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Aims: Ventricular arrhythmia triggers sudden cardiac death (SCD) in hypertrophic

cardiomyopathy (HCM), yet electrophysiological biomarkers are not used for risk

stratification. Our aim was to identify distinct HCM phenotypes based on ECG

computational analysis, and characterize differences in clinical risk factors and anatomical

differences using cardiac magnetic resonance (CMR) imaging.

Methods: High-fidelity 12-lead Holter ECGs from 85 HCM patients and 38 healthy

volunteers were analyzed using mathematical modeling and computational clustering

to identify phenotypic subgroups. Clinical features and the extent and distribution of

hypertrophy assessed by CMR were evaluated in the subgroups.

Results: QRS morphology alone was crucial to identify three HCM phenotypes with

very distinct QRS patterns. Group 1 (n = 44) showed normal QRS morphology, Group

2 (n = 19) showed short R and deep S waves in V4, and Group 3 (n = 22) exhibited

short R and long S waves in V4-6, and left QRS axis deviation. However, no differences

in arrhythmic risk or distribution of hypertrophy were observed between these groups.

Including T wave biomarkers in the clustering, four HCM phenotypes were identified:

Group 1A (n = 20), with primary repolarization abnormalities showing normal QRS yet

inverted T waves, Group 1B (n = 24), with normal QRS morphology and upright T

waves, and Group 2 and Group 3 remaining as before, with upright T waves. Group

1A patients, with normal QRS and inverted T wave, showed increased HCM Risk-SCD

scores (1A: 4.0%, 1B: 1.8%, 2: 2.1%, 3: 2.5%, p = 0.0001), and a predominance of

coexisting septal and apical hypertrophy (p < 0.0001). HCM patients in Groups 2 and 3

exhibited predominantly septal hypertrophy (85 and 90%, respectively).

Conclusion: HCM patients were classified in four subgroups with distinct ECG

features. Patients with primary T wave inversion not secondary to QRS abnormalities

had increased HCM Risk-SCD scores and coexisting septal and apical hypertrophy,
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suggesting that primary T wave inversion may increase SCD risk in HCM, rather

than T wave inversion secondary to depolarization abnormalities. Computational ECG

phenotyping provides insight into the underlying processes captured by the ECG and

has the potential to be a novel and independent factor for risk stratification.

Keywords: hypertrophic cardiomyopathy, electrocardiography, e-cardiology, phenotyping, computational

clustering

INTRODUCTION

Hypertrophic cardiomyopathy (HCM) remains a common yet
challenging genetic heart muscle disease due to its heterogeneous
clinical course. Ventricular arrhythmias are a major cause of
sudden cardiac death (SCD) in young people (Maron et al.,
2000; Maron, 2002). Accurate identification of high risk patients
is a clinical priority since implantable cardioverter-defibrillators
(ICD) can successfully treat ventricular arrhythmias triggering
SCD.

In HCM, both ionic remodeling (Passini et al., 2016) and
structural abnormalities [hypertrophy (Spirito et al., 2000),
myocyte disarray (Varnava et al., 2001b) and fibrosis (Adabag
et al., 2008)] create a pro-arrhythmic substrate to different extents
in specific patients. Previous studies have attempted to assess the
electrophysiological signature of HCM by visually inspecting the
standard 12-lead paper electrocardiogram (ECG). Abnormalities
such as abnormal Q waves, wide and high amplitude QRS
complexes, ST segment displacement as well as giant inverted T
waves have been reported in HCM (Savage et al., 1978; Lakdawala
et al., 2011). However, no single abnormality was shown to be
characteristic of HCM patients (Maron et al., 1983) and it is
unclear whether T wave inversion is secondary to abnormal
depolarization or a consequence of abnormal repolarization
dynamics and heterogeneity. Furthermore, previous studies
including cohorts of high-risk HCM patients also failed to
produce reliable stratification, finding no differences in ECG
between patients with and without appropriate ICD shocks
(Maron et al., 1982; Sherrid et al., 2009). Some studies for
example reported TWI to be related to increase in SCD risk
(Ostman-Smith et al., 2010) but others did not (Maron et al.,
1982; Sherrid et al., 2009). This may be due to the limitations in
the methodology and therefore, more sophisticated approaches
and new knowledge are required to improve the information
extracted from the ECG for HCM phenotyping.

