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The fluid transport and mixing induced by beating cilia, present in the bronchial airways,

are studied using a coupled lattice Boltzmann—Immersed Boundary solver. This solver

allows the simulation of both single and multi-component fluid flows around moving solid

boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary

forces are computed onto these points in order to ensure the no-slip velocity conditions

between the cilia and the fluids. The cilia are immersed in a two-layer environment: the

periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as

well as the phase lag between two cilia in order to obtain a typical collective motion of

cilia, known as metachronal waves. The results obtained from a parametric study show

that antiplectic metachronal waves are the most efficient regarding the fluid transport. A

specific value of phase lag, which generates the larger mucus transport, is identified. The

mixing is studied using several populations of tracers initially seeded into the pericilary

liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from

the interface. We observe that each zone exhibits different chaotic mixing properties.

The larger mixing is obtained in the PCL layer where only a few beating cycles of the

cilia are required to obtain a full mixing, while above the interface, the mixing is weaker

and takes more time. Almost no mixing is observed within the mucus, and almost all

the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed

for specific locations to assess how the mixing is performed locally. Two time scales

are introduced to allow a comparison between mixing induced by fluid advection and

by molecular diffusion. These results are relevant in the context of respiratory flows to

investigate the transport of drugs for patients suffering from chronic respiratory diseases.

Keywords: mucus, cilia, transport, mixing, pulmonary flow, lattice Boltzmann method, immersed boundary

1. INTRODUCTION

Computational Fluid Dynamics (CFD) is becoming a powerful tool in the medical context. It
provides a good insight of physical phenomena occurring inside the human body without the need
of intrusive surgery methods, which often fail to observe the desired phenomenon as they introduce
perturbations. Many organs, such as the human heart, have already received a lot of attention from
scientists using numerical methods (Khalafvand et al., 2011). However, only few studies focused
on modeling the lungs entirely, as it is probably one of the most challenging organ to simulate due
to the different length scales involved, from microns for the mucociliary transport to centimeters
for the airflow in the upper airways. The transport of mucus depends on its interaction with cilia,
whose scale is of the order 10−6 m, but is also strongly affected by the numerous bifurcations (length
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and diameter of order 10−1 m in the upper airways) that form
the bronchial tree. Some authors have tried to study the entire
lung, at the price of severe simplifications: Inagaki et al. (2009)
looked at the pressure losses inside the full bronchial system,
but neglected the multi-component nature of the flow and the
mucociliary transport. Stylianou et al. (2016) looked at the impact
of bifurcation for the particle laden flow using Direct Numerical
Simulations (DNS), but considered only one bifurcation and
did not take into account all the phenomena occurring at the
microscale. Given the actual capacities of supercomputers, it
is prohibitive to model the entire system while accounting for
the multi-component and multi-scale nature of the flow, the
deformation of the bronchial tree during a breathing cycle, the
heat and mass transfer at the epithelium surface, etc. Hence,
many authors restrict their study to a given scale/phenomenon,
as it is the case in the present work. Before going any further, it
is also worth noticing that, in recent years, the need for efficient
methods able to perform the simulation of deformable moving
solids in multi-component flows has also been felt in other areas.
In this context, the aim of this paper is to present a numerical
tool, which can be used to study many biofluidic configurations,
such as the transport of nutrients in the brain (Siyahhan et al.,
2014), the displacement of ovules in the Fallopian tubes (Anand
and Guha, 1978), or even the simulation of industrial micro-
mixers (Chen et al., 2013).

In this paper, one considers the mucociliary clearance process
(MCC), which is the main defense mechanism developed by
the human body to protect itself against foreign particles (like
pollutants, allergens, bacteria, etc.) which are inhaled during the
breathing process. Its principle is simple: a layer of fluid called
Airways Surface Liquid (ASL) covers the surface of the airways.
The inhaled particles are deposited onto it, and then transported
to the stomach thanks to the combined motion of the cilia
tufts that cover the epithelial surface. In the two-phase model
adopted here, it is generally assumed that the ASL is in fact the
superposition of two different fluid layers: the periciliary liquid
(PCL), and the mucus phase above it (Knowles and Boucher,
2002). In this model, the PCL can be viewed as a Newtonian fluid
similar to water. However, the modeling of PCL remains an open
question in the literature, as its experimental characterization
is not yet fully understood. Hence, other models exist such as,
for example, the one of Button et al. (2012), where the mucus
is depicted as a gel made of reticulated mucins. The interesting
proposed idea being that, if the PCL is not thick enough and/or
has a low hydration, then the mucus-gel may squeeze the cilia
and prevent them to beat efficiently. The purpose of the PCL is
to act as a kind of lubricant which allows the mucus to slip onto
it (Puchelle et al., 1995). Its thickness is around 6µm. The mucus
is composed of 95% of water, but also contains macromolecules
called mucins (Lai et al., 2009). It is a highly non-Newtonian fluid
which exhibits a plethora of complex properties such as visco-
elacticity and thixotropy. Its role is to act as a barrier against
the external environment and to trap the particles. Its depth
varies between 5 and 100 µm depending on the position in the
bronchial tree (Widdicombe andWiddicombe, 1995). One of the
main difficulties met for its characterization is the huge variability
of its rheological properties (Lafforgue et al., 2017). It can indeed

vary by several orders of magnitude during the same day within
a particular person (Kirkham et al., 2002).

In order to propel these two fluid layers, the epithelium is
covered by tufts of cilia (around 200–300 cilia per tuft) which are
cytoplasmic extensions put into motion by biochemical motors.
Theirmotion can be decomposed into two steps: the stroke phase,
which lasts around one third of the total beating period, where
cilia will be almost orthogonal to the flow in order to maximize
their pushing effect; and the recovery phase where cilia will
bend themselves and get closer to the epithelial surface in order
to minimize their impact on the flow. This spatial asymmetry
is essential in the context of creeping flows, as it is the only
mechanism that generates transport (Purcell, 1977; Khaderi et al.,
2010). Note that the recovery phase does not occur in the same
plane as the stroke phase, but instead occurs in a plane somehow
more inclined in regards to the vertical axis (Sleigh et al., 1988).
The cilia length is around 7 µm, thus allowing them to enter the
mucus during the stroke phase. Cilia diameter is estimated to be
around 0.2–0.3 µm according to Sleigh et al. (1988), and their
beating frequency is around 15 Hz.

