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OPEN ACCESS Bradysia odoriphaga is an agricultural pest insect affecting the production of Chinese
chive and other liliaceous vegetables in China, and it is significantly attracted by sex
E‘;;e%ﬁg" pheromones and the volatiles derived from host plants. Despite verification of this
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tissue-specific expression profiles of 54 putative chemosensory genes among different
tissues were investigated by quantitative real-time PCR (gRT-PCR). gRT-PCR analysis
results suggested that 22 OBP and 3 CSP genes were enriched in the antennae,
indicating they might be essential for detection of general odorants and pheromones.
Among these antennae-enriched genes, nine OBPs (BodoOBP2/4/6/8/12/13/20/28/33)
were enriched in the male antennae and may play crucial roles in the detection of sex
pheromones. Moreover, some OBP and CSP genes were enriched in non-antennae
tissues, such as in the legs (BodoOBP3/9/19/21/34/35/38/39/45 and BodoCSP17),
wings (BodoOBP17/30/32/37/44), abdomens and thoraxes (BodoOBP29/36), and
heads (BodoOBP14/23/31 and BodoCSP2), suggesting that these genes might be
involved in olfactory, gustatory, or other physiological processes. Our findings provide
a starting point to facilitate functional research of these chemosensory genes in
B. odoriphaga at the molecular level.
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Identification and Analysis B. odoriphaga OBPs and CSPs
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GRAPHICAL ABSTRACT | Identification and expression profiles analysis of odorant binding protein and chemosensory protein genes in Bradysia odoriphaga.
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INTRODUCTION

The Chinese chive maggot, Bradysia odoriphaga (Diptera:
Sciaridae), is the major destructive pest of Chinese chive
and other liliaceous vegetables in China (Zhang et al., 2015;
Chen et al, 2017). The larvae of this pest feed on the
underground roots, bulbs, and immature stems of Chinese chive
and cause yield losses of more than 50% in the absence of
insecticide protection (Ma et al., 2013). Thus far, the application
of chemical insecticides remains the primary measure for
controlling B. odoriphaga, and it has led to many adverse impacts,
such as widespread insecticide resistance and toxic residues in
chives, threatening consumer health (Zhang P. et al., 2016; Chen
etal., 2017). Hence, a new ecofriendly pest management strategy
is needed to control this pest. Previous studies have shown that
B. odoriphaga was significantly attracted by sex pheromones,
the volatiles derived from host plants and microbial secondary
metabolites (Li et al., 2007; Chen et al., 2014; Uddin, 2016;
Zhang Z. ]. et al, 2016), and that it was repelled by green
leaf volatile compounds (Chen C. Y. et al., 2015). Moreover,
B. odoriphaga exhibited a strong electroantennogram (EAG)
response to trans-2-hexenal and benzothiazole (Chen C. Y. et al.,
2015). The evidence from these behavioral responses contribute
to control of this pest using push-pull strategies (Cook et al.,
2007). Despite these reports on chemosensory behavior, however,
the mechanism by which B. odoriphaga recognizes these volatile
compounds on the molecular level is still unknown.

Olfaction is the primary sensory modality in insects and plays
a crucial role in various physiological behaviors, such as locating
sexual partners, food sources, oviposition sites, and avoiding
predators (Visser, 1986; Leal, 2013). The antennae are the
principal olfactory organs for insect olfaction, and the olfactory

perception process generally includes two main steps. First,
odorant molecular penetrate into the sensillar lymph through
pores, and they are bound by small, amphipathic proteins
[odorant binding proteins (OBPs) or chemosensory proteins
(CSPs); (Pelosi et al., 2006; Zhou, 2010; He et al., 2017)]. Second,
the OBPs or CSPs will transfer the odorant molecule through
the sensillar lymph to the olfactory receptors (ORs), activate the
olfactory receptor neurons (ORNs) and convert chemical signals
into electrical signals that are sent to the insect brain (Vogt et al.,
1999; Leal, 2013; Pelosi et al., 2018). Hence, OBPs and CSPs
are very important because they mediate the first step of odor
perception (Li et al., 2015; Brito et al., 2016).