In the absence of reliable ECG biomarkers, five conventional
risk factors [non-sustained ventricular tachycardia (NSVT),
unexplained syncope, family history of SCD, massive left
ventricular hypertrophy (LVH) and abnormal exercise blood

Abbreviations: AHA, American Heart Association; BP, blood pressure;

BPR, blood pressure response; CMR, cardiovascular magnetic resonance;

ECG, electrocardiogram; G+LVH-, genotype positive HCM with normal left

ventricular wall thickness; HCM, hypertrophic cardiomyopathy; ICD, implantable

cardioverter-defibrillator; LAD, left axis deviation; LV, left ventricle; LVH, left

ventricular hypertrophy; LVOT, left ventricular outflow tract; MYBPC3, myosin-

binding protein C; MYH7, beta-myosin heavy chain; NSVT, non-sustained

ventricular tachycardia; NYHA, New York Heart Association; SCD, sudden

cardiac death; TWI, T wave inversion.

pressure response] provide clinical utility for predicting SCD
in HCM (Maron et al., 2007; Christiaans et al., 2010). More
recently, the prospectively validated HCM Risk-SCD prediction
model (O’Mahony et al., 2014) recommended by the 2014
ESC guidelines (Elliott et al., 2014), has performed better than
conventional risk factors albeit with limitations (Maron et al.,
2015). However, neither method captures the degree of the
underlying myocardial abnormalities which lead to arrhythmic
risk.

Our aim was to identify discrete subgroups of HCM patients
with differences in electrophysiological and structural phenotype
using novel computational analysis of high fidelity 12-lead Holter
ECGs, through combined machine learning and mathematical
modeling. To this end, we first extracted morphology-based
biomarkers from the QRS using a mathematical model based on
Hermite functions. We then applied an unsupervised clustering
approach to ECG-based biomarkers, to automatically identify
the presence of different phenotypic subgroups in the HCM
population. Cardiac magnetic resonance (CMR) imaging and
arrhythmic risk markers were evaluated to further characterize
the patient subgroups. The low incidence of SCD in HCM of
<1% per year (O’Mahony et al., 2013), and our reliance on
patients without comorbidities, precluded its use as an endpoint
in this study. Instead, we provide a deeper characterization
of HCM phenotypes capitalizing on recently acquired digital
ECG in conjunction with CMR data which is unattainable in
larger retrospective databases. We hypothesized that detailed
quantification of QRS morphology and T wave abnormalities
using high fidelity ECGs would identify important features of
the underlying electrophysiological and anatomical substrate, to
enable improved phenotypic characterization of HCM patients.

MATERIALS AND METHODS

Ethics and Study Population
This prospective study was approved by the National Research
Ethics Committee (REC ref 12/LO/1979) and informed written
consent was obtained from each participant. Eighty-five patients
with HCM were recruited from the University of Oxford
Inherited Cardiac Conditions clinic, John Radcliffe Hospital,
Oxford, UK. HCM diagnosis was made by presence of a
pathogenic mutation in a known sarcomeric gene or, in the
absence of an identified mutation, HCM was defined as LVH
(≥15mm) not originating from another cause. Gene positive
patients without hypertrophy (G+LVH-) were included in the
study as a number of SCDs have been reported in this patient
cohort (Varnava et al., 2001a; Pasquale et al., 2012) and the
consideration of LVH alone has limitations (Sen-Chowdhry et al.,
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2016); of note, five of the G+LVH- subjects had abnormal
ECGs with voltage criteria for LVH. Thirty-eight age- and
gender-matched healthy volunteers were non-smokers without
cardiovascular disease, hypertension, diabetes, or family history
of cardiomyopathy or SCD.