MCC can only work if both the mucus production and
ciliary beating are fully functional. Indeed, diseases such as cystic
fibrosis (CF), asthma, or Chronic Obstructive Pulmonary Disease
(COPD), can all be related to abnormalities in the MCC process.
In the case of CF, the mucus secreted is very viscous and in large
quantities, which hinders the work of the cilia. Thus mucus flow
becomes almost null and mucus accumulates. It leads to severe
infections, which damage or destroy the cilia tufts. On the other
hand, people with asthma have less cilia, and the ones remaining
may be dysfunctional. The transport of mucus is obviously less
efficient than for healthy persons, which is balanced by cough for
instance.

Experimentally, it has been observed that cilia synchronize
their beatings accordingly to their neighbors with a small phase
lag (Sleigh, 1962). It results in metachronal waves (MCW) which
can be seen at the surface formed by the cilia tips. When the
phase lag 18 between two cilia is negative, the MCW are
called symplectic and move in the same direction as the flow.
On the contrary, when 0 < 18 < π , the MCW are called
antiplectic and move in the direction opposite to the flow. These
waves have been shown to greatly enhance the fluid transport
(Gueron and Levit-Gurevich, 1999; Gauger et al., 2009), but there
are still open questions on which kind of waves is the most
efficient for mucus transport and mixing. Most of them are either
experimental studies performed on living animals (Machemer,
1972), or numerical ones performed in a single fluid environment
(Khaderi et al., 2011; Ding et al., 2014). Only few addressed
the problem using a two-layer fluid (Chatelin and Poncet, 2016;
Chateau et al., 2017). The main result of these works is that
antiplectic MCW are found to be the most efficient, and that
particular phase lags between two cilia maximize the mucus
transport. Others authors (Sedaghat et al., 2016) have investigated
the role of mucus rheology using a similar methodology as
the one presented here, and found that the ratio of elastic
contribution of mucus viscosity to the total mucus viscosity
has a quite significant effect on the mucociliary transport. In
particular, the mucus velocity was observed to increase when
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decreasing the elastic part of the mucus viscosity. The study of
the mixing induced by beating cilia is also very important as it
provides information about the deposition rate of particles (such
as inhaled drugs) onto the epithelial cells. However, to the best of
the author’s knowledge, only Ding et al. (2014) studied themixing
properties of both symplectic and antiplecticMCWbut in a single
fluid layer. The objective of the present paper is to fill this gap by
having a deep insight into the transport and mixing properties of
MCW in a more realistic two-phase environment.

The article is organized as follow: the algorithm used to
model the MCC in a two-layer context is described in section 2.
Results regarding the transport of passive tracers are presented
in section 3, and a displacement ratio is introduced in order to
quantify the efficiency of the wave organization. In section 4,
the mixing capacities of the system are studied using tracers
advection and by computing a global mixing index. Lyapunov
exponents are also used in order to gain insight about how
the mixing is locally achieved. Two time scales are also defined
in order to compare the mixing induced by fluid advection to
the mixing induced by molecular diffusion. Finally, conclusions
summarize the main results of this work with some future views
in section 5.

2. NUMERICAL METHOD

The Boltzmann equation describes the behavior of a gas from
a microscopic point of view. The Lattice Boltzmann Method
(LBM) solves the discrete Boltzmann equation for an ensemble
of distribution functions f (x, t) on a discrete lattice. These
distribution functions describe the probability that ensembles
of particles, with velocity ei, collide and then stream along the
discrete velocity vectors ei. By doing a Chapman-Enskog analysis,
one can recover the Navier-Stokes equations as presented in
Kruger et al. (2016) for instance. This kind of fluid solver is now
considered as an efficient alternative to traditional Navier-Stokes
solvers.

2.1. Mathematical Description
2.1.1. Single-Component LB Model
In LBM, the fluid status is updated in time by resolving the
discrete Boltzmann equation (Chen and Doolen, 1998, and
references therein):

fi(x+ ei1t, t + 1t) = fi(x, t)−
1t

τ

[

fi(x, t)− f
(eq)
i (x, t)

]

(1)

where fi(x, t) represents the distribution function at time t and
position x in the ith direction of the lattice (D2Q9 in 2D, and
D3Q19 in 3D). Equation 1 uses the Single Relaxation Time (SRT)
Bhatnagar-Gross-Krook (BGK) (Bhatnagar et al., 1954) collision
operator. In this model, τ is the relaxation time, which is linked
to the lattice viscosity by τ = 3ν + 0.5 using the classical
normalization procedure, i.e., 1x = 1t = 1 (Kruger et al.,
2016). In this work, each phase is Newtonian, but has a different
viscosity. The distribution functions move along a set of discrete
velocity vectors ei, which depend on the lattice considered, as

shown in Figure 1. The local density and momentum at each
lattice node can be obtained by summing all the functions fi(x, t):

ρ(x, t) =
N

∑

i=0

fi(x, t) ρu(x, t) =
N

∑

i=0

fi(x, t)ei (2)

where N is the number of discrete velocities on the lattice.
The discrete equilibrium function f

(eq)
i (x, t), that appears in

equation 1, can be obtained by Hermite series expansion of the
Maxwell-Boltzmann equilibrium distribution (Chen and Doolen,
1998, and references therein):

f
(eq)
i = ρωi

[

1+
ei · u
c2s

+
(ei · u)2

c4s
−

u2

c2s

]

(3)

where cs = 1/
√
3 is the speed of sound in lattice unit. The weight

coefficients ωi are ω0 = 4/9, ω1−4 = 1/9 and ω5−8 = 1/36 for
D2Q9 lattices, and ω0 = 1/3, ω1−6 = 1/18 and ω7−18 = 1/36
for D3Q19 lattices (Qian et al., 1992).

Body force effects are introduced by adding an extra term to
Equation (1):

fi(x+ei1t, t+1t) = fi(x, t)−
1t

τ

[

fi(x, t)− f
(eq)
i (x, t)

]

+1tFi(x, t)

(4)
where Fi is given by the following equation:

Fi =
(

1−
1t

2τ

)

ωi

[

ei − u

2c2s
+

ei · u
c4s

ei

]

· F (5)

Here, F represents the body force per unit volume. The
macroscopic velocity u must then be updated in order for the
system to recover the Navier-Stokes equation:

ρu =
∑

i

eifi +
1t

2
F (6)

More details on the LBM model can be found in (Kruger et al.,
2016, and references therein).

