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Antineoplastic drugs can be associated with several side effects, including cardiovascular

toxicity (CTX). Biochemical studies have identified multiple mechanisms of CTX.

Chemoterapeutic agents can alter redox homeostasis by increasing the production of

reactive oxygen species (ROS) and reactive nitrogen species RNS. Cellular sources

of ROS/RNS are cardiomyocytes, endothelial cells, stromal and inflammatory cells in

the heart. Mitochondria, peroxisomes and other subcellular components are central

hubs that control redox homeostasis. Mitochondria are central targets for antineoplastic

drug-induced CTX. Understanding the mechanisms of CTX is fundamental for effective

cardioprotection, without compromising the efficacy of anticancer treatments. Type

1 CTX is associated with irreversible cardiac cell injury and is typically caused by

anthracyclines and conventional chemotherapeutic agents. Type 2 CTX, associated

with reversible myocardial dysfunction, is generally caused by biologicals and targeted

drugs. Although oxidative/nitrosative reactions play a central role in CTX caused by

different antineoplastic drugs, additional mechanisms involving directly and indirectly

cardiomyocytes and inflammatory cells play a role in cardiovascular toxicities.

Identification of cardiologic risk factors and an integrated approach using molecular,

imaging, and clinical data may allow the selection of patients at risk of developing

chemotherapy-related CTX. Although the last decade has witnessed intense research

related to the molecular and biochemical mechanisms of CTX of antineoplastic drugs,

experimental and clinical studies are urgently needed to balance safety and efficacy of

novel cancer therapies.

Keywords: chemotherapy, HER-2 inhibitors, oxidative/nitrosative stress, vascular endothelial growth factor,

tyrosine kinase inhibitors

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00167
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00167&domain=pdf&date_stamp=2018-03-07
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gilda.varricchi@unina.it
mailto:carlogabriele.tocchetti@unina.it
https://doi.org/10.3389/fphys.2018.00167
https://www.frontiersin.org/articles/10.3389/fphys.2018.00167/full
http://loop.frontiersin.org/people/392297/overview
http://loop.frontiersin.org/people/50676/overview
http://loop.frontiersin.org/people/513598/overview
http://loop.frontiersin.org/people/133406/overview
http://loop.frontiersin.org/people/368208/overview
http://loop.frontiersin.org/people/428481/overview
http://loop.frontiersin.org/people/514639/overview
http://loop.frontiersin.org/people/510548/overview
http://loop.frontiersin.org/people/447012/overview
http://loop.frontiersin.org/people/517520/overview
http://loop.frontiersin.org/people/513569/overview
http://loop.frontiersin.org/people/62142/overview


Varricchi et al. Antineoplastic Drug-Induced Cardiotoxicity

INTRODUCTION

Antineoplastic treatments have improved overall survival
and progression-free survival in the treatment of an increasing
number of malignancies (Jemal et al., 2011). However, different
antineoplastic drugs can cause a wide spectrum of cardiovascular
(CV) toxicities (CTX), particularly in long-term cancer survivors
(Oeffinger et al., 2006; Tocchetti et al., 2013; Moslehi and
Deininger, 2015; Mercurio et al., 2016; Zamorano et al.,
2016; Armenian et al., 2017). CTX include vasospastic
and thromboembolic ischemia, hypertension, dysrhythmia,
myocarditis and left ventricular (LV) dysfunction, leading to
heart failure (Yeh and Bickford, 2009; Ky et al., 2013; Suter
and Ewer, 2013; Zamorano et al., 2016). Figure 1 schematically
illustrates the wide spectrum of cardiovascular toxicities
associated with different antineoplastic drugs in patients with
cancer. Anthracyclines (ANTs) can cause irreversible type 1
CTX through the production of reactive oxygen species (ROS)
and reactive nitrogen species (RNS) (Ewer and Lenihan, 2008;
Ewer and Ewer, 2010; Scott et al., 2011). Intracellular signaling
inhibitors (e.g., tyrosine kinase inhibitors) block pathways
that are main regulators of myocardial function, especially
under conditions of cardiac stress, such as hypertension or
hypertrophy (Suter and Ewer, 2013). The toxicity induced by
biological drugs (e.g., trastuzumab) is often reversible, and has
been classified as type 2 CTX (Ewer and Lippman, 2005; Ewer
et al., 2005). However, these two forms of CTX may overlap.
For example, trastuzumab, a monoclonal antibody anti-HER-2
(Shinkai et al., 1999), can cause irreversible LV dysfunction in
patients previously treated with ANTs (Timolati et al., 2006;
Suter and Ewer, 2013; Zamorano et al., 2016). More recently,
immune myocarditis has entered as a novel challenge in the
cardio-oncologic arena, due to a growing number of patients
treated with immune checkpoint inhibitors (Swain and Vici) that
unleash immune responses (Johnson et al., 2016; Varricchi et al.,
2017d).

Here, we review the cellular and molecular mechanisms of
CTX of antineoplastic drugs from a redox perspective, since
plenty of evidence supports the importance of redox homeostasis
for the maintainance of cardiovascular health, while anticancer
drugs can disrupt such delicate balance in the myocardium and
in the endothelium (Ferroni et al., 2011; Vincent et al., 2013;
Zamorano et al., 2016).

OXIDATIVE AND NITROSATIVE STRESS IN
CARDIOVASCULAR TOXICITY

ROS is a collective term that includes oxygen radicals, like
superoxide (O−

2
•) and hydroxyl radicals (OH•), and other non-

radicals such as hydrogen peroxide (H2O2), singlet oxygen (1O2),
etc. (Del Río, 2015). The term RNS includes radicals like nitric
oxide (NO•) and nitric dioxide (NO2

•), as well as non-radicals
such as nitrous acid (HNO2) and dinitrogen tetroxide (N2O4),
among others. Redox stress, resulting from overproduction of
ROS and RNS, may directly or indirectly induce cardiac injury
(Nediani et al., 2011; Willis and Patterson, 2013).

Physiological levels of ROS and RNS are fundamental for
the regulation of many cellular functions (Egea et al., 2017).
For example, H2O2 is an endothelium-derived vasodilator of the
coronary vessels (Saitoh et al., 2007). In pathological conditions
(e.g., cancer growth) there is a deregulation of homeostatic
control of ROS production leading to DNA damage, inhibition
of cellular repair mechanisms and abnormal cell proliferation.
ROS/RNS contribute to dysregulation of gene expression and
genome stability, but also influence epigenetic pathways affecting
the functions/expression of histone andDNAmodifying enzymes
(Mikhed et al., 2015; Niu et al., 2015). Several antineoplastic drugs
induce CTX through an unbalanced generation of ROS/RNS,
leading to the so-called oxidative/nitrosative stress. ROS/RNS
imbalance derives from increased production or inactivation
of endogenous antioxidant enzymes by antineoplastic drugs.
Figure 2 schematically illustrates the transition from the
homeostatic role of ROS/RNS in healthy subjects to the
pathological role in cancer patients and during chemotherapy or
radiotherapy.

