into tissue level models do not reproduce the
voltage and calcium dynamics of alternans. In addition, it is fairly
common to adjust cell model parameters in tissue simulations
(e.g., to shorten APD when simulating fibrillation Bishop and
Plank, 2012), without any “re-validation” of the modified cell
model; for such cases, it is unclear how much the previous cell
model validation results can be relied upon. It is also increasingly
common to re-calibrate cell model parameters in an organ-level
model using data taken from intact tissue, including clinical data
(e.g., Keldermann et al., 2008); again, it is unclear the extent that
the body of previous validation results holds. We will return to
this subject in the discussion.

The third factor especially relevant to model credibility when
no validation results are available is the accuracy/fidelity of
model parameters and other inputs. In regards to parameters we
refer to Clayton et al. (2011), which provides a review of the
challenges of estimating parameters in the bidomain equations.
Note though that when estimating personalized parameters
from clinical data for patient specific models, questions can be
raised on the identifiability and accuracy those parameters; see
(Chabiniok et al., 2016) for a general discussion. Here we focus
on geometrical inputs. In organ-level simulations, an important
factor that may require consideration when evaluating credibility
is the anatomical fidelity of the computational mesh. There are
a range of possibilities, from use of simple truncated ellipsoids
(Vetter and McCulloch, 1998) to image-based meshes. Meshes
vary in terms of the anatomical detail included. For example, they
may include ventricular endocardial structures such as papillary
muscles and trabeculae (Bishop et al., 2010); atrial endocardial
structures such as fossa ovalis (Seemann et al., 2006); myocardial
blood vessels (Bishop et al., 2010); and/or the Purkinje system
(Romero et al., 2010; Bordas et al., 2011). The appropriate level
of detail for specific applications is not yet clear; in particular
there is ongoing research into the role of microstructure on the
initiation, maintenance and termination of fibrillation (Bishop
and Plank, 2012; Connolly et al., 2017). As well as geometry,
there is a question on the fidelity of the prescribed fiber and
sheet orientations. This can be estimated using DT-MRI imaging
data (Mekkaoui et al., 2012); however DT-MRI data can be
noisy due to partial volume effects and sensitive to motion
artifacts (Bishop et al., 2009; Dierckx et al., 2009). An alternative
approach is to use a “rule-based” method (see Figure 5, later,
for an example), in which a mathematical algorithm is used
to generate fiber and sheet architectures [see e.g., (Potse et al.,
2006; Bishop et al., 2010; Bayer et al., 2012) for ventricles or
(Krueger et al., 2011; McDowell et al., 2012) for atria], and has
been shown to provide results that are very similar to those based
on DT-MRI (Bishop et al., 2009; Bayer et al., 2012), but may
not correctly capture fine-scale details such as fiber direction
near the apex, around vessels or near infarcts. Therefore, either
way, there may be considerable uncertainty about the true
fidelity of the prescribed fiber/sheet directions, whichmay impact
credibility of predictions of quantities expected to be sensitive to
anisotropy.

Next, we move on to validation of organ-level models.
The ability to perform validation of such models is of
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course heavily constrained by difficulties in obtaining the
necessary experimental or clinical data for model validation,
and therefore the vast majority of validation of organ-level
models has been limited to heart surface potentials. Heart surface
potential data can be obtained from a variety of measurement
modalities, including transmembrane voltage recorded from
glass microelectrodes or using fluorescent dyes (e.g., optical
mapping), or extracellular electrograms using electrode plaques,
socks, baskets, or other mapping systems (contact and non-
contact). These measurements vary in their spatial resolution
from a single site to hundreds or thousands of sites. Each
modality has its advantages and disadvantages; for example
optical mapping provides very high spatial resolution but low
voltage fidelity, and is always ex vivo for human tissue and
only in vivo with great difficulty for animal experiments (Dillon
et al., 1998). In contrast, extracellular electrograms can be used
to obtain in vivo data but at lower spatial resolution. With the
exception of the transmembrane microelectrodes, all modalities
do not directly measure transmembrane voltage, which can lead
to difficulties in achieving a like-for-like comparison between
simulation and experiment. This can be remedied in the
computational model. For example, fluorescent signals from
optical mapping are different than transmembrane signals in that
they have a longer upstroke (Gray, 1999), which was determined
to be a result of photon scattering (Hyatt et al., 2003), which led to
the development of CEP models that also simulated fluorescence
with scattering to enable like-for-like comparisons (Bishop et al.,
2007; Roth and Pertsov, 2009).

