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We propose a detailed CellML model of the human cerebral circulation that runs faster

than real time on a desktop computer and is designed for use in clinical settings

when the speed of response is important. A lumped parameter mathematical model,

which is based on a one-dimensional formulation of the flow of an incompressible

fluid in distensible vessels, is constructed using a bond graph formulation to ensure

mass conservation and energy conservation. The model includes arterial vessels

with geometric and anatomical data based on the ADAN circulation model. The

peripheral beds are represented by lumped parameter compartments. We compare the

hemodynamics predicted by the bond graph formulation of the cerebral circulation with

that given by a classical one-dimensional Navier-Stokes model working on top of the

whole-body ADAN model. Outputs from the bond graph model, including the pressure

and flow signatures and blood volumes, are compared with physiological data.

Keywords: cardiovascular system, circulation model, bond graph, CellML, OpenCOR, ADAN model, 0D model,

blood flow

1. INTRODUCTION

Two challenges for biophysically based physiological modeling are to link the model parameters to
patient-specific data and to make the models fast enough to become useful and accessible both, to
reach a wide community of users, and to fit a clinical setting. For the prediction of pressure and flow
in the patient-specific vascular system there is also the need to “close the loop” to ensure continuity
of blood flow, and this requires a systems level model that includes arteries, veins and the capillary
networks within specified tissue beds. The appropriate level of granularity for a model depends
of course on the clinical or scientific question being studied. Available formulations for blood
flow include three-dimensional (3D) FSI models (Heil and Hazel, 2011; Brown et al., 2012), rigid
domain 3D fluid models (Shojima et al., 2004; Cebral et al., 2005), one-dimensional (1D) models
(Reymond et al., 2009; Blanco et al., 2014), and zero-dimensional (0D) or “lumped-parameter”
models (Korakianitis and Shi, 2006). In this paper we address the issue of execution time and the
question of granularity in the context of a model of the cerebral circulation which will make it
possible to model the exchange of solutes between blood and various tissue beds under conditions
where vasodilation can also occur.
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The analysis of pressure and flow in the vascular system is
usually based on the incompressible direct Navier-Stokes (DNS)
equations that ensure mass conservation and energy balance. We
assume laminar flow since the Reynolds numbers are below the
transition to turbulence in our example. The model parameters
for the incompressible fluid considered here, blood, viscosity,
and density, are both well understood and measurable. The
compliance of the vessel wall is described by a constitutive
relation that links the vessel diameter (and temporal deformation
rate in the case of viscoelastic vessel wall models) to the fluid
pressure. 1D blood flow equations are derived from 3D DNS
by assuming negligible radial flow and integrating axial fluid
velocity over the vessel cross-section. Moreover, an additional
assumption must be made about the time-varying radial profile
of the axial velocity. For a steady state well developed flow, such
profile is of course parabolic, but a more realistic assumption
is a flatter-than-parabolic profile, which then requires at least
one more empirical parameter to be specified (Hunter, 1972).
These empirically determined parameters imply that, given the
uncertainty in geometrical and biophysical parameters for the
patient specific modeling, there is always uncertainty in the
predicted pressure and flow results and the need to include
computationally expensive fluid calculations (e.g., solving 3D
DNS) must be balanced against this uncertainty.

The primary goal of this paper is to compare flow and pressure
waveforms predicted by a 1D blood flow model, consisting of
partial differential equations, with the output of a bond graph
based model, which generates a system of ordinary differential
equations (ODEs) that can be solved approximately 200x faster
than the 1D model and at close to real time on a desktop
computer. The model used here is based on the ADAN cerebral
circulation model (Blanco et al., 2015), along with a relatively
simple model of flow through the heart and lungs, as an example.
The results show the bond graph solution to be within 5% of the
1D model solution for flow and pressure at every point in the
cerebral circulation model.

This paper is organized as follows. In section 2.1, the
bond graph method is introduced and various components are
presented. In section 2.2, the architecture of the cardiovascular
system model is described. The software, model structure and
simulation setup are presented in the section 3.1. The simulation
results of the bond graph arterial model (open-loop) and
comparisons against the 1D model are presented in section 3.2
and section 3.3. Then the simulation results for the closed-loop
bond graphmodel of the cardiovascular system are demonstrated
in section 3.4. Finally, concluding remarks and future works are
outlined in section 4.