The heart is particularly vulnerable to ROS/RNS injury
because antioxidant resources are lower than other tissues (e.g.,
liver) (Minotti et al., 2004, 2010). High levels of ROS/RNS,
by exhausting endogeneous antioxidant defenses, can hamper
cellular signaling pathways in the CV system. Oxidative stress
and low grade inflammation are interdependent processes
implicated in cardiovascular diseases and cancer (Galdiero
et al., 2016; Varricchi et al., 2017a). Tissue resident (e.g.,
macrophages, mast cells) and circulating inflammatory cells
(e.g., neutrophils, monocytes) can also release ROS increasing
oxidative stress (Varricchi et al., 2017a), interestingly ROS can
initiate intracellular signaling increasing proinflammatory gene
expression (Biswas, 2016).

High levels of ROS/RNS induce membrane lipid peroxidation
and membrane damage, DNA damage and trigger death cell and
apoptosis, leading to cardiomyocyte death and replacement by
connective tissue, which results in irreversible cardiac damage (Li
and Singal, 2000; Menna et al., 2008, 2012; Zang et al., 2012; Ky
et al., 2013; Suter and Ewer, 2013; Hahn et al., 2014; Salvatorelli
et al., 2015; Mercurio et al., 2016).

The major intracellular sources of ROS include the
mitochondrial electron transport and the NADPH oxidase
family (NOXs) (Lassègue and Griendling, 2010; Zhang et al.,
2013). Mitochondria are key organelles for the regulation of
redox signaling and redox homeostasis (Egea et al., 2017).
Mitochondria function as a central hub that directly and
indirectly controls redox homeostasis by hosting several redox-
active complexes and enzymes that generate ROS and RNS.
Mitochondria represent ∼=35% of the myocyte volume and
produce ∼=90% of the cellular energy. Therefore, impairment of
mitochondrial function is critical in cardiomyocytes (Pagliaro
et al., 2011; Pagliaro and Penna, 2015; Tocchetti et al., 2015b). At
present, the NOX family is composed of five isoforms (NOX1,
NOX2, NOX3, NOX4, and NOX5). Cardiomyocytes (Varga
et al., 2013) and macrophages (Moon et al., 2016) express
NOX4. Mitochondrial and extramitochondrial NOX4 is a source
of ROS and can be affected by anticancer drugs. Activated
myocardial NOX2 produces O•−

2 , whereas NOX4 generates
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FIGURE 1 | Schematic representation of some of the cardiovascular toxicities associated with antineoplastic drugs in patients with cancer. Modified with permission

from Albini et al. (2010).

FIGURE 2 | Schematic representation of the homeostatic role of ROS and their pathologic role in tumor growth and cell death. Low production of ROS and balanced

antioxidant activity play a fundamental role in cellular signaling and repair resulting in controlled growth and survival. Proliferation of tumor cells yields elevated ROS

concentrations enhancing cell survival and proliferation leading to DNA damage and genetic instability causing cell dysfunction. Chemotherapeutic agents and

radiotherapy increase ROS production to toxic concentrations resulting in irreparable damage to the cell, inadequate adaptations and eventually cell death. The heart

is particularly vulnerable to ROS/RNS injury because antioxidant resources are lower than other tissues. Modified with permission from Moloney and Cotter (2017).
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H2O2. Moreover, superoxide dismutases (SODs) convert O•−

2 to
H2O2. In mitochondria, H2O2 may be converted to O2 and H2O
by catalase and by glutathione peroxidase (GPx). In the presence
of iron complexes, these ROS may be converted to the more
toxic OH• within and outside mitochondria (Zhao et al., 2010;
Pagliaro et al., 2011; Penna et al., 2014; Pagliaro and Penna, 2015;
Tocchetti et al., 2015a). Interestingly, mitochondrial ROS are
involved in the modulation of immune cells, including human
neutrophils (Vorobjeva et al., 2017).

Peroxisomes, cytoplasmic organelles specialized for
carrying out oxidative reactions, also play a role in ROS
production/regulation in cardiomyocytes. Several substrates
(i.e., amino acids, uric acid, and fatty acids) are broken down
by oxidative reactions in peroxisomes. Fatty acid metabolism
is very active in cardiomyocytes and peroxisomes are critical
for processing long carbon chain fatty acids. The contribution
of peroxisomes in the mechanism of CTX is largely unknown
(Zanardelli et al., 2014).

Nitric oxide (NO) is a key regulator of cellular functions. It
is a redox species with both oxidant and antioxidant properties
(Takimoto and Kass, 2007; Pagliaro and Penna, 2015; Tocchetti
et al., 2015a) produced produced from the metabolism of the
amino acid, L-arginine by three isoforms of nitric oxide synthase
(NOS): the endothelial (eNOS or NOS3) and neuronal (nNOS
or NOS1) NOSs, constitutively expressed in cardiomyocytes,
and the inducible NOS2 (iNOS), which is induced by pro-
inflammatory mediators or by ischemia (Pagliaro and Penna,
2015; Tocchetti et al., 2015a). NO is also produced by other
reactions termed “non-NOS” processes (Penna et al., 2014;
Pagliaro and Penna, 2015). ROS can react with NO to form
different RNS, thus amplifying the production of oxidant
compounds, and NOS itself may produce ROS (Fogli et al.,
2004; Penna et al., 2014; Pagliaro and Penna, 2015; Tocchetti
et al., 2015b). NO together with RNS has an important role in
mediating proteotoxic stress and modifications of mitochondrial
activities, resulting in cytotoxicity and cell necrosis (Lala and
Chakraborty, 2001). S-nitrosylation (SNO) is the covalent
attachment of a NO moiety to a protein thiol group. SNO is a
redox-dependent modification that exerts an antioxidant effect,
shielding critical cysteine residues from oxidation and affecting
protein functions (Penna et al., 2014; Pagliaro and Penna, 2015).

ANTHRACYCLINES

The production of ROS/RNS is central in the CTX of
several anti-cancer drugs. Some agents alter the activity
of redox enzymes within and outside the mitochondria,
including NOSs, respiratory complexes, the Krebs cycle,
oxidative phosphorylation, and β-oxidation (Tocchetti et al.,
2017). This impairment results in oxidative/nitrosative stress, a
reduction in antioxidant capacity, and induction of cell death
(Fogli et al., 2004; Albini et al., 2010; Mele et al., 2016a,b).