Many groups have performed validation of organ-level CEP
models using data obtained from these modalities. Here we
will provide a few representative examples, to give a flavor of
the possibilities for validation of surface potentials or derived
quantities. (Relan et al., 2011) describe a framework for the
functional personalisation of a porcine biventricular model using
ex vivo porcine optical mapping data. As shown in Figure 4A,
following calibration using optical recordings under one pacing
protocol, they quantitatively validated predictions of epicardial
APD and activation time, using optical recordings from the
same heart under various different pacing scenarios. (Rodriguez
et al., 2005) investigated the role of structural differences
between right and left ventricles in vulnerability to electric
shocks in the rabbit heart. The study used a combination
of biventicular bidomain simulations and optical recordings
from an experimental Langendorff-perfused rabbit heart. The
setup enabled various QOIs to be qualitatively compared
between simulation and experiment (to support the credibility
of simulation-based results of the study), including post-
shock transmembrane potential distributions on the epicardial
surface, and the probability of tachyarrhythmia induction as
a function of shock strength and coupling interval. (Muzikant
and Henriquez, 1998) and (Muzikant et al., 2002) compare
bidomain predictions with experimental results from the paced
in vivo canine heart measured using a 528 channel electrode
plaque. This study is notable because of the quantitative
approach to the validation of spatial patterns, analyzing the
root mean squared (RMS) error and Pearson’s correlation

FIGURE 4 | Examples of quantitative validation of organ-level models. (A) Error maps (i.e., difference between model and experiment; here optical mapping-derived

experimental data) for depolarisation time (DT) and APD (top row—pacing on left ventricle epicardium; bottom row—pacing on right ventricular endocardium)

(Reproduced with permission from Relan et al., 2011). (B) Experimentally measured extracellular potential in mV using electrode plaque (top) compared to predictions

of extracellular potential from bidomain simulations (bottom), with difference quantified using Pearson’s correlation coefficient (r) and root mean squared (RMS) error.

(Reproduced with permission from Muzikant et al., 2002).
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coefficient between simulation and experiment, for extracellular
potential and conduction velocity; see Figure 4B. (Niederer
et al., 2010) use patient-specific biventricular electromechanical
models to investigate the relationship between the Frank-
Starling mechanism and cardiac resynchronisation therapy
(CRT) efficacy. To calibrate and validate the electrophysiological
part of the electromechanical model, they use patient-specific
clinical endocardial data obtaining using the EnSiteTM cardiac
mapping system. Clinical activation maps during sinus rhythm
were used for model calibration, and activation maps under
left ventricular pacing were used for validation of the calibrated
model. (ten Tusscher et al., 2009) is a combined modeling and
clinical study on the organization of ventricular fibrillation (VF)
in the human heart. To support the credibility of the model used,
epicardial excitation patterns are compared between model and
clinical recordings obtained using a sock electrode, as is the time
series of electrical activity at a fixed location. Dominant frequency
of the time series is used for quantitative comparison between
model and experiment. In addition, numbers of wavefronts and
number of phase singularities over time are also compared.
These quantities are convenient for condensing the complex
spatio-temporal behavior of VF into simple time-series, useful for
potential quantitative validation of very complex behavior.