The first step toward understanding the molecular mechanism
of olfactory perception process is to investigate olfaction-related
genes, which encode the proteins that function in odorant
molecular detection. Since OBPs and CSPs were identified
and characterized in the model insect, Drosophila melanogaster
(Robertson et al., 2003), a large number of OBP and CSP genes
have been identified from diverse families of Diptera insects,
including sanitary pests (Pelletier and Leal, 2011; Manoharan
et al,, 2013; Rinker et al,, 2013; Scott et al.,, 2014; Chen X. G.
et al., 2015; Leitch et al., 2015; He X. et al,, 2016), agricultural
pests (Andersson et al., 2014; Gong et al., 2014; Ohta et al,
2014, 2015; Elfekih et al., 2016; Liu et al., 2016), and predators
(Wang et al., 2017). Furthermore, the functions of some OBP
and CSP genes in the olfactory perception process of insects
have been predicted and verified (Swarup et al., 2011; Siciliano
et al.,, 2014; Wu et al,, 2016; Zhu et al.,, 2016). However, thus
far, only two OBP genes and one CSP gene have been identified
in B. odoriphaga from Sciaridae, and the number, classification,
expression characteristics and functions of OBP and CSP genes
in B. odoriphaga are still unknown.
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) predicted by SMART (Table S8).

P_GOBF,

No significant similarity annotation found, these genes encode proteins that have a conserved domain (PhBP or PB

ND: Not detected; “—":

In the present study, we performed transcriptome analysis of
the antennae and body of female and male adult of B. odoriphaga,
respectively, and identified 54 putative chemosensory genes
comprising 49 OBPs and 5 CSPs. Then, sequence alignment
and phylogenetic analysis were undertaken among Dipteran
OBPs and CSPs. The transcript expression levels of 54 putative
chemosensory genes among different tissues (female antennae,
male antennae, legs, wings, abdomens and thoraxes, and heads)
were investigated by quantitative real-time PCR (qRT-PCR)
(Graphical Abstract). This work provides a starting point to
facilitate functional studies of these OBP and CSP genes in
B. odoriphaga at the molecular level.

MATERIALS AND METHODS

Insect Culture and Tissue Collection

A laboratory colony of B. odoriphaga was collected from a
Chinese chive field in Liaocheng, Shandong Province, China
(36°02'N, 115°30'E) in April 2013. The insects were reared on
fresh chive rhizomes and placed in Petri dishes, which were
maintained at 25 £ 1°C, 70 = 5% RH with a photoperiod of
14:10 h (L:D) in a climate-controlled chamber. The antennae and
the remaining body parts (mixture of heads, thoraxes, abdomens,
legs and wings) of female and male adults were separated quickly
and then stored in liquid nitrogen until RNA extraction (female
antennae: FA; male antennae: MA; female body: FB; male body:
MB). Approximately 1,000 antennae and 30 bodies of females
and males were collected for RNA extraction, and three biological
replicates were performed.

RNA Isolation, cDNA Library Construction,

and lllumina Sequencing

Total RNA was isolated from antennae and bodies using
Trizol reagent (Invitrogen, Carlsbad, CA, USA), according to
the manufacturer’s instructions. Then, all the RNA samples
were treated with DNase I (Invitrogen, Carlsbad, CA,
USA) to eliminate the genomic DNA. The concentration
of isolated RNA was measured with a NanoDrop ND-2000
spectrophotometer (NanoDrop products, Wilmington, DE,
USA), and the integrity of RNA extractions were determined
by agarose gel electrophoresis. cDNA library construction was
performed using a TruseqTM RNA sample prep Kit (Illumina,
San Diego, CA, USA) and was sequenced on an Illumina
HiSeq 4000 (Illumina, San Diego, CA, USA). After removing
the low quality and adapter sequences, clean short reads were
mapped to contigs, and contigs were assembled to unigenes
by the short-read assembly program Trinity (Grabherr et al,
2011). Then, unigenes were annotated using different databases,
including the non-redundant protein (Nr), nucleotide sequence
(Nt), Swiss-Prot, Clusters of Orthologous Groups (COGQG),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene
Ontology (GO) databases (E-value < 1072).

Identification and Comparison of Transcript
Abundance of OBP and CSP Genes

The tBLASTn program was used to identify candidate unigenes
that encode putative OBPs and CSPs from the antennae,
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body transcriptomes and fourth instar larval transcriptome of
B. odoriphaga (unpublished data). All putative OBP and CSP
genes were confirmed by the BLASTx program at the National
Center for Biotechnology Information (NCBI, http://blast.ncbi.
nlm.nih.gov/Blast.cgi). The open reading frames (ORFs) of OBP
and CSP genes were predicted by the ORF Finder (https://
www.ncbi.nlm.nih.gov/orftinder/). The conserved domains of
these candidate OBPs and CSPs were predicted utilizing SMART
(http://smart.embl.de; Letunic and Bork, 2017).