2.1.2. Multi-Component LB Model
When considering two ormore fluid components, the LB discrete
equation is written as follows:

f σi (x+ ei1t, t + 1t) = f σi (x, t)−
1t

τσ

[

f σi (x, t)− f
σ (eq)
i (x, t)

]

+1tFσ
i (x, t) (7)

where f σi (x, t) and τσ are the distribution functions and the

single relaxation time of the σ th component respectively. The
expression of the equilibrium distribution function now reads:

f
σ (eq)
i = ρσ ωi

[

1+
ei · u

(eq)
σ

c2s
+

(ei · u
(eq)
σ )2

2c4s
−

u
(eq)
σ · u(eq)σ

2c2s

]

(8)
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FIGURE 1 | Discrete velocities arrangement on a lattice cell: (A) D2Q9 lattice; (B) D3Q19 lattice.

where ρσ =
∑

i
f σi is the density of the σ th component. u

(eq)
σ

is the equilibrium velocity which is identical for the two fluid
components:

u
(eq)
σ = u∗ =

∑

σ

∑

i
eif σi /τσ

∑

σ

∑

i
f σi /τσ

(9)

In Equation (7), the explicit forcing term Fσ
i is linked to the total

body force Fσ per unit volume exerted on the σ th component:

Fσ
i =

(

1−
1t

τσ

)

Fσ · (ei − u
(eq)
σ )

ρσ c2s
f
σ (eq)
i (10)

Now, based on the methodology developed by Martys and Chen
(2013), one adds a Shan-Chen-type fluid-fluid cohesion force
FSCσ in the total body force vector Fσ of Equation (10) in order
to model the two-component behavior. The expression of the
Shan-Chen type fluid-fluid cohesion force is (Shan and Chen,
1994):

FSCσ (x, t) = −Gcohρσ (x, t)
∑

i

ωiρσ ′ (x+ ei1t, t)ei (11)

where Gcoh is a parameter that controls the force of the cohesion
force, and where σ ′ represents a fluid different from σ . Note
that with a Shan-Chen-type fluid-fluid cohesion force, there is no
discontinuity of the fluid velocity at the interface, which is diffuse.

2.1.3. The Immersed Boundary Method
The aim of the IB method is to impose velocity boundary
conditions on the Eulerian fluid nodes that surround a solid,
by adding an extra body force FIBσ to the fluid equations, so
that the macroscopic fluid velocity can equal the velocity at the
Lagrangian points modeling the solid boundary. Hence, an IB
force FIBσ is also included in the total body force vector Fσ so that
Fσ = FIBσ + FSCσ . The macroscopic velocity uσ given by Porter
et al. (2012) writes:

ρσuσ =
∑

i

eif
σ
i +

1t

2
Fσ (12)

The immersed boundary method to derive the forcing term uses
the classical procedure which relies on two operators:

• The interpolation – In this step, the fluid velocity at the
Eulerian nodes are used to perform an interpolation of the
fluid velocity on the Lagrangian points.

• The spreading – An IB-related force is obtained as a
function of the difference between the solid velocity and
the interpolated fluid velocity. This force is spread to the
surrounding Eulerian nodes in order to ensure the no-slip
velocity condition at the fluid-solid boundary.

More details can be found in Li et al. (2016).

2.2. Modeling the MCC
The computational domain is a fixed rectangular box of size
(Nx = 385, Ny = 11, Nz = 34), as shown in Figure 2. The
computational domain has been chosen as it allows to study the
desired values of phase lags |18| (ranging from±π/6 up to±π)
without modifying the size of the domain and with a sufficiently-
fine cilia resolution to ensure grid-independent results. The fluid
part is solved on a Cartesian grid with a simple BGK collision
operator, and a D3Q19 scheme. Periodic boundary conditions
are used in the x and y-directions, while no-slip and free-slip
boundary conditions are used at the bottom and top walls,
respectively. The length L = 7 µm of the cilia is set to 11 lattice
units (lu). Cilia are modeled by a set of 200 Lagrangian points,
whose motion is governed by a differential 1D transport equation
along a parametric curve (Chatelin, 2013; Chatelin and Poncet,
2016). In the following, P(ζ , t) denotes the position of the curve
at time t and at a normalized distance ζ from the base point of a
cilium. With appropriate boundary conditions, a realistic beating
pattern is obtained :

∂P′

∂t
+E(t)

∂P′

∂ζ
= 0 BC:

{

P(0, t) = (0, 0, 0)
P′(0, t)= (2 cos(2π t/T), 0, cos(2π t/T))

(13)

with E2(t) = ([1 + 8 cos2(π(t + 0.25T)/T)]/T)
2
a term which

mimics elastic effects, T the beating period, and P′ = ∂ζP.
To ensure the stability of the IB method, there must be
approximatively one Lagrangian point per lattice cell where the
IB forces are computed. Thus only 10 Lagrangian points regularly
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FIGURE 2 | Schematic view of the domain. The length of the cilia is L, the cilia spacing in the x-direction is a = 1.44L, and in the y-direction is b = 0.4L. The ratio h/H

is set to 0.26.

spaced onto the cilia are chosen for the computation of the IB
forces. The spacing between two cilia is set to a = 1.44L in the
x-direction, and b = 0.4L in the y-direction. Their base point
is located at z = 0 which corresponds to the position of the
epithelial surface. The beating period is Tosc = Nit1t, where
Nit is the number of iterations for performing a full beating
cycle. The PCL fills the domain from z = 0 up to an altitude
z = h = 0.9L. In all simulations, Nz is fixed to 34 lu, leading to
a ratio h/H = 0.26. The wavelength of the imposed metachronal
waves varies from λ = 32 lu for a phase lag 18 = π , to λ = 192
lu for 18 = π/6.