Finally, we consider validation of organ-level CEP models
with a specific clinical application; in particular, where a model is
proposed to be used in clinical decision-making. One proposed
application of CEP models is to use patient-specific simulations
for risk stratification of patients with myocardial infarction, to
determine which patients are at risk of SCD and therefore should
receive prophylactic implantable cardioverter defibrillator (ICD)
implant, as described in Arevalo et al. (2016). As illustrated
in Figure 5, the software developed for this application uses
patient-specific MR data to generate a biventricular mesh which
includes regions of scar tissue and border zone. Electrical activity
is simulated using the monodomain equations with the cell
model of ten Tusscher et al. (2004). Various pacing protocols are
virtually applied to determine if ventricular tachycardia (VT) is
inducible, and if so the patient is classified as being at risk of
SCD. We highlight two sets of validation results relevant to this
model. The first, presented in Deng et al. (2015), is validation
of epicardial excitation maps, for a swine version of the model,
against swine data obtained using sock electrodes. The second,
presented in Arevalo et al. (2016), describes a retrospective
clinical study performed to test the risk index. In this study, the
workflow described above was applied on a number of patients
who had had ICD implant, and the risk classification as predicted
by the model was compared to the clinical endpoint of ICD
appropriately firing (or cardiac death). This is another form of
(COU-driven) model validation, and of course it is a very strong
form of validation because the QOI that is evaluated is the final
QOI to be used in decision-making (i.e., risk index). Since it
involves a clinical study, for this type of validation the appropriate
quantitative analysis method is statistical; see (Arevalo et al.,
2016) for details.

Other studies have proposed that related model-based tools
could be used for prediction of ablation targets for patients
affected by atrial fibrillation (AF) (McDowell et al., 2015), left

atrial flutter (LAFL) (Zahid et al., 2016), or VT (Ashikaga et al.,
2013). The proposed process for predicting ablation targets for
all three arrhythmias is very similar to the process described
above: an anatomically patient-specific model of the atria or
ventricles is generated using MR data, and virtually interrogated
to determine if AF/LAFL/VT is inducible. If so, ablation sites can
be predicted that render AF/LAFL/VT non-inducible (a method
for doing so is described in Zahid et al., 2016). (Zahid et al.,
2016) presents a retrospective clinical study in which predicted
LAFL ablation sites using the patient-specific atrial models are
compared to the clinically ablated sites. (Chen et al., 2016)
present a related workflow for developing patient-specific cardiac
models, with personalisation of some functional parameters as
well as anatomical personalisation. They perform validation by
comparing model predictions of VT inducibility and re-entrant
circuits to results from clinical VT stimulation studies.

Finally, similarly to cell models as discussed in section Cell
Models, whole heart models have also been proposed to be used
to predict drug-induced arrhythmogenic risk. (Okada et al., 2015)
proposed that a heart and torso model which simulates the ECG
can be used to integrate in vitro ion channel assays. The drug
concentration at which Torsades de Pointes is induced in the
simulated ECG is the proposed biomarker, and the predictive
ability of this biomarker is tested using data for 12 drugs with
well-characterized risk.

DISCUSSION

In this paper, we have categorized and discussed different types of
evidence that could be used as a basis for the credibility of a CEP
model. Our aim was to provide clarity on the body of evidence
that typically is relevant (and often implied) in the evaluation
of CEP models. As we transition into the era of Digital Health,
there is a need for a systematic, rigorous and well-established
methodology for justifying and assessing the credibility of
computational models with biomedical applications. Current
efforts toward these goals (ASME, 2017) are focused on
“physics-based” models that have so far had most impact in
medical devices applications (Pelton et al., 2008; Angelone
et al., 2010; Stewart et al., 2012). However, these modeling
fields are very different to physiological modeling in terms of
model complexity, multi-scale nature, feasible validation, and
inherent variability. In a previous publication we advocated
that engineeringmodel assessmentmethodologies of verification,
validation and uncertainty quantification (VVUQ) could be
used to improve credibility of models (Pathmanathan and Gray,
2013). However, while verification and uncertainty quantification
methods are certainly relevant to CEP model assessment, best
practices and quantitative methods in the engineering literature
regarding validation appear less relevant to CEP models and
other physiological models, due in part to the unique challenges
in obtaining data for validation of physiological models. In
general, the types of evidence supporting the credibility of
physiological models will likely be very different to that for
engineering models. Therefore, this paper is motivated by the
need for a clear understanding of potential credibility evidence
for CEPmodels, which can guide future efforts toward systematic
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FIGURE 5 | Overview of process used to predict sudden cardiac death risk in Arevalo et al. (2016). A flowchart of the pipeline is shown in sub-figure (A). MR images