ANTs (doxorubicin, epirubicin and daunorubicin), widely
used as anticancer agents, are recognized as prototype of
type 1 CTX since the 1960s (Tan et al., 1967). ANTs can
induce LV dysfunction, leading to HF in up to 9% of patients

(Cardinale et al., 2015). ANT can cause CTX via a series of
many cellular and molecular mechanisms (Zhang et al., 2012;
Zamorano et al., 2016). Figure 3 schematically illustrates the
complex interplay of the major mechanisms by which ANTs can
induce injury to cardiac cells. The administration of ANTs can
alter redox homeostasis in cardiomyocytes and tissue resident
(e.g., fibroblasts, endothelial cells, mast cells, macrophages) and
circulating inflammatory cells (e.g., neutrophils, eosinophils) in
the heart by producing ROS and RNS (Pagliaro and Penna, 2015;
Ghigo et al., 2016; Tocchetti et al., 2017).

A basic mechanism by which ANTs can cause CTX is the
interaction with topoisomerase 2 (TOP2) A and -B highly
expressed in cardiomyocytes (Lyu et al., 2007). The former is
present in rapidly dividing cells, such as cancer cells, and forms
the ternary TOP2-doxorubicin-DNA complex, inducing cell
apoptosis. TOP2B, highly expressed in human cardiomyocytes,
forms the TOP2B-doxorubicin-DNA complex, which causes
DNA damage leading to cell apoptosis. The tumor suppressor
protein p53, a pivotal enzyme for activating DNA repair proteins,
can cause mitochondrial dysfunction and metabolic failure
(Sawyer, 2013). Themetabolic alterations caused by doxorubicin-
activated p53 damagemitochondria in the cardiomyocytes, result
in enhanced ROS/RNS generation and ultimately cell death.
Collectively, these results indicate that oxidative reactions play
a central role in ANT-induced LV dysfunction. Therefore, drugs
that interfere with molecules involved in heart metabolism
(e.g., p53) may represent a potential approach in limiting LV
dysfunction (Sawyer, 2013; Mercurio et al., 2016).

Besides directly damaging cardiomyocytes, doxorubicin
induces apoptosis of immune (e.g., macrophages) and cancer
cells releasing high mobility group box 1 (HMGB1) which, in
turn, triggers toll-like receptor (TLR)-2 and-4 (Ma et al., 2012;
Yao et al., 2012). TLR-2 and TLR-4 are found in cardiomyocytes
and inflammatory cells and their engagement induces the release
of proinflammatory cytokines (i.e., IL-6, IL-1β, TNF-α). Overall,
these findings emphasize the contribution of TLRs in mediating
ANT-induces inflammation andCTX and envisage the possibility
of targeting this pathway for therapeutic purposes.

A better characterization of the multiple molecular
mechanisms of ANT-related toxicity of blood vessels and
cardiomyocytes appears fundamental to select the best approach
to prevent and treat CTX (Van Cutsem et al., 2002; Scott et al.,
2011; Madonna et al., 2015a,b; Cadeddu et al., 2016).

As mentioned in a previous section, mitochondrial ROS
(mtROS) represent a prominent source (∼=80%) of ROS,
expecially in the heart (Russell and Cotter, 2015). mtROS play a
pivotal role in ANT-induced CTX (Minotti et al., 2004, 2010).
Doxorubicin binds with high affinity to the mitochondrial
phospholipid cardiolipin, inhibits its function, stimulates
ROS/RNS production, inhibits oxidative phosphorylation, and
causes mitochondrial DNA damage (Pereira et al., 2016). ANTs
also cause mitochondrial calcium accumulation, leading to
mitochondrial injury (Pereira, Pereira et al., 2016). ANTs can
also affect cardiac progenitor cells following myocardial injury
(Huang et al., 2010; Oliveira et al., 2013).

The production of ROS is a central event in ANT-induced
CTX. ROS are effectors of membrane lipid peroxidation,
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FIGURE 3 | Schematic representation of the main mechanisms of anthracycline-induced injury to cardiac cells. The classic model of anthracycline (ANT) cardiotoxicity

involves the generation of ROS by the quinone moiety common to all anthracyclines. ROS and RNS hyperproduction results in damage to DNA, protein carbonylation

and lipid peroxidation leading to cellular dysfunction and cardiomyocyte death. ANTs can also bind and block the functions of both topoisomerases 2A (TOP2A) and

2B (TOP2B). Tumor cells express high levels of TOP2A, whereas TOP2B is ubiquitously expressed. Cardiomyocytes express TOP2B, but not TOP2A. ANTs form a

complex with TOP2B inhibiting its enzymatic activity. Without functional TOP2B, DNA breaks accrue, leading to the activation of p53 tumor-suppressor protein,

mitochondrial dysfunction, and the generation of ROS that result in cardiomyocyte death. Another mechanism underlying doxorubicin-dependent oxidative stress is

linked to the ability of the drug to directly interfere with the activity of NADPH oxidase and nitric oxide synthase (NOS). Both NADPH oxidase and NOS can transfer

electron from NADPH to doxorubicin, causing the formation of semiquinone doxorubicin (SQ-DOX). SQ-DOX in turn transfers electron to O2 and generates O−

2 . In the

NOS compartment, O−

2 can react with NO to form peroxynitrite (ONOO−), a powerful oxidant that can generate free radicals. An alternative mechanism by which

ANTs exert their cardiotoxic effects is the inhibition of neuregulin-1 (NRG-1)-HER-2 in cardiomyocytes. Doxorubicin also induces necrosis of immune (i.e.,

macrophages) and cancer cells releasing HMGB1 which activates TLR-2 and TLR-4 in cardiomyocytes and inflammatory cells inducing the release of proinflammatory

cytokines. These primary effects induce a plethora of secondary effects in cardiomyocytes (e.g., DNA damage, lipid peroxidation, mitochondrial dysfunction, etc.,)

which result in cell dysfunction and death. Modified with permission from Tocchetti et al. (2017).

irreversible damage, and myocyte replacement by connective
tissue (Menna et al., 2008, 2012; Zhang et al., 2012; Ky et al., 2013;
Suter and Ewer, 2013; Salvatorelli et al., 2015). ROS generated by
ANTs affect mitochondrial enzymes, NOSs, NAD(P)H oxidases,
and catalase, leading to oxidative stress and cell injury. ANTs
are metabolized to unstable compounds (such as doxorubicin-
semiquinone), which react with O2, producing H2O2 and O•−

2 .
ANTs chelate free intracellular iron, forming iron-

doxorubicin complexes. ANTs also interfere with iron-
transporting and -binding proteins (Gammella et al., 2014; Ghigo
et al., 2016). Ardehali and collaborators found that doxorubicin
impairs a mitochondrial iron exporter with consequent iron
accumulation and subsequent ROS generation (Ichikawa
et al., 2014). Cardiac dysfunction following ANT treatment
is associated with high mitochondrial iron levels compared
with normal hearts (Ichikawa et al., 2014). Collectively, these
findings indicate that oxidative stress and mitochondrial iron
accumulation play a key role in ANT-induced CTX.