The motion of the cilia is imposed to be in the x-direction
only. Note that, due to the inter-cilia spacing, no collision
between cilia occurs during their beatings. Since the only
mechanism to impose motion in creeping flow is the spatial
asymmetry (Purcell, 1977; Khaderi et al., 2010), no temporal
asymmetry is considered in the beating pattern. The viscosity
of the PCL is chosen to be νPCL = 10−3 m2/s, and the ratio
of viscosity rν between the mucus and PCL is set to 10. Since
the model of Porter et al. (2012) introduces a Shan-Chen fluid-
fluid repulsive force (Shan and Chen, 1994), surface tension
effects emerge intrinsically at the mucus-PCL interface. More
importantly, this also prevent the mixing of the mucus and
PCL. The equations of the cilia motion are taken from Chatelin
(2013) and reproduce a 2D beating pattern similar to the one
observed for real cilia. In particular, the angular amplitude of this
beating pattern is θ = 2π/3 as observed experimentally (Sleigh
et al., 1988). Thus, the velocity Ucil at the tips of the cilia can
be computed by Ucil = 2θL/Tosc, and an oscillatory Reynolds
number can be defined as:

Reosc =
UcilL

νmucus
=

ωL2

νmucus
(14)

where ω is the angular beating frequency of cilia. Using physical
quantities (Lphy ≈ 10−5 m, νmucus ≈ 10−3 m2.s−1, and

Ucil ≈ 10−3 m.s−1), the obtained Reynolds number is of the
order of 10−5. Thus, inertial effects do not play any role in

the phenomenon of MCC. Running simulations at such a low
Reynolds number would require a huge number of iterations
using a lattice Boltzmann scheme due to the coupling between
1x and 1t imposed by the normalization. Hence, we chose
higher Reynolds numbers: Reosc = 2.10−2, 5.10−2, and 10−1,
as it has been demonstrated in Chateau et al. (2017) that inertial
effects remain weak in this configuration up to Reynolds numbers
around 10. For Re = 10−2, inertia effects vanish. In creeping
flow, there should be no noticeable difference in the wave
structure even for a Reynolds number 1,000 times weaker. The
code is parallelized using MPI (Message Passing Interface) by
splitting the computational domain into 9 subdomains of size
(Nx/3,Ny/3,Nz).

3. MUCUS TRANSPORT

A common way to treat respiratory diseases is by the inhalation
of drugs, which flow into the airways until they are captured by
the mucus layer. To gain an insight into how drugs are dispersed
and advected into the mucus and PCL, the displacement field

d(x) =
∫ Tosc
0 u(x(t), t)dt is computed, where x is the position

vector and u is the fluid velocity. The component over the
x-direction of the displacement field is then averaged over 20
beating periods and denoted < dx >. It is plotted on Figure 3.
One can clearly see the importance of the phase lag, some
values being associated to larger displacement of fluid. One can
also observe that the particular case where all the cilia beat
synchronously (i.e., 18 = 0) results in a transport which
is similar to the action of fully desynchronized cilia (i.e., 18

between two neighboring cilia is random). Note that to test the
repeatability of the random motion, three simulations with an
initially different random pattern were performed. Each of them
gave almost identical results, with less than 3% of difference in
the fluid velocity. In order to understand why the presence of the
PCL layer is beneficial for the mucus transport, a simulation of a
single-fluid layer, representing mucus, has been run for a phase
lag 18 = π/4 (see the red curve in Figure 3). It results in a
weaker transport compared to the corresponding two-layer fluid
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FIGURE 3 | Normalized averaged displacement of fluid in the x-direction as a

function of z/L with a/L = 1.44 and b/L = 0.4, for a Reynolds number

Re = 10−1. λ is the wavelength of the MCW, and Nλ the number of cilia in one

wavelength. The “strong chaotic mixing” zone extends from 0 to 1.1L, the

“chaotic mixing” zone from 1.1 to 1.8L, and the “no mixing” zone from 1.8 to

3L. The mucus-PCL interface is located around z/L = 0.9 and indicated by a

dashed horizontal line. The red curve corresponds to a simulation performed in

a single layer fluid with a viscosity ν = νmucus. The blue curve corresponds to

a simulation where each cilium has been initially set in a random state of

beating: the phase of the cilia being uncorrelated. The black curves

correspond to antipleptic MCW (18 = π/4), symplectic MCW (18 = −π/4),

and synchronous beatings (18 = 0). More details regarding how the chaotic

zones were defined are given in section 4.

simulation with 18 = π/4, thus highlighting the importance
of having a layer of fluid with lower viscosity under the mucus
one as it allows the mucus to slip onto it (Puchelle et al.,
1995). In Figure 3, different areas, corresponding to different
mixing regimes, are also presented and will be introduced later
in section 4. These regions are similar to the “transport” and
“mixing” areas defined in Ding et al. (2014) and Chateau et al.
(2017). The displacement over the y and z-directions has also
been quantified. The displacement in the y-direction is small
everywhere, and thus can be neglected. On the contrary, the
displacement in the z-direction is small above the cilia tips, but
not under. It has been shown in Chateau et al. (2017) that a
peak in the stretching rate is present in this region. It will be
shown in section 4 that it is also the area where the mixing is
the strongest.

The total volume of fluid effectively displaced is computed in
order to determine which phase lag is more able to transport the
mucus. To do so, the global volumetric flow rate Qv over a unit
volume of size (1× 1× Nz) is defined by:

Qv = Nz
U∗1x2

L2
(15)

with U∗ = Uav/Uref , where Uref = λ/(NcilT) is the reference
velocity of the system, and Uav = (NxNyNz)

−1
∑

i,j,k Uijk is

the average fluid velocity inside the domain. The result for
the total displaced volume of fluid is plotted in Figure 4.

Metachronal motion, except for the cases where 18 = −π/6
and 18 = −π/4, induces a stronger displacement of fluid
compared to the synchronized motion (18 = 0). Note that
the results for 18 = −π/6 and 18 = −π/4 slightly differ
from what is found in Chateau et al. (2017) where, for Reynolds
numbers of the order of 10−2, symplectic MCW were found
to be more efficient than synchronized motion. This is a direct
consequence of the modified geometry: indeed, in Chateau et al.
(2017), the cilia spacing b in the y-direction was set to values
larger than 1.67L. Thus, during the stroke phase of symplectic
MCW (which corresponds to a moment where the cilia are being
clusterized), the fluid flow was simply expelled around the cilia.
In the present case, b is much smaller (b = 0.4L) in order to have
a higher density of cilia as observed in real epitheliums, and the
fluid is mainly pushed above the cilia. It results in a displacement
of the mucus-PCL interface above the cilia tips which never get
the chance to enter the mucus layer. On the contrary, the cilia
during the recovery phase are far away from each other. A suction
effect occurs, leading the mucus-PCL interface to be moved
downwards toward the cilia. Thus, the counter flow created by
the cilia during the recovery phase is almost as strong as the flow
created by the cilia during the stroke phase. As a consequence,
both the PCL and mucus flows are much smaller. The opposite
happens for antiplectic MCW with large wavelengths (i.e., small
18): the cilia are far from each other during the stroke phase,
which maximizes their pushing effect. The suction effect also
takes place, which results in the mucus-PCL interface moving
downwards. Hence, the cilia tips penetrate more deeply into
the mucus phase. During the recovery phase, the cilia are now
clusterized, and themucus-PCL interface is pushed far away from
the cilia tips. Hence, the induced counter flow is almost null,
while the cilia during the stroke phase creates a strong positive
flow. This result is interesting as it might be linked to the fact
that antiplectic MCW with very large wavelength (18 < π/6)
are usually observed in nature for living organisms evolving in
single layer fluid environments (Sleigh, 1962). This blowing and
suction mechanism is similar to the one observed in Dauptain
et al. (2008) on a similar configuration involving the swimming
of a jellyfish by ciliary propulsion. A maximum in the total
fluid displaced volume can be seen in Figure 4, and corresponds
to an antiplectic MCW with 18 ≈ π/6, which corroborates
the results found in Chateau et al. (2017) for antiplectic MCW
where a peak in the total displaced fluid volume was found for
18 ≈ π/4.