2. MATERIALS AND METHODS

2.1. Bond Graph Approach
The bond graph approach to formulating models dealing with
mass and energy transfer was developed by Henry Paynter in the
1960s to represent electro-mechanical control systems (Paynter,
1961). It was later extended to include chemical processes
by Breedveld (1984), including concepts from the theory of
network thermodynamics by Aharon Katchalsky and colleagues
(Oster et al., 1971). Papers by Peter Gawthrop and Edmund

Crampin have brought the approach into the bioengineering
domain (Gawthrop and Crampin, 2014; Gawthrop et al., 2015a,b;
Gawthrop and Crampin, 2016).

The first key idea, based on recognizing that energy and
power are the only quantities that are common across different
physical systems, is to separate energy transmission from
storage and dissipation, and to provide the concept of potential
(called “effort” in the engineering literature) with units of
Joules per some_quantity as the common driving force behind
the flow of that some_quantity per second. The product of
potential and flow is then always power in units of Joules
per second. The “some_quantity” has units of meters, meters3,
Coulombs, Candela, moles, or entropy for, respectively, rigid
body mechanics, continuum mechanics (including fluid flow),
electrical, electromagnetic, chemical, and heat transfer processes.
As explained further below, the second key concept is that of a 0-
junction, where potential is defined and mass balance is applied,
and a 1-junction, where flow is defined and energy balance is
applied. The extraordinary utility of these concepts is to recognize
that Kirchhoff’s voltage law in electrical circuits, Newton’s force
balance in a mechanical system, and stoichiometric balance in
a biochemical system, are all just different manifestations of
the same underlying principle of energy conservation and can
therefore be represented by the same bond graph equation.

2.1.1. Units
Many physical systems can be described by a driving potential
expressed as Joules per unit of some quantity, and a flow
expressed as that quantity per second. The quantity could be
coulomb, meters, moles, etc., in different physical systems. The
power is always the product of the driving force and the flow
expressed as Joules per second. The seven units of the SI system
under the newly proposed definitions are now based on constants
that are consistent with the use of Joules and seconds (together
covering energy and power), meters, moles, entropy, Coulombs,
and Candela. Table 1 in Supplementary Material displays the
bond graph concepts in the fluid mechanics domain.

2.1.2. Bond Graph Formulation
In bond graph formulation, there are four basic variables. In
the fluid mechanics domain these are given by: potential µ is
energy density or pressure (J.m−3), flow υ is volumetric flow
(m3.s−1), time integral of potential p is momentum (J.s.m−3)
and time integral of flow q is quantity or volume (m3). Product
µ.υ is power (J.s−1) which is a generalized coordinate to model
the complete systems residing in several energy domains. A
bond with covariables µ and υ is therefore used to represent
transmission of energy. The bond represents a mechanism for the
transmission of energy and power, and the arrow head indicates
the assumed direction of power flow (see Figure 1). The flow υ

and potential µ must satisfy conservation laws.
There are also the concept of 0-junction and 1-junction for

conservation laws. The 0-junction defines a common potential
µ which ensures that the potential is identical at each port and
imposes mass conservation constraint based on υ . The 1-junction
defines a common flow υ which ensures that the flow is identical
at each port and imposes energy conservation constraint based on
µ. Since sum of the flows is zero with µ constant for 0-junction
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FIGURE 1 | Representation of energy bond.

and sum of the potentials is zero with υ constant for 1-junction,
the transmission of power through junction is conserved for both
kinds of junctions, that is:

∑

µ.υ = 0. (1)

2.1.3. Bond Graph Elements
Bond graph formulation is a graphical notation for the set
of linear constraint equations (the conservation laws), but the
constitutive relations (to be addressed next) can be nonlinear.

2.1.3.1. R-element
Energy µ can be dissipated by a resistor R in proportion to the
flow υ with an empirical relation which can be a simple linear
relation such as Equation 2 or a complex nonlinear relation:

µ = υR. (2)

In the fluid mechanics systems, the R-element represents the
viscous resistance in opposition to the blood flow and for a
cylindrical vessel can be analytically calculated using Poiseuille
relation:

R =
8νl

πr4
, (3)

where ν is the blood viscosity, l is the vessel length and r is the
vessel radius.