To compare the expression levels of the candidate OBP
and CSP genes in the antennae and body transcriptomes (FA,
MA, FB, and MB) of B. odoriphaga, the FPKM (fragments per
kilobase of exon per million fragments mapped) values were used
for calculating transcript abundance (Andersson et al., 2014).
Heatmaps of gene expression for different OBPs among FA, MA,
FB and MB were generated by R version 3.4.1 (R Development
Core Team, The R Foundation for Statistical Computing, Vienna,
Austria).
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FIGURE 1 | Tissue- and sex-specific expression profiles of OBP genes in antennae and body transcriptomes in B. odoriphaga. FA, female antennae; MA, male
antennae; MB, male body; FB, female body. The FPKM-values were used for calculating transcript abundance. These 46 OBP genes identified from antennae and
body transcriptomes were clustered into four classes (Cluster 1-4). Cluster 1 represents the OBPs mainly expressed in the FA and MA. OBPs in Cluster 2 were
relatively highly expressed in not only the FA and MA but also the MB. Genes in Clusters 3 and 4 were more highly expressed in the FB and MB, respectively. Three
biological replicates were conducted for each treatment (such as FA1, FA2, and FA3).
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Verification of the OBP and CSP

Sequences by Cloning and Sequencing

All the putative OBP and CSP nucleotide sequences obtained
from the B. odoriphaga transcriptomes were confirmed by
gene cloning and sequencing. Gene-specific primers were
designed to amplify the complete or partial ORF sequences
of each OBP and CSP gene (Table S1). The cDNA template
was synthesized by the TransScript® All-in-One First-Strand
cDNA Synthesis SuperMix for PCR Kit (TransGen Biotech,
Beijing, China). PCR amplification was performed in a 25
pl volume containing 2.0 pul of cDNA (300 ng), 0.5 pl of
TransScript® KD Plus DNA polymerase (TransGen Biotech,
Beijing, China), 5 pl of 5xTransScript® KD Plus Buffer,
2 wl of ANTPs (2.5mM), 0.5 pl each of the forward and
reverse primers (10 wM), and 14.5 pl of nuclease free H,O.
The cycling conditions were an initial denaturation at 94°C
for 3min, followed by 35 cycles of 94°C for 30s, 56°C
for 30s, 68°C for 45s, and a final extension at 68°C for
10min. Then, the PCR products were purified by agarose
gel electrophoresis and an EasyPure® Quick Gel Extraction
Kit (TransGen Biotech, Beijing, China), and subcloned into
the pEASY®-Blunt cloning vector (TransGen Biotech, Beijing,
China) and sequenced.

Sequence and Phylogenetic Analysis

The putative N-terminal signal peptides of BodoOBPs and
BodoCSPs were predicted by the SignalP V 4.1 program (http://
www.cbs.dtu.dk/services/SignalP/; Nielsen, 2017). Multiple
alignments and identity calculation were conducted by Clustal
X 2.0 software (Larkin et al., 2007). A total of 280 OBP protein
sequences from four Diptera species were used to construct
the phylogenetic tree, including 49 OBPs from B. odoriphaga
identified in this study, 51 OBPs of D. melanogaster, 69 OBPs of
Anopheles gambiae, and 111 OBPs of Aedes aegypti (Sequences
are listed in Table S2). In addition, 97 CSP protein sequences
from seven Diptera species were used for the phylogenetic
analysis, including 5 CSPs of B. odoriphaga identified in
the present study, 4 CSPs of D. melanogaster, 8 CSPs of A.
gambiae, 8 CSPs of Anopheles sinensis, 43 CSPs of A. aegypti,
27 CSPs of Culex quinquefasciatus, and 2 CSPs of D. antiqua
(sequences are listed in Table S3). All the phylogenetic trees
were constructed by MEGA 6.0 software with the neighbor-
joining method using default settings and 1,000 bootstrap
replications (Tamura et al., 2013). The final phylogenetic tree
was visualized by an online tool, EvolView (He Z. L. et al,
2016).