ANTs interact with cardiolipin leading to concentration of the
drug in mitochondrial membrane phospholipids (Goormaghtigh
et al., 1990). In mitochondria, the drug exerts adverse effects
(e.g., ROS generation, inhibition of oxidative phosphorylation,
and mitochondrial DNA damage). ROS cause peroxidation
of cardiolipin, which induces the release of mitochondrial
factors, such as cytochrome c, which in turn triggers cardiolipin
peroxidation. This cycle exacerbates ANT-induced injury.
NO inhibits both the peroxidase activity of cytochrome c
and cardiolipin oxidation. NO, which possesses antioxidant
properties, may counteract the toxic effects of ANTs (Vlasova
et al., 2006; Gonzalvez and Gottlieb, 2007; Pointon et al., 2010).

Enzymes located outside the mitochondria also able to
produce ROS. A nonexhaustive list includes NADPH oxidases
(NOXs), xanthine oxidase (XO), and monoamine oxidase.
Xanthine oxidase and NADPH, may be targeted by ANTs.
Doxorubicin deoxyaglycone can be obtained by a reduction
process and accumulates in membranes, altering the function
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of NADH dehydrogenase in mitochondria or the NOXs in
the plasma membrane (Thorn et al., 2011). Among other
mechanisms involved in cardiotoxicity caused by ANTs, recent
studies have highlighted the role of altered myocardial energetics,
expressed by a lower phosphocreatine/adenosine triphosphate
(ATP) ratio, which precedes LV dysfunction (Maslov et al.,
2010). Indeed, ANTs can oxidize sulfhydryl groups of creatine
kinase (CK), reducing its function, thus impairing myocardial
energetics (Maslov et al., 2010), hence causing LV dysfunction.
More studies on such an interesting mechanism could be helpful
in order to identify new protective therapeutic strategies. Indeed,
overexpression of myofibrillar CK in mice with HF induced by
transverse aortic constriction increased heart function (Gupta
et al., 2012) supporting a role for CK in HF prevention
and treatment. Accordingly, the same group demonstrated
that CK overexpression also ameliorated myocardial energetics,
contractile function, and survival in murine anthracyclines
cardiotoxicity (Gupta et al., 2013). These results provide novel
strategies for limitation of anthracycline-related cardiotoxicity.

ANTs are also able to alter cardiac energy metabolism by
lowering the level of 5′ AMP-activated protein kinase (AMPK,
activated in the response to energy stress) and phosphorylation of
anti-acetyl-CoA carboxylase, leading to impairment of fatty acid
oxidation (Tokarska-Schlattner et al., 2005).The mechanisms
underlying inhibition of AMPK need to be fur-ther elucidated
(Mercurio et al., 2016).

Importantly, along with ANTs (Menna et al., 2012; Sawyer,
2013; Sterba et al., 2013; Ghigo et al., 2016), redox abnormalities
are central in the pathophysiology of cardiotoxicity caused
by other anticancer drugs, among which are new biologic
antineoplastic agents, such as intracellular signaling inhibitors,
that are increasingly being used (Tocchetti et al., 2017). Such
agents may cause cardiotoxicity, since they block pathways
important for the modulation of myocardial function, especially
under conditions of cardiac stress, such as hypertension or
hypertrophy (Suter and Ewer, 2013), with mechanisms of action
that often involve redox dysregulation as well.

ANTIMETABOLITES

Fluoropyrimidines [i.e., 5-fluorouracil (5-FU), capecitabine, and
gemcitabine] are used in the treatment of several tumors. 5-
FU administered intravenously has a short half-life, but active
metabolites concentrate in cardiac and cancer cells, resulting in
a prolonged exposure to the drug (Kosmas et al., 2008; Miura
et al., 2010; Lestuzzi et al., 2011). Capecitabine is converted into
its active form preferentially within tumors (Ng et al., 2005;
Aprile et al., 2009; Khan et al., 2014; Petrelli et al., 2016). 5-
FU and its main metabolite can induce CTX after few days
of treatment (Jensen and Sorensen, 2006; Jensen and Sørensen,
2012). The enzyme involved in the conversion of capecitabine
to 5-FU is expressed in both atherosclerotic plaques and cancer
cells, explaining the CTX in patients with coronary artery disease.
The incidence of CTX caused by 5-FU ranges from 0 to 35%, with
a mortality rate between 2 and 13%. Myocardial ischemia is the
strongest risk factors for fluoropyrimidine-induced CTX (Koca

et al., 2011; Polk et al., 2013, 2014). Silent ischemia due to cardiac
stress test has been reported in 6–7% of 5-FU-treated patients
(Lestuzzi et al., 2014). The mechanisms involved in the CTX of
5-FU and its metabolites involve inhibition of NO (Cianci et al.,
2003; Shoemaker et al., 2004), enhanced generation of ROS/RNS
(Lamberti et al., 2014), higher endothelial thrombogenicity
(Kalam and Marwick, 2013) and senescence (Altieri et al., 2017),
and DNA and RNA damage. 5-FU can induce oxidative stress
in cardiomyocytes and endothelial cells. This drug causes eNOS
dysregulation, endothelin 1 upregulation and the activation of
protein kinase C. These effects lead to endothelium-dependent
and -independent vasoconstriction, and eventually to coronary
spasm (Alter et al., 2006; Sorrentino et al., 2012).

HER-2 INHIBITORS

Epidermal growth factor receptor 2 (ErbB2) (also called HER-
2), ErbB1, ErbB3, and ErbB4 are members of the human
epidermal growth factor receptor family. When activated by
their ligands, these transmembrane receptors homodimerize or
heterodimerize and are phosphorylated, initiating several cellular
responses (Force et al., 2007). HER-2, present on human heart
and overexpressed in approximately 30% of breast cancers, can
interact with HER-1 and HER-3, independently from ligand
stimulation, thus triggering signaling pathways that stimulate
tumor growth (Slamon et al., 1987). Trastuzumab, a humanized
mAb that binds the extracellular domain IV of HER-2 (Force
et al., 2007; Suter et al., 2007), can cause type 2 CTX (Ewer
and Lippman, 2005; Ewer et al., 2005) in approximately 30% of
patients when combined with ANTs (Slamon et al., 2001; Suter
et al., 2007; De Keulenaer et al., 2010).

Several oral small molecules inhibiting tyrosine kinase (TK)
associated with HER are clinically used or under development
(De Keulenaer et al., 2010; Ades et al., 2014). Lapatinib and
neratinib are novel HER-2/HER-4 TK inhibitors undergoing
clinical development in HER-2+ breast cancer. Their cardiac
safety data show a favorable profile (Ades et al., 2014). Several
clinical trials have demonstrated that lapatinib is less toxic than
trastuzumab (Ades et al., 2014). Pertuzumab is a humanized
mAb blocking domain II of the extracellular part of HER-2, thus
stopping HER-2/HER-3 homo-heterodimeration. Several clinical
trials have assessed the cardiac toxicity of pertuzumab (Bowles
et al., 2012; Molinaro et al., 2015). Pertuzumab causes a modest
(∼=10%) reduction of LVSD in patients with HER-2+ breast
cancer (Baselga et al., 2012; Gianni et al., 2012; Swain et al., 2013).