2.1.3.2. C-element
Energy µ can be stored statically by a capacitor C without
any loss. In the bond graph terminology, a one-port capacitor
relates energy to the quantity q or time integral of flow by an
empirical relation such as Equation 4. The C-element stores q by
accumulating the net flow υ to the storage element:

µ =
q

C
, (4)

q̇ = υ , (5)

in which the dot stands for time derivative. In the fluidmechanics
systems, and particularly in the cardiovascular system, the C-
element represents the vessel wall compliance and can be
calculated from blood vessel properties. For a homogeneous
linear elastic material and for a cylindrical vessel, the compliance
is characterized as follows:

C =
2πr3l

hE
, (6)

where E is the Young’s modulus and h is the vessel thickness.

2.1.3.3. I-element
Energyµ can be stored dynamically by an inductor I without any
loss. In bond graph formulation, a one-port inductor relates flow
to the momentum p or time integral of potential by an empirical
relation such as Equation 7. The I stores p by accumulating the
net potential µ to the storage element.

υ =
p

I
, (7)

ṗ = µ. (8)

In the fluid mechanics systems, the I-element is used to model
the mass inertial effects in a pipe and can be defined for straight
cylindrical vessels as:

I =
ρl

πr2
, (9)

where ρ is the blood density and l is the vessel length.
Figure 2 shows the relation of the state variables to the

constitutive relations.

2.1.4. Causality
Causality establishes the cause and the effect relationship. It
specifically implies that either the potential or flow variable
on that bond is known. Causality is generally indicated by
a causal stroke at the end to which the potential receiver is
connected. Elements which store or dissipate energy do not
impose causality on the system, but they have preferred causality
for computational reasons. These elements with their preferred
causality are shown in Figure 3.

In the bond graph approach, junctions interconnect the
corresponding elements and constrain the possible causalities of
the element ports connected to it. A 0-junction can only have one
potential output. In a similar way, a 1-junction can only have one
flow output. Figure 4 illustrates causality in four-port 0-junction
and 1-junction.

2.1.5. Vessel Segments
In this section, we developed a library of bond graph elements for
modeling the blood flow in distensible vessels. The modularity of
the bond graph approach enables us to develop a wide range of
elements and incorporate them into the model based on a set of
assumptions. There are four basic types of elements for a vessel
segment depending on whether potential or flow BC is prescribed
at the inlet and the outlet (see Figure 5). Each vessel segment is
represented by a parallel combination of one C-element and a
series combination of one R-element and one I-element. The C,
R, and I represent the vessel wall compliance, the viscous friction
and the inertia of the blood, respectively. These elements are
interconnected by a 0-junction for same blood pressure and a
1-junction for the same blood flow.

The set of equations for µυ-type (see Figure 5A) after
rearrangements is:

µ̇ =
υ − υout

C
, (10)
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FIGURE 2 | State variables and constitutive relations in the bond graph

approach.

FIGURE 3 | Preferred causality for R, C, and I elements.

FIGURE 4 | Causality in four-port 0-junction and 1-junction.

υ̇ =
µin − µ − υR

I
. (11)

Also a similar set of equations can be derived for υµ-type (see
Figure 5B). For µµ-type (see Figure 5C) we have:

µ̇ =
υ − υd

C
, (12)

υ̇ =
µin − µ − υ (R/2)

I/2
, (13)

υ̇d =
µ − µout − υd (R/2)

I/2
. (14)

In a similar way, we can write the equations for υυ-type (see
Figure 5D).

2.1.6. Viscoelastic Vessel Wall
The bond graph representation makes it very easy to implement
the viscoelasticity effect of the vessel wall into the model. Two
common existing models in the literature are the Voigt model
and the Maxwell model. A more sophisticated model is the
generalized model developed by Westerhof and Noordergraaf
(1970). However, the generalized model is complex and

computationally expensive to solve, and for this reason we chose
the Voigt model to represent the viscoelastic effect of the vessel
wall in this work. The classical Voigt model in mechanical
symbols is shown in Figure 6.

Bond graph representation of the Voigt model is illustrated in
Figure 6. By taking advantage of the modular nature of the bond
graph technique we can easily plug in the Voigt model into any
configuration of the vessel elements described before. Figure 6
shows the viscoelasticµυ-type element. The governing equations
for this element are described below:

µ = µv + (υ − υout)Rv, (15)

µ̇v =
υ − υout

C
, (16)

υ̇ =
µin − µ − υR

I
. (17)

As can be seen, by adding only one equation to the basic set of
equations we can take into account the viscoelastic effect of the
vessel wall. Using a similar approach, other basic elements can
also be equipped with the viscoelastic effect accounted for by Cv.