Motif Analysis

A total of 318 OBPs (from 6 Diptera species) and 138 CSPs (from
18 Diptera species) were used for comparing the motif pattern
between Diptera OBPs and CSPs. All OBP and CSP sequences
(Table S4) with intact ORFs were used for motif discovery and
pattern analysis. The protein motifs analysis was performed using
the MEME (version 4.12.0) online server (http://meme-suite.org;
Bailey et al., 2015). The parameters used for motif discovery were:
minimum width = 6, maximum width = 10, and the maximum
number of motifs to find = 8.

TABLE 2 | List of CSP genes in Bradysia odoriphaga.
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Tissue Expression Profile Analysis

The expression profiles for different tissues of these 49
OBPs and 5 CSPs were evaluated by qRT-PCR. The female
antennae (FA), male antennae (MA), legs (L), wings (W),
abdomens and thoraxes (AT), and heads (H) were collected
from adult B. odoriphaga after eclosion without mating.
Total RNA was isolated from different tissues using Trizol
reagent (Invitrogen, Carlsbad, CA, USA), according to
the manufacturer’s instructions. The cDNA template was
synthesized by the TransScript® All-in-One First-Strand cDNA
Synthesis SuperMix for qPCR (One-Step gDNA Removal)
Kit (TransGen Biotech, Beijing, China). Specific primers used
for qRT-PCR were designed by the software Beacon Designer
7.90 (PREMIER Biosoft International) and are listed in Table
S5. Two reference genes, RPS15 (ribosomal protein S15) and
RPL18 (ribosomal protein L18) were used for normalizing target
gene expression and to correct for sample-to-sample variation
(Shi et al, 2016). The experiment was conducted using the
LightCycler® 96 System (Roche Molecular Biochemicals, Lewes,
United Kingdom) and each reaction was conducted in a 20 pl
reaction mixture containing 1.0 pl of sample cDNA (150 ng),
10 pl of Mix (2x TransScript® Tip Green qPCR SuperMix)
(TransGen Biotech, Beijing, China), 1.0 pl of forward primer
(10 wM), 1.0 w1 of reverse primer (10 wM), and 7 pl of nuclease
free H,O. The reaction programs were as follows: 95°C for
10 min, followed by 45 cycles of amplification (95°C for 10s
and 60°C for 305s). Then, a melting curve was analyzed for PCR
products to detect a single gene-specific peak and to check for
the absence of primer dimer peaks. Negative controls were non-
template reactions (replacing cDNA with H,O). Three technical
replicates and three biological replicates were conducted for all
experiments.

The results were analyzed using the LightCycler® 96 software.
Relative quantification of different tissues was calculated by
the comparative 2~42¢t method (Livak and Schmittgen, 2001).
Comparative analyses of each target gene among different tissues
were determined using one-way ANOVA tests followed by
Tukey’s HSD method using SPSS statistical software (version
18.0, SPSS Inc., Chicago, IL, USA) (P < 0.05). When applicable,
the values are shown as the mean =+ SE.

RESULTS

Overview of the Transcriptome of
B. odoriphaga

A total of 42.6 GB of clean data was obtained from the antennae
and body transcriptomes of B. odoriphaga. After assembling
all samples together, we identified 55,867 unigenes with an
N50 length of 2,806 bp (Table S6). For the annotation, 32,492,
17,867, 26,930, 26,289, 15,633, 26,541, and 11,578 unigenes were
annotated to Nr, Nt, SwissProt, InterPro, KEGG, COG, and GO
databases, respectively, which covered 35,013 (62.67%) of the
total unigenes (Table S7).

Gene Ontology (GO) annotation analysis was used to
categorize these unigenes into different categories. In the
molecular function category, the genes associated with binding,
catalytic, and transporter activities were the most abundant
groups. In the biological process category, most genes were

involved in cellular process, metabolic process, and single-
organism process. Cell, cell part, and membrane were the most
prevalent in the cellular component category (Figure S1).