are segmented [sub-figure (B)] to develop a patient-specific computational model which includes regions of scar tissue and border zone (“gray zone”) [sub-figure (C)].

A rule-based approach is used to specify fiber directions. The model is paced from 19 sites [sub-figure (D)] and with various pacing protocols and assessed for

whether ventricular tachycardia is inducible. (Reproduced from Arevalo et al., 2016 with permission under Creative Commons license).

approaches for credibility assessment/justification which are
relevant to physiological models.

We specifically highlighted validation of general-purpose CEP
models not performed for any prescribed COU, and defined this
as “general validation” evidence. As discussed in section Why
Trust a Computational Model? the ever-increasing complexity
of CEP cell models means that there are almost unlimited
possibilities for such evaluation, and there is a large and ever-
growing body of general validation results in the CEP modeling
literature—in particular regarding cell models. Note that in this

reviewwe described several examples of general validation but we
did not discuss the “quality” of any general validation results. For
example, we avoided subjective statements such as “validation
results showed good agreement between model and experiment.”
This is because the level of agreement needed between model
and experiment is determined by the COU, and when no COU
is specified, a statement that a model shows “good agreement”
without any context could potentially lead to inappropriate use
of a model. In general, while general validation can provide
important preliminary information about a computational
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model, it may not be advisable to convert general validation
results into binary “good”/“bad” or “acceptable”/“unacceptable”
statements. However, when a COU of a model is chosen,
previous general validation results can certainly be (re-)evaluated
to determine how supportive they are of the model in the
COU. This will likely require assessment of both the level of
agreement between model and simulation, and also the relevance
or “applicability” of the validation conditions to the COU;
discussed in detail in Pathmanathan et al. (2017).

Currently, general validation results for cell models that are
published in the literature are not collected, curated, or made
available in one place. One resource that could potentially
be useful for the cardiac modeling community is a resource
on credibility evidence for cell models. The CEP modeling
community already leads the way in model sharing and
reproduction through the CellML repository and related software
(Lloyd et al., 2008). The CellML language is a XML-based
language for defining CEP cell (and other) models, allowing
models to be defined unambiguously and easily shared, and the
CellML repository serves as the starting point when using a
cell model published in the literature. However, the repository
does not include information regarding model validation results
or other credibility evidence, and there is no way to easily
look up such information. A sister repository containing model
credibility evidence could therefore be useful to CEP model
developers/users when deciding on which cell model to use
for a particular COU. Examples of information that could be
stored in such as repository include which emergent phenomena
the model reproduces (and does not reproduce), and general
validation results under a wide range of precisely prescribed
protocols. One resource that provides a path toward such a
repository is the Cardiac Electrophysiology Web Lab (Cooper
et al., 2016). This is an online tool for easy comparison of
multiple CellML-defined cell models under a wide range of
protocols (which required the development of an XML-based
language for specifying protocols Cooper et al., 2011). Being able
to easily compare models is important because even models of
the same species and heart region can behave quite differently;
(see e.g., Cherry and Fenton, 2007). While the Web Lab does
not currently provide explicit comparison to experimental data,
it already serves as a potential tool for identifying which
phenomena models can reproduce, and one can imagine an
extension in which experimental data (from a wide range
of sources and with full details on experimental conditions
and protocols) are also included and comparison to model
predictions are provided, both visually for qualitative comparison
and perhaps quantitatively with appropriate validation metrics.
In fact, inclusion of experimental data is one of the future
plans of the Web Lab developers (personal communications). As
stated above, we believe such results should not be converted
into binary good/bad or acceptable/unacceptable judgements, or
used to rank models. Instead, such a repository would serve as
a rich resource by providing information needed for selecting
between competing models for a particular COU, as well as
providing validation results that could serve as a starting point for
justification of model credibility for the COU. Moreover, if users
were able to upload models and automatically run all protocols