2.1.7. Junctions
The 0-junction is a powerful concept in the bond graph approach
that allows us to model the splitting or merging flows in
blood vessels. It satisfies the conservation of flow and also
imposes a common potential on all the branches to make sure
pressure is continuous throughout the junction, which is a good
approximation of branching in arterial vessels. It is important to
know that only µυ-type and υυ-type elements can be used as
the parent vessel in a junction. In a similar way, only µυ-type
and µµ-type elements can be implemented as daughter vessels
in a junction. These restrictions are due to arranging compatible
segment types into a structure, with inlets and outlets coupled
appropriately in the sense that BCs are settled by the state of their
adjacent compartments.

2.1.7.1. Splitting flow
In the splitting flow junctions, a 0-junction represents the
separation point at the end of the parent vessel and the daughter
vessels are connected via this port to the parent vessel (see
Figure 7).

We created another element specifically for splitting flow
junctions and called it µυ-split-type. To implement the splitting
flow junction, only the parent vessel element needs to use µυ-
split-type and the daughter vessels remain basic µυ-type. The
governing equations for this element type are stated below:

µ̇ =
υ − υ1 − υ2

C
, (18)

υ̇ =
µin − µ − υR

I
, (19)

where υ1 and υ2 are the daughter branches flow.
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FIGURE 5 | Different configurations of bond graph model for a vessel segment, (A) the µυ-type has inlet pressure BC and outlet flow BC, (B) the υµ-type has the

reversed characteristics, (C) coupling these two configurations with the C in the middle gives us a µµ-type with inlet and outlet pressure BCs. The R and I values are

divided equally between the two resistors and two inductors at both ends, (D) coupling these two configurations with the R and I in the middle gives us a υυ-type with

inlet and outlet flow BCs. The C-value is divided equally between the two capacitors at both ends.

FIGURE 6 | Mechanical representation of the Voigt model consisting of a parallel arrangement of a spring C and a dash pot Rv, which represent elastic, and viscous

material behavior, respectively.

2.1.7.2. Merging flow
In the merging flow junctions, a 0-junction represents the
adjoining point at the beginning of the parent vessel and the
daughter vessels are connected via this port to the parent vessel
(see Figure 8).

We created another element specifically for merging flow
junctions and called it υυ-merge-type. To implement themerging
flow junction, only the parent vessel element needs to use υυ-
merge-type and the daughter vessels remain basic µµ-type. The
governing equations for this element type are stated below:

µ̇ =
υ1
d
+ υ2

d
− υ

C/2
, (20)

υ̇ =
µ − µd − υR

I
, (21)

µ̇d =
υ − υout

C/2
, (22)

where υ1
d
and υ2

d
are the flows through the daughter branches.

2.1.8. Peripheral Circulation
The cumulative effects of all distal vessels (small arteries,
arterioles, and capillaries) at terminal locations of the truncated
arteries are modeled using RCRWindkessel elements (Westerhof
et al., 1969; Stergiopulos et al., 1992). For this purpose, a bond
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graph model of the RCR element is developed and attached to
a µυ-type element to create a special bond graph element µµ-
BC-type for terminal vessels. RCR element contains a proximal
terminal resistance RTP in series with a parallel arrangement of a
terminal capacitor CT and a distal terminal resistance, RTD (see
Figure 9).

The governing equations for the µµ-BC-type element are:

µ̇ =
υ − υd

C
, (23)

υ̇ =
µin − µ − υR

I
, (24)

µ̇d =

υd −
µd

RTD
CT

, (25)

FIGURE 7 | Bond graph model for a bifurcating branch.

υd =
µ − µd − µout

RTP
. (26)

2.2. Cardiovascular System
The cardiovascular system is composed of three parts - heart,
systemic circulation loop, and pulmonary circulation loop. In this
section, we briefly explain how these components are modeled
using the bond graph approach. Table 2 in Supplementary
Material shows the bond graph elements that have been
developed for modeling blood flow in the cardiovascular system.
Based on the assumptions and locations, we import vessel
segments with the appropriate element type as a newmodule and
connect it to the system.