Importantly, in breast cancer treatment, the co-
administration of trastuzumab with ANTs enhances the
latter’s toxicity and is now avoided. In fact, anti-HER-2 mAbs
block the protective mechanisms of HER-2, exhacerbating the
oxidative damage caused by doxorubicin (Ewer and Ewer,
2010). Indeed, redox mechanisms have also been advocated
for the neuregulin/ErbB2 pathway. This pathway can modulate
the increase in ROS caused by doxorubicin in animal models
(Timolati et al., 2006), suggesting that cardiotoxicity from ErbB2
blockade can also involve a dysregulation of redox homeostasis
(Gordon et al., 2009; Mercurio et al., 2016).
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In the heart, endothelial cells release neoregulin 1 (NRG-
1), especially the NRG-1β isoform (Lim et al., 2015), which
triggers HER-4/HER-4 homodimerization and HER-4/HER-2
heterodimerization on cardiomyocytes to activate protective
pathways in response to stress (De Keulenaer et al., 2010; Odiete
et al., 2012; Lim et al., 2015; Figure 4). The HER-2 pathway
mediates cell survival and possibly regeneration (D’Uva et al.,
2015) and is stimulated when the heart experiences stress,
including hypertension (de Korte et al., 2007; Ewer and Ewer,
2010) and ANT therapy (Gabrielson et al., 2007). Anti-HER-
2 agents interfere with the NRG-1/HER-4/HER-2 axis and can
cause cardiomyocyte damage. This hypothesis is corroborated
by ErbB2 KO-mice that present with LV dilation and increased
susceptibility to ANT-induced cardiac damage (Crone et al.,
2002; Ozcelik et al., 2002), supporting a fundamental role of
HER-2 in the heart. Conversely, cardiac ErbB2 overexpressed
mice exhibited reduced levels of ROS in mitochondria, with
lower ROS levels and less cell death after treatment of neonatal
cardiomyocytes isolated from ErbB2 (Bosch et al., 2013) hearts
with anthracyclines. This was due to higher levels of glutathione
peroxidase 1 (GPx1) protein and GPx activity, with increased
levels of two known GPx activators, c-Abl and Arg (Belmonte
et al., 2015; Tocchetti et al., 2017).

HER-2 and HER-4 receptor expression and
activation/phosphorylation are lower in failing human
myocardium, a condition characterized by increased oxidative

stress (Rohrbach et al., 1999). Dogs with HF showed increased
phosphorylation of ErbB4 and ErbB2 (Doggen et al., 2009). NRG-
1 expression is enhanced in HF (Rohrbach et al., 1999; Doggen
et al., 2009). Collectively, these results indicate that NRG-1/HER-
4/HER-2 activity is involved in the pathophysiology of HF
(Mercurio et al., 2016). (Mercurio et al., 2016). Importantly,
NRG-1 exerts a lusitropic effect on isolated cardiac muscle
preparations via a NO-dependent mechanism (Lemmens et al.,
2004): this requires a functional NO synthase, with preserved
NO bioavailability, a condition which can be hampered by the
increased oxidative stress in HF (Nediani et al., 2011; Arcaro
et al., 2016).

Based on cardioprotective properties of NRG-1 via HER-
4/HER-2, the neuregulin-HER pathway is currently being
assessed in clinical studies for HF treatment (Galindo et al.,
2014a,b). NRG-1β increases LV function and reduces cardiac
dimensions in experimental failing hearts (Liu et al., 2006; Li
et al., 2011; Galindo et al., 2014a,b; Mercurio et al., 2016).
NRG-1 also inhibits cardiac fibroblasts and prevents fibrosis
(Galindo et al., 2014a,b). NRG-1 administration after myocardial
infarction is able to blunt remodeling of the damaged heart (Liu
et al., 2006; Galindo et al., 2014a,b). Clinical trials have shown
that NRG-1 is well-tolerated and ameliorates heart dimensions
and LVEF up to 3 months after treatment (Gao et al., 2010;
Jabbour et al., 2011). However, NRG-1 may be a growth factor for
cancer cells, and further studies are necessary to assess the safety

FIGURE 4 | Schematic representation of the mechanism of action of trastuzumab and pathogenesis of its cardiotoxicity. Trastuzumab is a mAb that binds the

extracellular domain IV of HER-2. It is used to treat breast cancer patients (∼=30%) in which HER-2 is overexpressed and spontaneously homodimerizes or forms

heterodimers with other HER receptors, especially HER-3. This ligand-independent activation of HER-2 promotes proliferation and survival of tumor cells.

Trastuzumab blocks the interaction HER-2/HER-3 and downstream signaling halting the growth of tumor cells. Moreover, trastuzumab induces the

antibody-dependent immune cell-mediated cytotoxicity of cancer cells (left side). In the heart, neuregulin-1 (NRG-1) triggers HER-4/HER-4 homodimerization and

HER-4/HER-2 heterodimerization on cardiomyocytes to induce protective pathways in response to stress. Blockade of cardiac HER-2 by trastuzumab results in the

disruption of NRG-1-dependent signaling and consequently in alterations of structure and functions that cause cardiomyocyte death (right side).
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and efficacy of NRG-1 in HF (Lim et al., 2015; Mercurio et al.,
2016).

INHIBITORS OF VASCULAR ENDOTHELIAL
GROWTH FACTOR (VEGF) SIGNALING

Vascular endothelial growth factors (VEGF-A, VEGF-B, VEGF-
C, VEGF-D. and PlGF) activate specific tyrosine kinase (TK)
receptors (VEGFR-1, VEGFR-2, and VEGFR-3) on blood
endothelial cells (Loffredo et al., 2016; Staiano et al., 2016) and on
endothelial colony forming cells (Dragoni et al., 2011) and have
a major role in myocardial angiogenesis at rest and in pressure-
overload hearts (Oka et al., 2014). Inhibitors of VEGF signaling
(i.e., mAbs anti-VEGF-A and “specific” TK inhibitors) are used
for the treatment of several malignancies (Hurwitz et al., 2004;
Sandler et al., 2006). VEGFs also regulate several myocardial
functions and the integrity of coronary and systemic blood vessels
(Folkman, 2007; Eschenhagen et al., 2011; Curigliano et al., 2012;
Tocchetti et al., 2013; Marone and Granata, 2014), hence, not
surprisingly, beside fighting cancer proliferation by inhibiting
angiogenesis, VEGF antagonists may produce different forms of
CTX, mainly hypertension, thromboembolism, LV dysfunction,
and HF (Gressett and Shah, 2009; Nazer et al., 2011; Welti et al.,
2013).