Identification and Analysis of OBP Genes

A total of 46 putative OBP genes (BodoOBP1-46) were identified
in the antennae and body transcriptome of adult B. odoriphaga
(Table 1). Moreover, we also discovered three other putative
OBP genes (BodoOBP47-49) from the fourth instar larval
transcriptome of B. odoriphaga (unpublished data). Forty-eight
of the 49 OBP genes (except for BodoOBP32) have intact
open reading frames (ORFs) with lengths ranging from 378 to
759 bp (Table 1). Nearly all full-length OBPs had a predicted
signal peptide (a signature of secretory proteins) at the N-
terminal region except for BodoOBP22/25. All 49 OBPs had
the predicted domains of pheromone/general odorant binding
protein (PhBP or PBP_GOBP) (InterPro: IPR006170) (Table S8).
Based on the number and location of the conserved cysteines,
all BodoOBPs could be divided into the following three groups:
Minus-C OBPs group (BodoOBP14/23/26/31/33/41/42/43/44),
Plus-C OBPs group (BodoOBP19/34), and the remaining OBPs
belong to Classic OBPs group (Figure S2).

Gene expression levels of all 46 OBPs identified from antennae
and body transcriptomes were assessed using FPKM-values,
represented in a heatmap (Figure 1). The three repetitions of
each tissue (FA, MA, FB, and MB) were clustered together,
indicating that the results are stable and repeatable. Based on
the expression levels in different tissues, all 46 OBP genes were
clustered into 4 groups. Cluster analysis revealed that 20 OBP
genes (Cluster 1) have similar expression patterns and were
relatively high in the female and male antennae (FA and MA).
Four and fourteen OBPs were more highly expressed in the
FB (Cluster 3) and MB (Cluster 4), respectively. Moreover, the
remaining eight OBPs were relatively highly expressed in not only
the FA and MA but also the MB (Cluster 2) (Figure 1).

Identification and Analysis of CSP Genes
We have identified five putative CSP genes (BodoCSP1-5) from
the antennae, body and larval transcriptome of B. odoriphaga. All
the CSP genes have intact ORFs with lengths ranging from 327
to 708 bp, and with predicted signal peptide sequences at the N-
terminus (Table 2). All BodoCSPs had typical structural features
of insect CSPs with four conserved cysteines (Figure S3) and a
conserved OS-D domain (olfactory system of D. melanogaster)
(InterPro: IPR005055) (Table S9).

Gene expression levels of all five CSPs in different tissues
were assessed by FPKM-values. BodoCSP3 and BodoCSP5 were
significantly higher expressed in the female and male antennae
(FA and MA), BodoCSPI and BodoCSP2 were relatively highly
expressed in the MB, and BodoCSP4 exhibited similar expression
levels in different tissues (Table 2).

Phylogenetic Analysis of B. odoriphaga

OBP and CSP Genes

A phylogenetic tree of 280 OBPs from 4 Diptera species
(B. odoriphaga, D. melanogaster, A. gambiae, and A. aegypti)
was constructed using the protein sequences to reveal the
diverging relationships among them (Figure2). Some pairs
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of BodoOBPs are paralogous genes, such as BodoOBP26/33,
BodoOBP4/20, BodoOBP1/2, BodoOBP18/46, BodoOBP22/25,
BodoOBP10/12, BodoOBP3/45, BodoOBP16/24,
BodoOBP17/47, BodoOBP23/43, and BodoOBP31/41. All
of these paralogous genes showed very high bootstrap values,
which may indicate that these genes are the result of a recent
gene duplication event within the B. odoriphaga genome.

Moreover, 2 putative Plus-C OBPs (BodoOBP19 and 34) were
clustered into the Plus-C OBP group with the 50 Plus-C OBPs
from the other Diptera insect, and 7 putative Minus-C OBPs
(BodoOBP14/23/31/41/42/43/44) were clustered into the Minus-
C OBP group with 5 Minus-C OBPs from D. melanogaster,
suggesting their different evolutionary relationships compared to
the classic OBPs (Figure 2). In addition, BodoOBP13/22/25 were
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FIGURE 2 | Neighbor-joining tree of 280 OBP proteins from Diptera species. The protein names and sequences of the 280 OBPs that were used in this analysis are
listed in Table S2. Bootstrap values are shown. The Plus-C OBPs clade, Minus-C OBPs clade, LUSH clade, and OS-E/OS-F clade are shown. The Diptera species
used to construct this tree include B. odoriphaga (Bodo, red), D. melanogaster (Dmel, green), A. gambiae (Agam, purple), and A. aegypti (Aaeg, blue).
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clustered with the DmelOBP76a (LUSH, an OBP with binding
affinity to the pheromone), and BodoOBP1/2/4/8/20/26/28/33
were clustered with DmelOBP83a/83b (OS-E/OS-E, an OBP
group co-expressed with LUSH and associated with pheromone
detection) (Figure2), indicating that they might have a
similar function in the detection of candidate pheromones in
B. odoriphaga.