2.2.1. Pulmonary Circulation
The pulmonary circulation is modeled as described in Blanco and
Feijóo (2013). We divide it into 2 main compartments, arteries
(par) and veins (pvn). The arteries are highly elastic and the flow
is pulsatile in these compartments, so the resistance, compliance
and inductance effects must be considered and υµ-type is the
most suitable bond graph element based on the prescribed
BCs. Veins also are modeled using the υµ-type element (see
Figure 10).

2.2.2. Systemic Circulation
The systemic circulation loop consists of a reduced version
of the ADAN model Blanco et al. (2014, 2015) and the
veins compartment which is similar to the pulmonary veins
compartment. Such a reduced version of the ADAN model is
composed of a 218-segment arterial model which consisted of
the integration between the ADAN-86 model (Safaei et al., 2016)
and the anatomically detailed cerebral vasculature of the ADAN
model Blanco et al. (2015). Figure 11 displays the entire model
with a detail of the cerebral vasculature.

We constructed a bond graph model using the geometrical
properties of the ADAN model (i.e., vessel radius and wall

FIGURE 8 | Bond graph model for a merging branch.

Frontiers in Physiology | www.frontiersin.org 6 March 2018 | Volume 9 | Article 148

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Safaei et al. Bond Graph Model of Cerebral Circulation

FIGURE 9 | Bond graph model for an RCR terminal.

thickness). Figure 12A,B illustrate the bond graph model of the
systemic arteries and cerebral circulation, respectively.

2.2.3. Heart
The heart is modeled as a four-chamber pump with variable
elastance and four valves: tricuspid valve, pulmonary valve,
mitral valve and aortic valve. The basic pressure-flow relation
in each valve is represented with an orifice model which is
an advancement over the diode models (Korakianitis and Shi,
2006). The left and right atria and ventricles are modeled as
capacitors with time-varying elastance which is a function of the
characteristic elastance and an activation function. The activation
function represents the contraction and relaxation changes in
each cardiac chamber (see Figure 10).

2.2.3.1. Ventricles
The left ventricle is represented by a special type of C-element
which has a time-varying compliance function Clv(t). υla and υlv
represent flow through the mitral and aortic valves, respectively,
qlv is the blood volume andµlv is the blood pressure inside the left
ventricle. The differential equations governing the left ventricle
model are as follows:

q̇lv = υla − υlv, (27)

µlv =
qlv − qo

lv

Clv(t)
, (28)

where qo
lv
refers to the dead volume of the chamber. The time-

varying compliance function Clv(t) is the inverse of time-varying
elastance function Elv(t) and it has been used so as to be
consistent with the basic C-element constitutive relation:

Clv(t) =
1

Elv(t)
. (29)

Elv(t) is a function of the characteristic elastance and an activation
function ev(t):

Elv(t) = EBlv + ev(t)E
A
lv. (30)

Here, EA
lv

and EB
lv

are the amplitude and baseline values of
the elastance, and ev(t) is the ventricle activation function and
expresses the contraction and the relaxation changes in the
ventricular muscle:

ev(t) =











































1

2

[

1− cos

(

π
t

Tvc

)]

, 0 ≤ t ≤ Tvc

1

2

[

1+ cos

(

π
(t − Tvc)

Tvr

)]

, Tvc < t ≤ Tvc + Tvr

0, Tvc + Tvr < t ≤ T

(31)
where T is the duration of a cardiac cycle. Tvc and Tvr

represent the durations of contraction and relaxation of
the ventricles, respectively. The right ventricle is also
modeled in a similar manner to the left ventricle model,
with different values for system parameters (see Table 3 in
Supplementary Material).

2.2.3.2. Atria
The bond graph model of the atrium is also developed in a
similar way to that of the ventricle. The only difference is that the
atrium activation function which expresses the contraction and
the relaxation changes in the atrial muscle. For the left atrium
ea(t) is:

ea(t) =



































































1

2

[

1+ cos

(

π
(t + T − tar)

Tar

)]

, 0 ≤ t ≤ tar + Tar − T

0, tar + Tar − T < t ≤ tac

1

2

[

1− cos

(

π
(t − tac)

Tac

)]

, tac < t ≤ tac + Tac

1

2

[

1+ cos

(

π
(t − tar)

Tar

)]

, tac + Tac < t ≤ T

(32)
where Tac and Tar are the durations of contraction and relaxation
of the atria, and tac and tar represent the times when the atria start
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FIGURE 10 | Schematic of the cardiovascular system.

to contract and relax, respectively. An analogous relation applies
to the right atrium activation function.