(already possible in Web Lab) and then compare against the
experimental data, this would be a powerful tool for validation of
modified cell models (examples of which were provided in section
Organ-Level Models), i.e., for comprehensive “re-validation.”
Note that we are not stating that an altered model should only
be used if it “passes all validation tests.” Indeed, for many COUs,
a model not reproducing given phenomena could be argued to
be acceptable given the COU. The point is that trust in cardiac
models can be improved by collection of evidence, glass box
evaluation, and explicit justification that the model is sufficiently
credible for the COU despite its limitations.

It can be difficult to determine whether results presented
in publications are calibration or validation results, as we
mentioned in section Credibility of CEP Models at Different
Spatial Scales. Specifically, while figures may be provided in
which simulation and experimental results can be visually (and
qualitatively) compared, it is often unclear whether any model
parameters were tuned, optimized or tweaked to obtain the
agreement with the experimental data. When that is the case,
the results are calibration results, which is fundamentally weaker
credibility evidence than validation of the completed model.
Therefore, ideally calibration and validation results should be
presented separately. While we believe that the examples of
validation discussed in this paper are genuine validation results,
it is certainly possible that some are actually calibration results.
We alsomentioned how simulation studies using CEPmodels are
often performed in which no validation results or discussion of
model credibility is presented. Such studies essentially implicitly
rely—not unreasonably—on the maturity of the field and the
various sources of historical evidence that we discussed in
sections Ion Channel Models, Cell Models, and Organ-Level
Models. The problem with this approach is it can contribute
to a lack of clarity in the literature about the trustworthiness
of CEP models, which can potentially lead to overconfidence
in CEP models by non-experts who are unfamiliar with model
subtleties (see initial discussion in Gong et al., 2017) as well
as under-confidence in simulation-based conclusions by those
who are skeptical of computational models in medicine. Such
skepticism may be one of the biggest hurdles that needs to be
overcome for computational models to achieve their potential
in medical applications. These issues could be addressed by a
clear and explicit presentation of the rationales for credibility
of models used in simulation studies, referring as appropriate
to the different sources of credibility evidence that support the
use of the model for the COU as shown in Table 1 (and/or
appealing to the idea of models as representations, as discussed in
section Why Trust a Computational Model?, when appropriate).
As stated above, one aim is to argue that the model is sufficiently
credible for the COU, despite model limitations.While there is no
standardizedmethod for determining what constitutes “sufficient
credibility,” the risk-informed strategy of (NASA, 2009; ASME,
2017) provides one method. The basic idea is that the credibility
that needs to be demonstrated for a model should be related
to the risk associated with incorrect predictions. Two factors
are used to determine model risk. The first is model influence,
which is the extent to which the model predictions will influence
the decision to be made or conclusions of the study, compared
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to other sources of information. The second is the consequence
of incorrect decisions. For example, if a model is proposed to
be used as the sole source of information in a safety-critical
clinical decision, both influence and consequence are high, and
the overall risk will be considered to be very high. Therefore, high
credibility will be required of the model. In simulation studies,
influence will often be high but consequence may be judged to be
low, and overall risk may also be judged to be low, which means
the credibility requirements are lower. Ultimately, we believe that
routine and explicit justification of credibility will enable CEP
models to have even greater impact in cardiac EP research, and
facilitate their passage into clinical applications.
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