The neighbor-joining tree of CSPs was conducted using
5 putative BodoCSPs and 92 CSPs from 6 other Diptera

species (D. melanogaster, A. gambiae, A. sinensis, A. aegypti,
C. quinquefasciatus, and D. antiqua) (Figure 3). Five putative
BodoCSPs were scattered into five subgroups (Groups 1-5),
where each group included one BodoCSP. Moreover, four
DmelCSPs were scattered into four subgroups (Groups 1-4),
with one DmelCSP in each group (Figure 3). Almost every
group included one or more CSPs from each Dipteran species,
suggesting that the CSP gene has been highly conserved among
different Dipteran insects.
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FIGURE 3 | Neighbor-joining tree of 97 CSP proteins from Diptera species. The protein names and sequences of the 97 CSPs that were used in this analysis are
listed in Table S3. Bootstrap values are shown. Five BodoCSPs were scattered into five subgroups (Groups 1-5), where each group includes one BodoCSP. The
Diptera species used to construct this tree include B. odoriphaga (Bodo, red), D. melanogaster (Dmel, green), A. gambiae (Agam, purple), A. aegypti (Aaeg, blue), A.
sinensis (Asin, orange), C. quinquefasciatus (Cqui, brown), and D. antiqua (Dant, navy).
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Motif Pattern Analysis of OBPs and CSPs
The motif pattern analysis results showed that 68 different motif
patterns were observed in the 318 OBPs, and 195 OBPs (61.32%)
had the most common five motif-patterns. Eighty-six of them had
the most common motif-pattern 4-1-2, fifty-three OBPs only had
motif 1, and thirty-six OBPs had the motif-pattern 1-2 (Figure 4).
The motif pattern analysis results of 138 CSPs of Diptera insects
showed that 8 different motif patterns were found, suggesting that
CSPs were more conserved than the OBPs. In the 8 different motif
patterns, 123 CSPs (89.13%) had the most common three motif
patterns: 93 CSPs had motif pattern 8-5-6-1-3-2-4-7, 16 CSPs had
motif pattern 6-1-3-2-4, and 14 CSPs had motif pattern 5-6-1-
3-2-4-7 (Figure S4). The remaining 15 CSPs shared the 5 other
different motif patterns.

Transcript Expression Levels of
B. odoriphaga OBPs

The transcript expression levels of 49 BodoOBP genes in female
antennae (FA), male antennae (MA), legs (L), wings (W), heads
(without antennae, H), and abdomens and thoraxes (AT) were
analyzed by qRT-PCR. The results suggested that 22 OBP
genes  (BodoOBP1/2/4/5/6/7/8/10/11/12/13/15/18/20/22/24/26
128/33/41/43/46) were significantly higher expressed in
the antennae (FA or MA) (Figures 5A,B), and 9 of the 22
antennae-biased OBP genes (BodoOBP2/4/6/8/12/13/20/28/33)

(MA) (Figure5A). Moreover, nine BodoOBP genes
(BodoOBP3/9/19/21/34/35/38/39/45) were intensively expressed
in the legs (L) than in other tissues (Figure5C), whereas
five BodoOBP genes (BodoOBP17/30/19/21/34) were mainly
detected in the wings (W) (Figure 5D). Three BodoOBP genes
(BodoOBP14/23/31) were significantly higher expressed in the
heads (H), and two BodoOBP genes (BodoOBP29/36) showed
higher expression levels in the abdomens and thoraxes (AT)
(Figure 5E). In addition, the remaining eight BodoOBP genes
(BodoOBP16/25/27/40/42/47/48/49) were expressed in more
than three tissues, or they showed no significant differences
among different tissues (Figure 6).