2.2.3.3. Valves
Heart valves are modeled by a special type of R-element which
instead of the conventional constitutive relation (Equation 2),
uses a nonlinear pressure-flow relation of the orifice model. For
the aortic valve we have:

υlv = Raoαao

√

⌊µlv − µroot⌋, (33)

where υlv is the blood flow through the aortic valve, µlv is the
blood pressure inside the left ventricle,µroot is the blood pressure

in the aortic root, Rao is the aortic valve resistance, and αao is the
aortic valve opening coefficient. Depending on which side of the
valve has higher pressure, the coefficient αao can switch between
fully closed and fully open states:

αao =

{

1, µlv > µroot

0, µlv ≤ µroot
(34)

The rest of the valves are modeled in the same way with different
system parameters (see Table 3 in Supplementary Material).

Frontiers in Physiology | www.frontiersin.org 8 March 2018 | Volume 9 | Article 148

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Safaei et al. Bond Graph Model of Cerebral Circulation

FIGURE 11 | Anatomically Detailed Arterial Network (ADAN) model with detail of the cerebral vasculature. The varying colors represent the vessel radii.

2.2.4. Physiological Data
The geometrical parameters of the 218 arteries were prescribed
based on the data reported in Blanco et al. (2015). Vessel wall
thickness h is calculated using the following relation:

h = ro(ae
bro + cedro ), (35)

where ro is the lumen radius. a, b, c, and d are the fitting
parameters (see Table 3 in Supplementary Material). The elastic
modulus of the arteries were calculated from Blanco et al.
(2015). The viscoelastic wall properties are calculated using the
relationship between the Voigt model components (Westerhof
and Noordergraaf, 1970):

Rv =
f

C
, (36)

where Rv is the viscous damping of the wall, C is the vessel wall
compliance evaluated using Equation 6, and f is the time constant
for stress relaxation (see Table 3 in Supplementary Material). The
peripheral resistances (RTP and RTD) and compliances (CT) were
derived from Blanco et al. (2015). The parameters used in the
heart, pulmonary loop and venous system have been assigned
or estimated based on the data reported in Liang et al. (2009)

and Blanco and Feijóo (2013). The cardiac valve model and the
parameters have been adopted from Korakianitis and Shi (2006)
(see Table 3 in Supplementary Material).

3. SIMULATIONS AND RESULTS

3.1. OpenCOR Simulation
OpenCOR (opencor.ws) is an open source modeling
environment that works on Windows, Linux and OS X and
can be used to organize, edit, simulate and analyse models
of ODEs or differential algebraic equations encoded in the
CellML format (Garny and Hunter, 2015). It relies on a modular
approach, which means that all of its features come in the form
of plugins. The bond graph model of the cardiovascular system
has been developed using OpenCOR in four separate CellML
files:

3.1.1. BG_Modules.cellml
This file is the bond graph library and the elements listed in
Table 2 in Supplementary Material including all the governing
equations exist in this file. The modules defined in this file can be
imported into the main file to represent a specific vessel segment
or any other element in the fluid mechanics domain.
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FIGURE 12 | (A) The bond graph model of the ADAN-86 model, (B) the bond graph model of the ADAN-brain model. These two models are detached in this figure

for clarity.

FIGURE 13 | Overall structure of the cardiovascular system model showing the CellML model imports and the other key parts (units, components, and mappings) of

the top level CellML model.

3.1.2. Parameters.cellml
All the parameters have been defined in this file. These
parameters include the geometric properties of all the ADAN
vessels (length, radius, thickness, Young’s modulus), resistance
and capacitance at the ADAN terminal locations, and all the
system parameters for the heart and the pulmonary circulation
path models.

3.1.3. Units.cellml
The basic units are implemented in CellML inherently,
while any alternative unit system required needs to be
constructed. This file contains all the constructed units in
the bond graph approach that have been used in the present
model.

3.1.4. Main.cellml
This is the executable file which runs the simulations using
OpenCOR software. It imports all the required modules and
contains the information about the model structure, elements
connectivity, and mappings between different components.