The methodology is summarized in Figure 1 and detailed
methods can be found in Supplementary Material 1.

Electrocardiographic Measurements
Participants underwent 12-lead ambulatory Holter monitoring
(sampling frequency 1,000Hz, H12+, Mortara Instrument,
Milwaukee, WI, USA) for 24 h and a standard 12-lead
resting digital electrocardiograph (Burdick 8500, Glasgow, UK)
(Macfarlane et al., 1990). Standard measurements of ECG axes,
amplitudes and intervals were obtained for both global (reported
in Tables 1, 3, 4) and single-leads from the Burdick ECG XML
files.

Cardiovascular Magnetic Resonance
(CMR) Imaging
CMR imaging was performed at 3 tesla (TIM Trio, Siemens)
in all participants, except in 10 patients with ICD at the
time of enrollment (CMR prior to ICD insertion performed
for clinical care was evaluated in these patients). Analysis
was performed using cmr42© (Circle Cardiovascular Imaging,
Calgary, Canada). The extent, and morphology, of hypertrophy
was identified on short axis images and categorized into 4
subtypes: no hypertrophy—genotype positive patients with wall
thickness≤12mm (G+LVH-); septal hypertrophy—basal and/or
mid septal wall thickness >12mm in genotype positive patients
or ≥15mm in genotype negative patients; apical hypertrophy—
apical wall thickness ≥15mm below papillary muscle level;
mixed hypertrophy—coexisting hypertrophy in septal and apical
segments.

Clinical Data Collection
Genetic results and the conventional risk factors (Elliott et al.,
2000) were obtained as part of the patient’s routine clinical care.
The five conventional risk factors were defined as: NSVT (three
or more consecutive ventricular beats at a rate of ≥120 bpm
lasting <30 s on clinical 3-lead 24- to 48-h Holter monitoring),
unexplained syncope (≥1 episode of unexplained syncope),
family history of SCD (history of SCD in ≥1 first degree
relative ≤40 years old or SCD in a first degree relative with
confirmed HCM at any age), massive LVH (LV wall thickness
in any myocardial segment of ≥30mm on short axis CMR
images) and abnormal exercise blood pressure (BP) response
(rise in systolic BP <20 mmHg or a fall of >10 mmHg from
baseline to peak exercise in patients ≤40 years old). HCM
Risk-SCD score (2014 ESC guidelines) was calculated using 7
disease variables as in O’Mahony et al. (2014) (Supplementary
Material 1.4). A ≥6% risk of SCD at 5 years is classified as
high risk and ICD implantation is recommended, 4–6% is
intermediate risk and ICD may be considered, and <4% is low
risk.

Holter ECG Pre-processing
The first 30-min ECG excerpt was used to analyze the 8 linearly
independent leads (I, II, V1-6) with custom-built software using
MATLAB (Mathworks, MA, USA). A wavelet based delineator
(Martínez et al., 2004) extracted the peaks and boundaries of the
ECGwaveforms. High frequency noise was removed using a low-
pass Butterworth filter with cut-off frequency of 45Hz, baseline
drift was removed by a cubic spline method and a notch filter
rejected the 50Hz mains power artifact. The first twenty beats
with maximal ST segment-T wave signal-to-noise ratio were then
considered for analysis and were aligned with respect to the
QRS complex by Woody’s method (Sörnmo and Laguna, 2005)
(Supplementary Material 1.5). A sensitivity analysis showed that
analyzing different 30-min excerpts in the recording yielded
the same results. Thirty minutes also provided enough data to
screen the excerpts and avoid changes in beat morphology due
to changes in heart rate. Average QRS and STT waveforms were
then computed from these 20 beats.