In order to characterize the system from an energy
perspective, the average power Pcil spent by the cilia during a
beating cycle is introduced:

Pcil =

∑

s,i
Vs
i · (F

i
m + FiPCL)

Ncil
(16)

where Vs
i is the velocity on the sth Lagrangian points of the ith

cilium, and Fim and FiPCL the interpolated IB forces, respectively
applied by the ith cilium onto the mucus and PCL. In order to
have a dimensionless power P∗, Pcil is normalized by P∞ the
power spent by an isolated cilium during a beating cycle (a/L =
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FIGURE 4 | Total dimensionless displaced flow volume generated by an array

of 24 × 2 cilia over a beating cycle for different phase lags 18 and Re = 10−1.

b/L = 5), such that P∗ = Pcil/P
∞. The displacement ratio η can

now be defined as the mean displacement over the x-direction
divided by themean power a cilium has to spend during a beating
cycle:

η =
< d∗x >

Ncil
λ

P∗
(17)

where < d∗x > is the mean displacement over the x-direction
during one period, taken on an arbitrary plane (z/L = 3.2)
near the top of the domain. The left axis of Figure 5 shows the
dimensionless power P∗ spent by the system. The synchronized
case requires less energy than other type of coordinated motion.
Note that MCW with a phase lag such that π/3 < |18| < π

result in the highest power spent, while smaller phase lags
(|18| < π/4) require less energy. On the right axis of Figure 5,
one can observe the variations of the displacement ratio η. For a
given power input, the synchronized motion of the cilia is almost
always more efficient than MCW for displacing fluids, except for
antiplectic MCW with 18 = π/6. This result can explain why
antiplectic MCW with large wavelengths are usually observed in
nature.

4. MIXING

4.1. Global Mixing
The mixing is quantified using the method developed in Stone
and Stone (2005): two populations of tracers of different colors
(black and white) are initially organized in a regular pattern; each
population occupying the same volume (see Figure 6 for a view
of the domain filled with tracers). They are released at t = t0
when the flow is fully-established, and a second order Runge-
Kutta (RK2) scheme is used to compute their advection, using the
interpolated fluid velocity given by the IB method. The mixing
is quantified by measuring the decay of the shortest distance
between tracers that belong to the different populations. Hence,

FIGURE 5 | Power P* spent by the system and displacement ratio η obtained

for different phase lags 18 and Re = 10−1.

the mixing numberm is defined as follows:

m = (

N
∏

i=1

min(|xi − xj|)2)
1
N (18)

where xi and xj are the positions of tracers of different colors,
N is the total number of particles of the same color, and j =
1, 2, ...,N is the index for which the minimization is performed.
We chose to study the mixing in three different areas: area 1 is
located inside the PCL, and the tracers are set such that they
occupy the region between z = 0.2L and z = 0.8L; area 2 is
located above the PCL-mucus interface and the tracers occupy
the region between z = 1.2L and z = 1.8L; and area 3
is located far above the PCL-mucus interface, and the tracers
occupy the region between z = 2.5L and z = 3.1L (see
Figure 6 for a view of the different areas). The chosen pattern
consists in rectangular boxes of size (1.44L, 0.4L, 0.6L) regularly
distributed along the x-direction, each of them being centered
around the base of a cilium. This geometrical distribution has
been chosen in order to provide comparative results with Ding
et al. (2014). The density of tracers is not a critical factor here,
as pointed out by Stone and Stone (2005). Hence, in each area
one tracer is placed every 2 nodes along the three directions
of space. On Figure 7, the different mixing areas are displayed
after 60 beating cycles for a Reynolds number of Re = 5.10−2:
the tracers initially seeded into the PCL are significantly mixed,
contrarily to the tracers initially seeded far above the mucus-
PCL interface. Between these two populations, the tracers initially
seeded just above the mucus-PCL interface undergo a constant
shearing. It is worth noticing that tracers initially seeded into
the PCL (resp. mucus) stay in the PCL (resp. mucus). This
behavior is attributed to surface tension effects present at the
interface which prevent a mixing of the two fluid layers. This
shows that particles captured by the mucus layer will never
reach the PCL. However, note that the present model does not
take into account molecular diffusion effects, which may allow
drugs to penetrate the PCL area. Nevertheless, the effects of
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diffusion will be considered in section 4.3 using two different time
scales.

Figure 8A shows the time evolution of the mixing number
m/m0 in the PCL (area 1) for different metachrony;m0 denoting
the initial value of m when the tracers are not yet released. If the
mixing is chaotic, the mixing number m/m0 should be decaying
exponentially. It is indeed the case during the first beating cycles
(5–6 cycles). However, if only chaotic mixing was present, the
measures would simply converge toward a “plateau.” This is not
the case here as the cilia also impose a stretching to the generated

flow. Thus, the ratiom/m0 keeps on decaying and converge only
toward a “pseudo-plateau.” Since we are mainly interested by a
characterization of the chaotic mixing induced by cilia, we will
focus our attention to the first beating cycles. Figure 8B confirms
that the mixing in the mucus is very low. The mixing number
m/m0 is almost constant during all 60 beating cycles. The tracers
are transported as a solid block and keep their initial pattern,
as illustrated in Figure 7. On Figure 9A, the logarithm of the
dimensionless mixing numberm/m0 in area 1 is plotted. The fact
thatm decays rapidly means that the mixing in this area is strong:

FIGURE 6 | 2D view of the domain filled with 3 populations of tracers for Re = 5.10−2. The PCL is blue, and the mucus phase is red. Population 1 occupies the PCL

between z = 0.2L and z = 0.8L; Population 2 is located above the PCL-mucus interface and occupies the region between z = 1.2L and z = 1.8L; Population 3 is

located far above the PCL-mucus interface, and occupies the region between z = 2.5L and z = 3.1L. The size of the computational domain is

(Nx = 385,Ny = 11,Nz = 34).