Figure 13 shows schematically how components are
connected and communicate with each other. The full model is
made publicly available at https://models.physiomeproject.org/
workspace/4ac.

3.2. One-Dimensional ADAN Model
As stated at the beginning of this work, one of the primary goals
in this contribution is to provide a comparison of the predictions
delivered by the bond graph model and the predictions of the
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complete ADAN model. The latter is therefore regarded as a
reference solution in the present context, and will be referred
simply as the “ADAN solution.”

The ADANmodel incorporates 2, 142 arterial vessels (yielding
overall over 4, 000 arterial segments), 1, 598 of which have a well
determined name according to the Anatomical Terminology.
The disposition of these vessels correspond to a generic male
individual of approximately 1.7 m in height. The model supplies
blood to 28 specific organs, plus the supply to 116 vascular
territories which accommodate the distributed organs. Each of
these territories packs the bones, nerves, muscles, fascia and
skin. The ADAN model also includes the additional vessels
reported in Blanco et al. (2016). As for the calibration, peripheral
resistances are determined according to the peripheral blood
flow distribution reported in Blanco et al. (2014), while the
calibration of arterial vessel behavior (including elastin and
collagen constituents as well as viscoelastic phenomena) follow
Blanco et al. (2015). The inflow condition is defined below.
Finally, blood density and viscosity are taken to be µ =

0.004 J.s.m−3 and ρ = 1040 J.s2.m−5. Finally, the 1D equations
for modeling the flow of an incompressible fluid in compliant
vessels and the numerical technology employed to solve these 1D
equations are reported in Müller and Blanco (2015) and Müller
et al. (2016a,b).

The ADANmodel was simulated for 10 s, and the results of the
last cardiac cycle are considered in the comparisons performed in
next section.

3.3. Open-Loop Bond Graph Model vs.
ADAN Model
In this first case, we are comparing the results of the bond graph
arterial model (open-loop) for ADAN (see Figure 12) with the
reference solution provided by the ADAN 1D model. All the
parameters incorporated in the bond graph arterial model for this
simulation are adopted from the ADAN 1D model. The inflow
BC at the aortic root is prescribed using the flow curve shown in
Figure 14A acquired from Blanco et al. (2014). Overall, pressure
and flow rate waveforms as predicted by the bond graph model
aligns closely with the ADAN solution. Qualitative comparisons
of pressure and flow waveforms at different arterial locations
are given in Figure 14. A quantitative assessment of the relative
error is performed by computing the root mean square of the
error (RMSE) of the predicted waveforms compared with ADAN
solution.

In the main aortic segments, the pressure and flow waveforms
are very similar to the ADAN solution in the aortic root,
thoracic aorta, and proximal abdominal aorta. In the lower and
upper limbs, waveform predictions at the femoral and radial
arteries are in agreement with ADAN solution, however by
refining the model and increasing the number of bond graph
modules in the peripheral arteries we would be able to obtain
a better match. Regarding the cerebral circulation, the pressure
and flow waveforms predicted by the bond graph model are
compared with ADAN solution in the internal carotid artery,
vertebral artery, prefrontal artery, middle cerebral artery, anterior
cerebral artery, posterior cerebral post-communicating artery,

and posterior parietal artery. We observe that, the amplitude and
shape of the pressure and flow waveforms in the cerebral arteries
are well captured by the bond graph model.

3.4. Closed-Loop Bond Graph Model
Now the case in which we have a closed-loop bond graph model
is simulated (see Figure 10). The model was run for ten cardiac
cycles (T = 1 s) using a 0.001 s time step, with tolerance
10−7 and CVODE solver. For the full model with 258 modules
(244 modules for ADAN, 8 modules for the heart, 3 modules
for pulmonary and systemic circulation loops), the computation
took about 23 s, which is near real-time simulation. With a
simpler model (only ADAN-86 without ADAN-brain), the same
simulation takes 5 s which is faster than real-time simulation. The
simulation time has been measured within OpenCOR, running
on a Linux Ubuntu 17.10 machine with Intelr Core i7-6820HK
Processor @ 2.70 GHz.

One cardiac cycle of the cardiovascular system model already
in the periodic state is visualized in Figure 15.