Transcript Expression Levels of
B. odoriphaga CSPs

The quantitative expression levels of five BodoCSP genes
in different tissues were characterized using qRT-PCR.
The results showed that BodoCSP1 had higher expression
levels in the legs (L) than in other tissues (Figure?7),
BodoCSP2 was significantly higher expressed in the heads
(H), and BodoCSP3 and BodoCSP5 were mainly expressed
in antennae (FA and MA). Moreover, BodoCSP4 showed
predominantly expression in the male antennae (MA) and
higher expression in the female antennae (FA) and heads (H)

were predominantly expressed in the male antennae (Figure7).
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DISCUSSION

In the present study, we sequenced and analyzed the
transcriptomes of antennae and bodies of adult B. odoriphaga
(female and male), and searched for OBP and CSP genes from
the transcriptomes of adults and larvae (our unpublished data).
In total, we identified 49 OBP and 5 CSP genes in B. odoriphaga.
The number of OBPs in B. odoriphaga was similar to the number
in D. melanogaster (52), D. simulans (52), Episyrphus balteatus
(49), and Eupeodes corollae (44) (Vieira and Rozas, 2011; Wang
et al., 2017). Meanwhile, the number of OBPs in B. odoriphaga
was greater than in some other Dipteran agricultural pests. For
example, 15 OBPs were found in Delia antiqua, 20 in Delia
platura, 20 in Bactrocera dorsalis, 32 in Mayetiola destructor Say,
and 26 in Sitodiplosis mosellana (Andersson et al., 2014; Gong
et al., 2014; Ohta et al., 2014, 2015; Liu et al,, 2016) (Figure 8).
There are likely multiple reasons responsible for identifying
so many OBP genes in our study. First, this pest has a wide
range of host plants (such as chive, shallot, garlic, cabbage,
and mushrooms) (Ma et al., 2013), which might result in an
increase in the number of OBP genes for detecting various odor
molecules in a complex environment. Second, OBP genes were
identified not only from the adult antennae transcriptome but
also from the adult body and larval transcriptomes. If we solely
identified OBP genes from the antennae transcriptome, the
“Cluster 3” and “Cluster 4” genes (18 OBP genes) (Figure 2) and
3 larval transcriptome OBP genes may not have been identified.
Additionally, previous studies have shown that the sequencing
depth of different sequencing platforms will influence the
number of identified OBP genes (Gu et al., 2015; Cui et al,
2017). The FPKM-values of 13 OBP genes were lower than
25 in the antennae and body transcriptomes of B. odoriphaga,
which suggests that the sequencing depth of the Hiseq 4000
sequencing platform was superior, and this may be another
reason for the identification of so many OBP genes in the present
study. In addition, we identified five CSP genes in B. odoriphaga,
and this number is very close to the number of CSP genes in

D. melanogaster (4), D. simulans (4), B. dorsalis (5), and E.
balteatus (6) (Vieira and Rozas, 2011; Liu et al., 2016; Wang
etal., 2017). Compared with the OBP genes (mean value: 53.65),
only a small number of CSP genes (mean value: 10.25) were
detected in 17 species of Diptera insects (Figure 8), which is due
to the evolutionary pattern in the CSP gene family and is less
dynamic than in the OBP gene family (Vieira and Rozas, 2011).
In addition, previous studies demonstrated that the C-patterns
of OBPs and CSPs are similar among different insect Orders,
whereas the motif-patterns are different (Zhou, 2010; Gu et al,,
2015; He et al., 2017). For example, the motif-patterns between
Dipteran and Lepidopteran GOBPs are different (Xu et al., 2009).
Our present study also found that the motif-patterns among
Dipteran OBPs were different, this is because the C-patterns
of OBPs determines their crucial conserved structure, and
motif-patterns fine-tune their specific functions (Xu et al., 2009).