Bevacizumab (anti-VEGF mAb), sunitinib and sorafenib
(TK inhibitors: TKIs) are used for the treatment of different
types of cancer (Hurwitz et al., 2004; Sandler et al., 2006).
Bevacizumab can induce hypertension and cardiac dysfunction
in 1–3% patients undergoing chemotherapy (Miller et al.,
2005). Regorafenib is a multi-target TKI that inhibits VEGFR1,
endothelial-specific receptor tyrosine kinase (trk2), PDGFR,
fibroblast growth factor receptor (FGFR), KIT, and RET.
Regorafenib, used in therapeutic protocolos for gastrointestinal
tumors, can induce hypertension (Brinda et al., 2016) and less
frequently cardiac ischemia and myocardial infarction (Bronte
et al., 2015). Treatment with pazopanib and axitinib (inhibitors
of VEGFRs, PDGFRA and B, and KIT) can lead to hypertension
(Motzer et al., 2013). 40% of patients treated with axitinib
can experience hypertension (Hutson et al., 2013). Novel anti-
angiogenic drugs such as cediranib, vatalanib and nintedanib also
exhibit a potential risk of hypertension and HF (Goss et al., 2010;
Van Cutsem et al., 2011; Reck et al., 2014).

Sunitinib and sorafenib are not selective TKIs and inhibit
several kinases other than VEGFR (Cheng and Force, 2010).
Sunitinib inhibits more than 30 TKs, including platelet-derived
growth factor receptor (PDGFR), KIT, and colony-stimulating
factor 1 receptor (CSF1R) (Force et al., 2007; Cheng and Force,
2010; Hasinoff and Patel, 2010). All these kinases are regulators
of CV functions (Lévy, 2006; Anisimov et al., 2009). Up to 28%
of patients can develop cardiac dysfunction from sunitinib (Chu
et al., 2007; Motzer et al., 2007; Khakoo et al., 2008; Telli et al.,
2008). The CTX induced by sunitinib is also due to interference
with ribosomal S6 kinase (Tokarska-Schlattner et al., 2005) that
then triggers apoptosis (Force et al., 2007; Kerkela et al., 2009).
Sunitinib prolongs opening of the mitochondrial permeability
transition pore (mPTP) and mitochondrial swelling in myocytes

from heart subjected to pressure overload (Chu et al., 2007). Also,
treatment of different myocardial preparations with sunitinib
produces a dose-dependent negative inotropic effect, paralleled
by a decline in intracellular Ca2+ and increase of ROS production
(Rainer et al., 2012; Tocchetti et al., 2013). Interestingly, our
preliminary data show that CKmight play a role in the regulation
of sunitinib cardiac effects (Tocchetti et al., 2015b). In addition,
sutinitib can harm pericytes in cardiac vessels (Chintalgattu
et al., 2013). Sorafenib inhibits at least 15 kinases, including the
VEGFR, PDGFR, and KIT (Force et al., 2007; Cheng and Force,
2010; Tocchetti et al., 2013).

In conclusion, cardiac dysfunction can be induced by
many mechanisms in patients treated with mAbs anti-VEGF
and TKIs including alterations of mitochontrial function and
energy production with increase in ROS generation, as well as
induction of arterial hypertension (Mourad and Levy, 2011).
Bevacizumab and sunitinib can cause hypertension because
of functional (inactivation of endothelial NO synthase and
production of vasoconstrictors such as endothelin-1) and
anatomic modifications, bringing to vasoconstriction and to an
increase in peripheral vascular resistance (Ku et al., 1993;Mourad
and Levy, 2011; Nazer et al., 2011; Hahn et al., 2014). Arterial
and venous thrombosis is due to reduction of NO synthesis,
endothelial dysfunction, and plaque instability.

ANTIOXIDANT PROPERTIES OF
CARDIOVASCULAR DRUGS: A USEFUL
TOOL FOR THE PROTECTION FROM
CARDIOTOXICITY OF ANTINEOPLASTIC
DRUGS

It has been suggested that drugs with antioxidant properties can
prevent CTX induced by an increase in ROS (Swain et al., 1997;
Li and Singal, 2000; Spallarossa et al., 2004; Cadeddu et al., 2010;
Lipshultz et al., 2012; Dessí et al., 2013; Broeyer et al., 2014).
Dexrazoxane, an iron-chelating drug, is a cardioprotective agent
approved by the FDA for ANT-induced CTX. It is a pro-drug
that enters the cardiomyocyte, is rapidly metabolized into its
active form, and inhibits the formation of ANT-iron complexes
and the production of ROS (Simunek et al., 2009). Its efficacy in
several types of tumors has been demonstrated in clinical trials
and two pooled analyses (Swain et al., 1997; Seymour et al., 1999;
Swain and Vici, 2004; Lipshultz et al., 2012). Other iron chelators
have not shown any cardioprotective effect suggesting that
dexrazoxane exerts its effects by means of additional protective
mechanisms (Simunek et al., 2009). Dexrazoxane changes the
Top2β configuration preventing its interface with ANTs, thereby
impeding the formation of the Top2-DNA complexes (Lyu et al.,
2007; Lencova-Popelova et al., 2016). Stěrba and coworkers have
shown that the cardioprotective effects of dexrazoxane are due
to its interaction with Top2-β, rather than to its iron chelating
activity (Sterba et al., 2013). Derivatives of dexrazoxane lacking
effects on Top2β were found not to be protective in models
of ANT-induced CTX (Martin et al., 2009; Tocchetti et al.,
2017) suggesting the relevance of Top2β in the cardioprotective
mechanism.
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ANTIOXIDANT PROPERTIES OF BETA
BLOCKERS: BEYOND THE
ANTIADRENERGIC EFFECTS

β-blockers are cornerstone treatments for patients with low LVEF
(Ponikowski et al., 2016), and there is evidence to encourage their
use in asymptomatic ANT-related LV dysfunction (Curigliano
et al., 2012; Cadeddu et al., 2016). The rationale for β blocker
utilization in ANT-induced CTX is based on clinical and
experimental results. Alterations of β-adrenergic receptor (β-
AR) signaling are present in LV dysfunction caused by ANTs
and in other types of dilated cardiomyopathies (Fu et al.,
1994). Furthermore, a positive effect of β-AR blockage in
reducing oxidative stress and myocardial calcium overload
(Nakamura et al., 2002; Asanuma et al., 2004) has been
shown in experimental models. New-generation β blockers (i.e.,
carvedilol and nebivolol) have been taken into consideration
for their cardioprotective properties. Carvedilol, a non-selective
β- and α1-AR antagonist with strong antioxidant properties,
was compared to atenolol, a β blocker devoid of antioxidant
properties. Only carvedidol conferred protection from ANT-
induced LV-dysfunction and such effect has been attributed to its
antioxidant properties rather than to the β-AR blocking action
(Matsui et al., 1999). Carvedilol inhibits ANT-induced ROS
release, cardiomyocyte apoptosis (Spallarossa et al., 2004), and
mitochondrial alterations (Santos et al., 2002). In a small clinical
trial evaluating the cardioprotective effect of carvedilol in patients
treated with ANTs a reduced incidence of LV dysfunction was
reported (Kalay et al., 2006). More studies are needed in order to
confirm this cardioprotective effect.