4. DISCUSSION AND FUTURE WORK

In this paper, we have used the bond graph concept for
constructing 0D models. We utilized the bond graph formalism
to assemble a system of ODEs in a structured way that satisfies
mass and energy conservation for flow in an anatomically
detailed model of the cerebral circulation. The most important
feature that the bond graph approach provides is the sub-
division and reticulation of a network, which is equivalent
to the system decomposition or disaggregation, facilitating the
introduction/application of hierarchical modeling concepts. We
have compared the predicted flow and pressure at a number of
points in the vascular model against the solution delivered by a
1D blood flow model and, as an illustrative proof-of-concept, we
have shown that the pressure and flow rate waveforms predicted
by the bond graph model are within 5% of the 1Dmodel solution
at the points of comparison in the cerebral circulation model.

OpenCOR used the CVODE solver which is a solver for
stiff and nonstiff ODE systems (initial value problem) given
in explicit form y′ = f (t, y). The Backward Differentiation
Formula (BDF) is employed as the integration method with a
dense direct linear solver for Newton iterations. The bond graph
model runs approximately 200x faster than the 1D model and
at close to real time on a desktop computer for the level of
detail we included. The low computational effort is due to the
lumped nature of the mathematical representation provided by
the ODE system. There are several simplifying assumptions to
derive the lumped parameter models from the Navier-Stokes
equations. We considered the fluid as Newtonian and applied a
flow profile derived for laminar and stationary flow conditions.
We also assumed a constant Young’s modulus and a uniform
circular cross-section along the length of the segment. The
assumption of uniform elastic properties over a large pressure
range has some disadvantages. While it is desirable to keep the
model linear for speed-up, the drawback is that it is unable to
represent the complex behavior of the vessel wall accurately,
and therefore affects the model’s predictive ability for various
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FIGURE 14 | Comparison of pressure and flow waveforms between the bond graph model and ADAN solution; u, pressure; v, flow; (A) aortic root; (B) thoracic aorta;

(C) abdominal aorta; (D) femoral artery; (E) radial artery; (F) internal carotid artery; (G) vertebral artery; (H) prefrontal artery; (I) middle cerebral artery; (J) posterior

cerebral post-communicating artery; (K) anterior cerebral artery; (L) posterior parietal artery. In parentheses are root mean square errors (RMSE) computed between

the simulations and ADAN solution and expressed in percentage relative to the ADAN solution systolic values.
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FIGURE 15 | Pressure and flow rate in the main segments during one cardiac cycle; u, pressure; v, flow; (A) lv, left ventricle; rv, right ventricle; (B) la, left atrium; ra,

right atrium; (C) par, pulmonary arteries; pvn, pulmonary veins; (D) ivn, inferior vena-cava; svn, superior vena-cava; (E,F) ext, external; (G,H) com, common; post,

posterior; (I,J) ant, anterior; mid, middle.
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pressure levels. This problem can be addressed by incorporating
a nonlinear elastic material in the C-element that provides the
pressure-dependent compliance. The current model has only
86 compartments for systemic flow paths outside the head in
addition to the heart and lungs (since we were focussing on
the cerebral circulation), but we plan to extend the model to
include higher resolution models of the rest of the systemic
circulation in the future. We will also look into the possibilities
of profiling and parallelising the code for optimisation and
speed-up.

Our overall goal for this work has been to create an
anatomically detailed model of the cardiovascular circulation
that can be made patient-specific (at least to some extent)
and can be run in real time (Safaei et al., 2016). The model
presented here will be made available in the public domain
with freely available open source tools, enabling users to
examine pressures and flow rates at any point in the circulation
under a variety of physiological conditions. The bond graph
formulation makes it straightforward to extend the model to
include various tissue exchange mechanisms and to incorporate
tissue and cellular parameters that characterize various chronic
diseases. In the present contribution, this formalism served
to provide a structured and compartmental description of
the whole circulatory system including the heart, pulmonary
loop and the venous system. This model can also include
self-regulating and metabolic dynamics in a simple way and
at a low computational cost. Cerebral auto-regulation is a
precise system involving vasodilation and vasoconstriction in
a network of collateral vessels. By adding metabolic models to
the bond graph model we would be able to simulate cerebral

auto-regulation, which is a feedback mechanism driving an
appropriate blood supply into the cerebral vasculature depending
on the oxygen demand by the brain. There are also many other
physiological mechanisms that can be added into this system such
as baroreflex regulation, respiratory control system, autonomic
nervous system, etc.
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