The tissue expression profiles of chemosensory genes may
be indicative of their biological functions, and they contribute
to our understanding of the molecular mechanism of insect
olfaction (He et al., 2011; Gu et al., 2015; Yuan et al., 2015).
Various investigations have suggested that a high percentage
of OBP genes are expressed in the antennae of insects, and
antennae-enriched OBPs play crucial roles in detecting sex
pheromones and host volatile compounds (Gong et al., 2014;
Brito et al., 2016). In the current study, 22 of 49 BodoOBPs
were uniquely or primarily expressed in the antennae compared
to other tissues (Figures5A,B). Among the 22 antennae-
enriched OBPs, 9 were specifically expressed in male antennae
(BodoOBP2/4/6/8/12/13/20/28/33) and might have potential
functions in sex pheromone detection. Moreover, a phylogenetic
analysis of OBPs suggested that BodoOBP13 clustered
with the 11-cis-vaccenyl acetate binding PBP DmelOBP76a
(LUSH) (Ha and Smith, 2006), and BodoOBP2/4/8/20/28/33
clustered together with DmelOBP83a/83b, an OBP group
associated with the detection of volatile pheromones in
D. melanogaster (Shanbhag et al., 2001a; Siciliano et al,
2014) (Figure2). Hence, our results suggest that these
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FIGURE 6 | Transcript levels of non-tissue-specific OBP genes in different tissues of B. odoriphaga. FA, female antennae; MA, male antennae; L, leg; W, wing; H,
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proteins (BodoOBP2/4/8/13/20/28/33) may be involved in
the detection of sex pheromones in B. odoriphaga. In addition,
13 other OBPs that were highly expressed in the antennae
(BodoOBP1/5/7/10/11/15/18/22/24/26/41/43/46)  might  be
associated with functions in general host odorant perception.
Although the majority of OBPs are specifically expressed in
antennae, it has become clear that many OBPs are enriched in
non-antennal tissues and play key roles in olfactory or gustatory
perception (Yasukawa et al., 2010; Sparks et al., 2014; Sun et al,,
2017). For instance, two OBP genes (OBP57d and OBP57¢) in
Drosophila species were co-expressed in the taste sensilla of the
leg, and these contribute to the perception of octanoic acid and
the location of host plants (Yasukawa et al., 2010). Previously it
was demonstrated that AlinOBPI11 is predominately expressed in
adult legs of Adelphocoris lineolatus and has a crucial role for

detection of non-volatile secondary metabolites of host plants
(Sun et al., 2016, 2017). In the present study, qRT-PCR results
show that nine BodoOBPs (BodoOBP3/9/19/21/34/35/38/39/45)
were significantly higher expressed in the legs (Figure 5C),
and the transcript abundance (FPKM-value) of these genes in
transcriptomes suggested that four of nine leg-specific OBPs
(BodoOBP9/35/38/39) were male body (MB) enriched (Figure 1),
implying that these four OBPs might also function in the
recognition of sex pheromone compounds. The remaining
five leg-specific OBPs may probably have a function to bind
host plant volatile or non-volatile compounds. Previous studies
have suggested that OBPs were also more highly expressed in
gustatory organs, such as the heads and wings (Galindo and
Smith, 2001; Shanbhag et al, 2001b; Jeong et al., 2013). In
the present study, five OBP genes (BodoOBP17/30/32/37/44)
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were abundantly expressed in the wings, and three OBP genes
(BodoOBP14/23/31) were enriched in the heads, suggesting that
these genes might also participate in taste functions (Amrein
and Thorne, 2005). In addition, two OBP genes (BodoOBP29/36)
were significantly more highly expressed in the abdomens and
thoraxes (AT), and heatmap results show that BodoOBP29/36
were specifically expressed in the female body (FB), indicating
that these two genes might be involved in the synthesis and
release of sex pheromones, or in the detection of egg-laying
substrates (Zheng et al., 2013; Yuan et al., 2015).

CSPs belong to another type of small soluble proteins
identified in multiple insect species (Brito et al., 2016; Pelosi
et al., 2018). Compared with OBPs, CSPs are more conserved,
often exhibiting 40-50% identical amino acid residues between
orthologs from different species (Pelosi et al., 2006, 2018). In
the present study, the results of MEME motif analysis showed
that 123 CSPs (89.13%) had the three most common motif-
patterns, whereas this number was only 55.03% in the OBPs.
Moreover, the CSP-gene phylogeny suggested that most CSPs
were scattered into five subgroups. Nearly every group included
one or more CSPs from each Diptera species, which also suggests
that CSPs are highly conserved among different Diptera insects.
In olfactory perception, CSPs have similar functions to OBP. The
hydrophobic pocket of CSPs can also recognize and transport
chemical signals to chemoreceptors (Sun et al, 2014; Wang
et al., 2016). Our results show that BodoCSP3/5 were antennae-
enriched and might be involved in the chemosensory process.
Moreover, previous studies have demonstrated that CSPs are
not only associated with chemoreception but also participate
in multiple physiological processes, such as limb regeneration
of cockroaches, embryo maturation of honeybees, and larvae
ecdysis of fire ants (Kitabayashi et al., 1998; Maleszka et al., 2007;
Cheng et al., 2015; Pelosi et al., 2018). BodoCSP1 and BodoCSP2
were significantly more highly expressed in the legs and heads,
respectively, and BodoCSP4 was more highly expressed in both
the antennae and heads. We speculate that these CSPs might
have other crucial physiological functions and require further
functional verification.
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