In an experimental model of ANT-induced CTX, nebivolol,
a cardio-selective β blocker with limited vasodilating properties,
improved LV function, while enhancing NO levels and lowering
oxidative stress (de Nigris et al., 2008; Tocchetti et al., 2015a).
In a small clinical trial the prophylactic use of nebivolol in
patients undergoing ANT-based treatments was associated with
lower incidence of LV dilatation and systolic dysfunction in the
nebivolol group compared to the placebo group (Kaya et al.,
2013).

Interestingly, β blockers have been associated with reduced
risk of cardiac dysfunction in patients on trastuzumab, ANTs,
or both (Seicean et al., 2013). More recently, β blockers such as
bisoprolol (Pituskin et al., 2017) and metoprolol have not shown
promising results in the prevention of trastuzumab-induced
LV dysfunction, suggesting that blockade of β1 alone is not
cardioprotective (Gulati et al., 2016). This supports the use of
non-selective β1 and β2 blockers (Sysa-Shah et al., 2016).

THE REDOX ROLE OF
RENIN-ANGIOTENSIN-ALDOSTERONE
SYSTEM ANTAGONISTS

The renin-angiotensin-aldosterone system (RAAS) is a key player
in ANT-induced CTX (Arnolda et al., 1985). Angiotensin-
converting enzyme inhibitors (ACE-Is) and angiotensin II
receptor blockers (ARBs) can reduce the progression of heart

dysfunction and prevent HF in high-risk patients (Ponikowski
et al., 2016). Experimental studies have shown the efficacy of
ACE-Is in fighting ANT-induced CTX (Abd El-Aziz et al.,
2001; Boucek et al., 2003). ACE-Is can confer protection
from ANT-related CTX by reducing ROS damage, intracellular
calcium overload and fibrosis, and by enhancing mitochondrial
respiration and cardiomyocyte metabolism (Abd El-Aziz et al.,
2001; Boucek et al., 2003). Enalapril, captopril, and lisinopril
can improve acute and chronic ANT-induced cardiotoxicity in
experimental models (Abd El-Aziz et al., 2001). In ANTs-treated
patients, enalapril reduced the incidence of LV dysfunction
compared to placebo (Cardinale et al., 2015). Candesartan
modulates experimental cardiotoxicity induced by ANTs (Soga
et al., 2006). Pre- and post-treatment with telmisartan protects
against acute doxorubicin-induced LV dysfunction in rats (Iqbal
et al., 2008). Telmisartan affects the bioavailability of NO
and inhibits the production of interleukin-6 (IL-6) and tumor
necrosis factor-α (TNF-α) (Yamagishi and Takeuchi, 2005).
In a small prospective study, telmisartan blunted subclinical
cardiotoxic effects of epirubicin (EPI) (Cadeddu et al., 2010).
Telmisartan reversed early EPI-induced myocardial dysfunction
and maintained a normal systolic function up to the 18-
month follow-up (Dessí et al., 2011, 2013). Valsartan exerted a
cardioprotective effect in patients treated with ANTs (Nakamae
et al., 2005).

The combination of ACE-Is (enalapril) and β blockers
(carvedidol) seems to be beneficial in treating ANT-induced
CTX (Bosch et al., 2013). Several clinical trials have evaluated
the role of ACE-Is and ARBs as cardiopreventive agents in
patients undergoing chemotherapy (Lim et al., 2015; Molinaro
et al., 2015). A recent meta-analysis showed that the prophylactic
administration of ACE-Is and ARBs in patients treated with
ANTs reduced the risk of developing CTX compared with
placebo (Kalam and Marwick, 2013). Unfortunately, recent
studies have failed to show promising results about prevention of
cardiotoxicity with beta blockers or ACE-Is or ARBs (Boekhout
et al., 2016; Gulati et al., 2016; Pituskin et al., 2017).

Non-dihydropyridine calcium channel blockers are not
indicated in patients with anti-angiogenic drug-induced
hypertension, due to the pharmacokinetic interaction of
sorafenib and sunitinib with CYP3A4 (Maitland et al., 2010;
Cadeddu et al., 2016). Experimental and clinical studies should
evaluate the safety and efficacy of the combination of ACE-Is and
β blockers in preventing sunitinib-induced CTX.

EXPERIMENTAL ANTIOXIDANT DRUGS IN
CARDIOPROTECTION AGAINST
CARDIOTOXIC EFFECTS OF
ANTHRACYCLINES

Several drugs (e.g., ranolazine, statins, and phosphodiesterase-
5 inhibitors) have been assessed in counteracting ANT-induced
CTX. The efficacy of different statins in preventing ANT-
induced CTX is so far unproven, due to controversial data.
Statins (i.e., lovastatin and fluvastatin) were cardioprotective in
cellular studies performed on proliferating H9c2 cell line, but
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not on cardiomyocytes (Riad et al., 2009; Huelsenbeck et al.,
2011). Lovastatin did not modify LV dysfunction induced by
doxorubicin (Henninger et al., 2015). Small clinical studies have
reported protective/marginal effects of statins in patients treated
with ANTs (Seicean et al., 2012; Chotenimitkhun et al., 2015).
Hence, several experimental models of cardiac dysfunction have
suggested a cardioprotective effect with ranolazine (Sabbah et al.,
2002; Rastogi et al., 2008; Coppini et al., 2013, 2017). Ranolazine
can preserve cardiac function in mice treated with ANTs
by reducing oxidative stress (Tocchetti et al., 2014; Cappetta
et al., 2017). Ranolazine can prevent calcium overload and the
occurrence of oxidative damage by suppressing ROS production
(Kohlhaas et al., 2010). Although the INTERACT study indicated
that ranolazine was a promising agent for the prevention of DOX-
induced cardiotoxicity, more studies are needed to confirm such
evidence (Minotti, 2013).

Sildenafil, a phosphodiesterase-5 inhibitor, seems to
protect from ANT-induced cardiac dysfunction by opening
mitochondrial KATP channels, preserving mitochondrial
membrane potential and myofibrillar integrity, and preventing
cardiomyocyte apoptosis (Fisher et al., 2005). Tadalafil blunted
ANT-induced LV dysfunction through NO-mediated rises in
cGMP levels (Koka et al., 2010; Jin et al., 2013).

Hydrogen sulfide (H2S), a redox compound, also attracted
the interest of cardio-oncologists. Cystathionine gamma-lyase, a
key enzyme in the synthesis of H2S, is involved in ANT-induced
CTX in cardiomyocytes and exogenous H2S has been shown
to protect against CTX (Papapetropoulos et al., 2015; Cadeddu
et al., 2016;Mele et al., 2016b). Further experimental research and
randomized trials will be needed to assess the safety and efficacy
of H2S.