FIGURE 7 | 3D view of the domain filled with 3 populations of tracers for Re = 5.10−2, 60 beating cycles after their release at t = t0 when the flow is fully-established.

The tracers in the PCL are significantly mixed, while the tracers in areas 2 and 3 still present coherent patterns.

FIGURE 8 | Mixing number m/m0 as a function of the number of cycles Ncycles for Re = 2.10−2 and different phase lags 18 in (A) area 1 (i.e., within the PCL) and

(B) in area 3 (far above the mucus–PCL interface).

Frontiers in Physiology | www.frontiersin.org 8 March 2018 | Volume 9 | Article 161

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Chateau et al. Ciliary Transport and Mixing

FIGURE 9 | Logarithm of the mixing number, ln(m/m0 ), as a function of the number of cycles Ncycles for Re = 5.10−2 and for different phase lags 18 corresponding

to antiplectic MCW in (A) the PCL region (area 1); and (B) above the mucus–PCL interface (area 2). (C,D) are similar to (A,B), but for symplectic MCW.

indeed, only 4 beating cycles are required to obtain a converged
state of mixing. During these first beating cycles, the decay of m
strongly depends on the value of the phase lag 18. The results
for symplectic MCW (18 < 0) are similar to those obtained for
antipleptic MCW (see Figure 9A,C). On Figure 9B,D, the same
quantities are plotted for area 2. One can observe the importance
of18, some phase lags being clearly more able tomix the tracers.
It is interesting to note that each curve presented in Figure 9A,B

exhibits the behavior of chaotic mixing. In other words, they can
be approximated by a function of form ln(m/m0) = −βNcycles,
where the fitted parameter β represents a mixing rate, which
depends on the local stretching rate (Weiss and Provenzale,
2007). Hence, it is possible to compare the mixing capabilities of
symplectic and antiplectic MCW, as shown in Figure 10A,B. The
mixing rates β obtained for three different Reynolds number (Re
= 10−1, Re = 5.10−2, and Re = 2.10−2) are plotted as a function
of18 for areas 1 and 2 respectively (see Figure 10A). The curves
follow the same trend for each value of tested Reynolds number.
There are always values of18 6= 0 such that the obtainedmixing
rate β is superior to the synchronized case; except for the case
Re = 0.1 where the value of 18 = 0 induces a mixing rate
β almost as strong as for 18 = π/2. As seen in section 3,
the values of 18 = −π/6, and 18 = −π/4 induce a weak
mixing. This is the direct consequence of the fact that the PCL-
mucus interface is pushed above the cilia tips during their stroke
phase, which hinders them to penetrate the mucus layer. As a
result, the fluid flow is weaker in both the PCL region and mucus

region. In Figure 10B two distinct peaks can be identified, one for
antiplectic MCWwith18 ≈ π/4, and the second for symplectic
MCW with 18 ≈ −π/4, indicating that these particular values
of phase lag are more efficient to mix the mucus. While the value
of 18 ≈ −π/4 induces a small transport of the PCL and mucus,
and a small mixing of the PCL, it is interesting to note that it
can generate a mixing as strong as the case 18 ≈ π/4 above
the PCL-mucus interface. In both cases (18 = ±π/4), this
can be attributed to the motion of the interface. Note that too
large values of 18 induce a mixing which is similar to the one
of synchronized beating cilia (18 = 0). Also, the y-scale of
Figure 10B is much smaller (100 times smaller) than the one of
Figure 10A. In both Figure 10A,B, the dashed lines represent the
mixing rates β obtained for cilia beating randomly. The mixing
rate obtained for such configuration may vary depending on
the initial conditions of the cilia, but not significantly, as it is
“averaged” over the random motion of 48 cilia. Interestingly, the
motion of randomly beating cilia produces an “averaged” mixing
rate: although never being in the highest values of β , it always
induces a mixing reasonably high.

The conclusion here is that the mixing induced by MCW in
area 1 is very similar to the mixing induced by synchronized
motion, except for the particular case of symplectic MCW with
very large wavelengths. In area 2, specific values of phase lags are
found to be more efficient to mix the mucus-PCL area compared
to synchronized or random beatings. Finally, in area 3, themixing
is weak and independent of the phase lag 18.
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FIGURE 10 | Mixing rate β for different Reynolds numbers (Re = 2.10−2, 5.10−2, and 10−1) as a function of the phase lag 18. (A) Mixing rate obtained in area 1

with a fit over the 4 first beating cycles. (B) Mixing rate obtained in area 2 with a fit over all 60 beating cycles. The dashed lines represent the values of the mixing rate

obtained for cilia beating randomly. Note that the y-scales used in (A,B) are different: the values of β corresponding to area 1 are of order 102 times greater than those

obtained in area 2. Also note that the repeatability of the random motion has been tested, and similar values for β with less than 2% of difference were found.

4.2. Local Mixing
Specific drugs, such as the propranolol (PPL) or β-adrenergic, act
on the cilia by modifying their beating frequency (Inoue et al.,
2013). Others, such as the anticholinergics or the corticosteroids,
act directly on the mucus secretion (Barnes, 2002). Each of
these drugs have specific targets, and must arrive precisely where
they will have the most effects. Hence, it is important to fully
understand how they will be mixed. However, many questions
remain open: Where are the drugs mainly mixed ? Where exactly
is the location of strongest mixing in the PCL ? To answer these
questions, a different method is now introduced in order to
measure locally the mixing, and gain a detailed insight into how
the particles are mixed depending on their location. To do so,
the methodology used in Cieplak et al. (1992) is adopted. The
principle is simple: one must follow the evolution of the distance
r between tracers initially separated by an infinitesimal distance
r0. In the particular case of chaotic mixing, a Lyapunov exponent
γ can be extracted using the following equation:

ln(
r

r0
) = γNcycles (19)

This exponent gives an indication on the strength of the mixing.
However, a sufficiently high number of measurements must be
performed to get rid of the noise inherent to this method. To do
so, a cubic set of (3× 3× 3) tracers, referred later as “fathers,” are
used. These fathers are initially set at a distance r0 = 0.01 lu apart
from each other. For each father, 6 tracers, referred from now
as “children,” are regularly initialized around the fathers along
the 3 directions of space at a distance of 0.001 lu. Thus, 162
pairs of tracers are considered and their average distance rmean

is regularly computed during several beating cycles.
Five typical positions are studied:

• Position A, located at (a/2, Ny/4, 0.45L), where the tracers are
in the middle of the PCL, and onto the trajectory of a cilium.