Experimental data show that VEGF-B favors coronary
artheriogenesis, physiological cardiac hyperthrophy, and
resistance to ischemia (Bry et al., 2010; Kivelä et al., 2014).
Furthermore, VEGF-B has been proposed as a candidate for the
therapy of dilated cardiomyophaty (Kivelä et al., 2014; Woitek
et al., 2015). There is preliminary evidence that VEGF-B gene
therapy can inhibit doxorubicin-induced CTX (Räsänen et al.,
2016).

BEYOND PHARMACOLOGIC
APPROACHES

Nutritional supplementation and exercise training may also
exert antioxidant properties (Andreadou et al., 2009; Haykowsky
et al., 2009; Scott et al., 2011, 2013; Kirkham and Davis, 2015;
Stefani et al., 2015; Singh et al., 2016). While in experimental
models, dietary supplementation of antioxidants can mitigate LV
dysfunction induced by ANTs (Rephaeli et al., 2007; Andreadou
et al., 2009; Xi et al., 2012), evidence suggesting that antioxidant
supplementation may modulate ANT-induced CTX in cancer
patients is still scant (Fuchs-Tarlovsky, 2013).

Exercise has a positive impact on CV risk factors (e.g.,
hypertension, high cholesterol and lipids, overweight and
diabetes; Kirkham and Davis, 2015) and it has been hypothesized
that aerobic exercise can reduce ROS production and restore

calcium cycling, thus improving myocardial energetics (Scott
et al., 2011). There is some evidence that physical exercise
can be beneficial to cancer patients (Stefani et al., 2015).
Preliminary studies showed a role for aerobic exercise in
combating ANT- (Schermuly et al., 2005) and trastuzumab-
induced CTX (Haykowsky et al., 2009). Further studies will be
necessary to assess the effects of exercise on CTX caused by
anticancer agents (Scott et al., 2013).

REDOX-RELATED BIOMARKERS OF
CARDIOTOXICITY

One of the main obstacles that renders difficult the prevention
of several types of CTX is their complex pathogenesis and
lack of reliable biomarkers. Biomarkers ideally should be simple
to measure, widely available, low-cost, and used in other
pathological conditions. Rather than using single biomarkers, the
complexity of CTX is likely to be captured by the association of
two or more biomarkers or by modern high-throughout “omics”
platform (Chen et al., 2012). At the moment, troponins (Oztop
et al., 2004; Suter and Ewer, 2013; Zamorano et al., 2016), brain
natriuretic peptide (BNP) and its N-terminal fragment (NT-
proBNP), mainly released from cardiomyocytes may be used as
biomarkers of CTX in clinical practice (Cardinale et al., 2015;
Novo et al., 2016b).

In the setting of cardiac toxicity induced by redox alterations
from anticancer drugs, most ROS/RNS are very unstable, with
half-lives of 10−6–10−9s. Also more long-lasting ROS, such
as H2O2, have a half-life of less than a millisecond (Garcia-
Garcia et al., 2012). Hence, it is still difficult to assess ROS/RNS
generation due to limitations that affect their detection.
Therefore, there is a need to identify alternative biomarkers
of oxidative/nitrosative CTX. The metabolomic identification
of acetate and succinate can be used as a redox-biomarker
(Andreadou et al., 2009). Decrease in NAD(P)H:quinone
oxidoreductase 1 activity and increased ROS production by
NAD(P)H oxidases have been proposed as early biomarkers of
LV dysfunction due to ANTs (Novo et al., 2016b). An increase
of IL-6 and its soluble receptor (sIL-6R), has been correlated
with an early alteration in systolic function in patients treated
with EPI (Dessí et al., 2011, 2013). Other potential redox-
related biomarkers are high-sensitivity C-reactive protein (CRP),
heart-type fatty acid-binding protein (H-FABP), and glycogen
phosphorylase BB (GPBB), while some miRNAs that could be
used in the assessment of acute coronary syndromes (Novo et al.,
2016b) may also be helpful in early detection of CTX (Horacek
et al., 2010; Horie et al., 2010; Wang et al., 2013).

CONCLUSIONS AND PERSPECTIVES

Novel anticancer drugs (e.g., targeted therapies and immune
checkpoint inhibitors) have revolutioned the management of a
wide spectrum of malignancies (Johnson et al., 2016; Menzies
et al., 2017; Varricchi et al., 2017b). However, CTX caused
by both conventional and novel antineoplastic drugs remains
a critical issue (Tocchetti et al., 2013; Ghigo et al., 2016).
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Chemotherapeutics such as doxorubicin are the prototype of
drugs causing CTX (Ghigo et al., 2016). Targeted therapies,
initially thought to be safer, can also be responsible of some
degree of CTX. Moreover, there is increasing evidence that
immune checkpoint inhibitors (i.e., mAbs blocking CTLA-4, PD-
1, and PD-L1 on immune cells) can also produce a spectrum
of immune-related adverse events, including CTX (Varricchi
et al., 2017c,d). Importantly, certain drugs used to prevent
cardiovascular complications can even contribute to cancer
induction (De Caterina, 2015). Several strategies have been
proposed to prevent CTX from antineoplastic agents. None of
these is completely safe and satisfactory. This is, at least in part,
due to the complexity of different types of CTX. Moreover, it is
important to note that heart dysfunction can also manifest years
after cancer therapy, making it difficult to evaluate preventive
and treatment strategies. It is important to understand the
biochemical and molecular mechanisms by which anticancer
agents affect cardiomyocytes and immune cells for implementing
optimal drug design.

Although oxidative and nitrosative stress elicited by
chemotherapeutic agents can harm the heart, indiscriminate
elimination of ROS and RNS by antioxidant drugs may not
provide beneficial effect, and may even impair physiological
cellular functions (Aon et al., 2010; Cortassa et al., 2014; Nickel
et al., 2014; Münzel et al., 2015; Arcaro et al., 2016). Indeed,
anti-oxidants have been shown to fight LV remodeling and
ameliorate contractility in many HF experimental models.
Nevertheless, when translated to the clinical arena, these
therapeutic approaches did not lead to much benefit or even
worsened mortality (Kirk and Paolocci, 2014; Arcaro et al.,
2016), when the antioxidant effect was not coupled to other
pharmaceutical and biological properties (Fonarow, 2009).
Importantly, the site of generation of ROS can determine their

biological effects on cardiomyocytes. Hence, more specific,
targeted, and “compartmentalized” antioxidant strategies that
blunt local ROS/RNS production might be more successful than
broad indiscriminate approaches.

In conclusion, although in the last decade research implicating
ROS/RNS in antineoplastic drug-induced CTX has greatly
advanced, experimental studies and clinical trials are needed to
close several gaps in our knowledge of molecular and clinical
aspects of CTX in order to balance safety and efficacy of cancer
therapy.
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