• Position B, located at (a/2, Ny/4, L), where the tracers are just
above the PCL-mucus interface, and above a cilia.

• Position C, located at (a/2, Ny/4, 2L), where the tracers are far
into the mucus layer (1L above the tracers of position B).

• Position D, located at (a/2, Ny/2, 0.45L), where the tracers
are in the middle of the PCL between two cilia along the
y-direction.

• Position E, located at (a/2, Ny/4, 0.1L), where the tracers are
just above the epithelial surface, and onto the trajectory of a
cilium.

The mean distance r for positions A, B, and C are given in
Figures 11–13. Note that the results for positions D and E are
not displayed in the following, as they are very similar to those
obtained for position A. In Figure 11A, one can see the evolution
of the average distance rmean as a function of the number of cycles
Ncycles for several phase lags 18. It takes around 10 cycles for the
distance between fathers and children to significantly increase.
One can see in Figure 11B that the evolution of ln(rmean/r0) is
linear during the first cycles, indicating chaotic mixing. Similar
results are obtained for positions C, D, and E (see Figure 13 for
position C). Thus, we can extract Lyapunov exponents for each
curve by considering only their linear parts. It is important to
note that, while the measures indicate chaotic mixing only during
the first beat cycles after the tracers release, the mixing is always
chaotic: indeed, the flow is well-established and its properties do
not change over time. For position B (see Figure 12A,B), the
tracers are initialized at 1L (thus 0.1L above the interface), and
no Lyapunov exponent can be extracted for this position. This is
due to the presence of the interface beneath them, which captures
the tracers due to its undulating motion. Different positions
above position B have also been tested (results not shown): we
observe that when the tracers are set further above position B
(i.e., further above the interface), Lyapunov exponents can be
extracted again, and lead to results similar to those of position
C. Our hypothesis is that the mixing is attenuated near the
interface since the direction of the flow follows the motion of the
interface. Thus, there is mainly a vertical shear in this area and the
distance between particles at the same altitude remains similar,
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FIGURE 11 | Results obtained for position A and Re = 5.10−2. (A) Average distance rmean between the fathers and the children as a function of the number of

cycles Ncycles. (B) Logarithm of the dimensionless average distance rmean/r0 as a function of the number of cycles Ncycles.

FIGURE 12 | Results obtained for position B and Re = 5.10−2. (A) Average distance rmean between the fathers and the children as a function of the number of

cycles Ncycles. (B) Logarithm of the dimensionless average distance rmean/r0 as a function of the number of cycles Ncycles.

only the evolution of the vertical distance measured between
particles matters. Figure 14 shows the Lyapunov exponents γ

obtained for positions A, C, D, and E. The highest values of γ

are obtained for the tracers located in position A, which are on
the trajectory of a cilium and at an altitude of 0.45L. The values
of γ corresponding to position E are smaller, which makes sense
as the tracers are on the trajectory of the same cilium, but much
closer to the epithelial surface. Thus, since the velocity of the
cilium is smaller near its base, the mixing is weaker. Interestingly,
the tracers of position D, which are in the middle of the PCL
but between two cilia along the y-direction, give values of γ

smaller that the ones of position E. This indicates that the mixing
in areas which are not on the trajectory of a cilium is much
weaker. Moreover, it takes also more time for the separation
distance between fathers and children to increase: around 25

cycles for tracers in position D against only 10 cycles for tracers
in position A. Finally, far above the mucus-PCL interface, the
values obtained for γ are very small: the mixing is almost null.
The trend of the curve for position E is the same as for positions
A, C, and D. It is worth noticing that the same trend is observed
for the Lyapunov exponents in Figure 14 and the total displaced
volume of fluids in Figure 4. Indeed, the mixing in the present
configuration is due to the combined action of mixing by chaotic
advection and by stretching. While the major contribution for
the obtained values of the Lyapunov exponents extracted comes
from their initial positions (A, B, C, D, or E), the shape of the
curves in Figure 14 is due to the combined action of these two
phenomena.It is however reasonable to think that the regions of
stronger stretching are also the regions where the chaotic mixing
is the strongest. Hence, the extracted Lyapunov exponents are
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FIGURE 13 | Results obtained for position C and Re = 5.10−2. (A) Average distance rmean between the fathers and the children as a function of the number of

cycles Ncycles. (B) Logarithm of the dimensionless average distance rmean/r0 as a function of the number of cycles Ncycles.

FIGURE 14 | Lyapunov exponent γ as a function of the phase lag 18 for Re

= 5.10−2 at positions A, C, D, and E.

suitable for a qualitative measure of the mixing as 18 varies.
More details on flow patterns associated to peculiar phase lags
can be obtained in Chateau et al. (2017).

4.3. Advective and Diffusive Time Scales
The aim of this part is to compare the mixing time scales
associated with chaotic advection to those associated with
molecular diffusion in the PCL and in the mucus. To do so, we
follow the procedure described in Ding et al. (2014) which is
recalled hereafter. Note that the main difference here, compared
to the work of Ding et al. (2014), is the use of two fluid layers
instead of just one, which allows us to investigate different mixing

behaviors between the PCL and mucus layers. First, as in section
4.1, we consider particles of different colors initially seeded at a
distance s0 apart at t = t0. At t > t0, the distance between these
two populations of particles has decreased by a ratio α, where
0 < α < 1. Assuming there is only fluid advection, it takes N
cycles for the separation distance between the particles to become
sN = (1 − α)s0. The definition of sN is thus equivalent to the
one of the mixing number m introduced in section 4.1. If the
mixing is chaotic, i.e., if the decay in particle separation distance
is exponential, one gets: s2N = s20 exp

−βN . Hence, the time scale
associated with mixing by fluid advection is :

tαmixing = Tosc ∗ N =
2πN

ω
= −

4π log(1− α)

βω
(20)

whereω is the cilia beating frequency. From amolecular diffusion
standpoint, particles moving on a distance αs0 by molecular
diffusion with a diffusivity coefficientD would have the following
characteristic time:

tdiffusion =
(αs0)2

D
(21)

By equating the two time scales, one gets:

ω =
4π log(1− α)

(αs0)2β
D (22)

Thus, for given α, s0 and β , Equation (22) gives a linear
relationship between ω and D which allows to compare in
the parameter space (D,ω) the regions where the mixing is
dominated by advection or by molecular diffusion. In order to
compare our results to the ones of Ding et al. (2014), the same
values of α = 0.9 and s0 = L = 10 µm are used. Figure 15A,B
show the results obtained in the PCL (area 1) and in the mucus
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FIGURE 15 | Cilia beating frequency ω/2π as a function of the diffusivity coefficient D. The lines show when the time scale due to mixing by molecular diffusion is

equal to the time scale due to mixing by fluid advection. (A) Results obtained in area 1 (PCL region) for typical mixing rates β = 0.05, 0.15, and 0.25. The gray region

represents the typical beating frequencies of cilia. The dashed line indicate the diffusion coefficients for human IgG in mucus (Saltzman et al., 1994), GFP (Green

Fluorescent Protein) in aqueous saline (Swaminathan et al., 1997), and CO2 in water (Fridlyand et al., 1996). The phase diagram obtained is similar to the one of Ding

et al. (2014). (B) Results obtained in area 2 (above the PCL-mucus interface) for representative mixing rates β = 4.10−3, 5.10−3, and 6.10−3.

(area 2) respectively. One can see in Figure 15A that there is
a region compatible with typical cilia beating frequency where
mixing by fluid advection is dominant. This is in accordance
with the results found by Ding et al. (2014) who obtained similar
mixing rates in a single layer of fluid. Note that in Ding et al.
(2014), as only one phase was modeled, only two populations

of tracers were considered, which filled the whole computational
domain. No distinction in Ding et al. (2014) was made between
regions of strongmixing (around the cilia), and regions of weaker
mixing (far above the cilia). On the contrary, Figure 15B shows
that above the PCL-mucus interface, the mixing is dominated by
molecular diffusion. Hence, it shows that drugs deposited onto
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the mucus layer can only reach the PCL via molecular diffusion.
This can be confirmed by doing a simple calculus: according to
Morgan et al. (2004), the mucus velocity is around Vmucus =
1.72.10−4 m.s−1. Assuming that there are no bifurcations in the
airways, so that the mucus is transported in the same direction
on a total length of around 20 cm, and assuming that its velocity
Vmucus remains constant, one gets that it takes around 20 h
for the mucus to be expelled. This time has to be compared
with the time taken by particles for reaching the PCL layer by
molecular diffusion: assuming that the layer of mucus has a
thickness Lmucus = 70 µm, the time for a particle to diffuse
over this distance can be approximated using Equation (21):
t ≈ (αs0)2/D = L2mucus/D. Using a diffusion coefficient D =
2.9.10−11 m2.s−1, corresponding to human immunoglobulin
G (IgG) in mucus (Saltzman et al., 1994), one gets a value of 169 s
for the IgG to reach the PCL-mucus interface. These results show
that drugs injected by nasal sprays and deposited onto the mucus
layermay always reach the PCL area throughmolecular diffusion.
There, the chaotic advection will further increase the mixing to
bring drugs near the epithelium. However, drugs composed of
large molecules will have smaller diffusion coefficients, andmight
not reach the PCL in time (for instance, for a value of diffusion
coefficient of the order of 10−14, it will take around 136 h to reach
the PCL). However, note that the conclusions drawn here result
from several hypothesis, which may limit the generality of our
simplified model of MCC. Other phenomena, such as chemical
reactions, osmosis, or unusual mucus properties associated to
peculiar pulmonary diseases might occur and should be taken
into account for a deeper understanding of the balance between
advective and diffusive mixing.

5. CONCLUSION AND PERSPECTIVES

By using a coupled lattice-Boltzmann/Immersed Boundary
solver, the transport and mixing induced by beating cilia were
studied in the context of MCC. Thanks to this numerical
approach, a stable two-phase system (mucus-PCL), allowing the
introduction of a viscosity ratio, can be studied. The mucus-
PCL interface is also naturally captured. Due to the local nature
of the LBM, the parallelization is straightforward, allowing the
simulations of large domains.

A detailed study of the transport induced by antiplectic and
symplectic MCW has been performed, and the results showed
that antiplectic MCW with large wavelengths (i.e., 18 < π/4)
are more able to transport the mucus. A displacement ratio has
also been introduced to quantify the capacity of a system to
transport particles for a given power input. The configuration
corresponding to an antiplectic MCW with 18 = π/6 has been
found to be the most energetically efficient. On the contrary,
symplectic MCW with large wavelengths result in a very poor
transport, due to the displacement of the mucus-PCL interface
above the cilia tips during their stroke phase.

Themixing capabilities of the system have also been studied in
three distinct areas. The results showed that the mixing is chaotic
in both the PCL region and above the PCL-mucus interface.
The stronger mixing is obtained in the PCL region where only

a few beating cycles are required to obtain a converged state of
mixing. On the contrary, far above the interface, the mixing is
almost null. The calculation of Lyapunov exponents in specific
locations of the domain has also shown that the mixing is
stronger when a cilium passes through the area of measurements,
and especially around the cilia tips because of their “whip-like”
motion. On the contrary, between two cilia along the y-direction,
the mixing takes more time and is weaker. At the interface,
particles are trapped and consequently follow the undulating
motion of the mucus-PCL interface. Two time scales can be
defined, one associated with advective mixing and the other one
with diffusive mixing. The results showed that in the mucus,
the mixing is always dominated by diffusion. Regions in the
ω-D phase diagram where mixing in the PCL is dominated by
advection also exist. These results show that drugs deposited
onto the mucus layer can only reach the PCL layer via molecular
diffusion. The two-layer character of the MCC allows a strong
chaotic mixing in the PCL while trapping the particles inside
thanks to the presence of a viscous layer of mucus. Above, the
mixing is also chaotic, but at a much lower rate, which allows the
mucus to be transported straightforwardly.

Future efforts toward more realistic simulations of the MCC
include:

• The implementation of a non Newtonian rheological behavior
for the mucus based on the experiments of Lafforgue et al.
(2017);

• to introduce a porous epithelial surface, to capture ions
transfer using the model developed by Pepona and Favier
(2016);

• the implementation of a more realistic 3D beating pattern for
the cilia (Gheber and Priel, 1997).
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