Extraction of QRS and T Wave Biomarkers
All biomarkers were calculated per lead. QRS biomarkers are
listed and illustrated in Supplementary Material 1.6, Figure
S1. In addition to standard QRS biomarkers computed from
signal processing, the QRS shape (morphology) was quantified
by mathematically modeling the QRS waveform using a
combination of Hermite functions, with well-established ability
to provide a compact representation of the QRS complex (Laguna
et al., 1996) (Supplementary Material 1.7, Figure S2). Indeed,
three Hermite functions (Supplementary Material 1.7) enable
to recover 98% of the QRS energy in control subjects (Sornmo
et al., 1981). However, four Hermite functions were needed in
HCM due to greater QRS heterogeneity. Any particular QRS
morphology such as an RSR’ pattern can thus be generated as the
sum of these scaled shapes.

Identification of Subgroups in HCM Using
QRS and T Wave Biomarkers
Each patient was assigned a vector of morphological QRS and T
wave biomarkers. Seven significant features were selected using
the Multi-cluster feature selection method described in Cai et al.
(2010), which is an unsupervised feature selection algorithm to
reduce the number of variables under consideration. In short,
the method consists in a combination of spectral analysis of the
data with a L1-regularized least squares optimization method.
This method was chosen for its ability to preserve the multi-
cluster structure of the dataset. The 7 features were then reduced
to two dimensions for visualization purposes, using Laplacian
eigenmaps dimensionality reduction, as described in Belkin and
Niyogi (2003). This method preserves the local geometrical
properties of the dataset by computing the eigenvalues and
eigenvectors of the graph Laplacian generalized eigenvector
problem (Belkin and Niyogi, 2003).

A density-based clustering algorithm, DBSCAN (Ester et al.,
1996), was then applied on this low-dimensional representation
of the dataset to extract subgroups. This algorithm identified
clusters by maximizing the density in each of the clusters. The
minimum number of individuals in a cluster was set to n/25 = 3,

Frontiers in Physiology | www.frontiersin.org 3 March 2018 | Volume 9 | Article 213

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lyon et al. Four ECG Phenotypes in HCM

FIGURE 1 | Summary of the methodologies applied in this study for the analysis and classification of 85 HCM patient ECGs using mathematical modeling and

machine learning, and to investigate associations with clinical and cardiovascular magnetic resonance features.

with n = 86 HCM patients. The distance between neighboring
individuals was evaluated using the Euclidean distance. The
same results (i.e., same patients’ subgroups) were obtained using
a different clustering algorithm (k-means). Clustering analysis
based only on QRS morphology was performed, and then
repeated with the addition of T wave biomarkers. Clustering
was performed by AL who was blinded to clinical data.
To assess the effect of G+LVH- patients on the results, a
further clustering analysis was performed excluding the G+LVH-
patients.

Statistical Analysis
Data are expressed as mean± standard deviation or median and
range. Normally-distributed data were compared using t-tests
or analysis of variance. Non-normally distributed data were
compared using the Mann–Whitney U-test or Kruskal–Wallis
test. Categorical data were compared with Chi-square or Fisher’s
exact tests. Statistical significance was assumed when p < 0.05
(after Bonferroni adjustment for multiple comparisons, where
appropriate). Statistical analysis was performed with IBM SPSS
Statistics, version 20.0 (IBM Corp, Armonk, NY, USA).
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TABLE 1 | Characteristics of healthy volunteers and HCM patients.

Healthy volunteers

(n = 38)

HCM patients

(n = 85)

p-value

Age, years 47 ± 15 45 ± 14 0.54

Male 25 (66) 58 (68) 0.84

Body mass index, kg/m2 24 ± 4 26 ± 4 0.06

Systolic BP, mmHg 117 ± 14 118 ± 14 0.76

Diastolic BP, mmHg 70 ± 10 72 ± 12 0.33

CMR DIMENSIONS AND FUNCTION

LV end-diastolic volume, ml 155 ± 35 154 ± 33 0.88

LV end-systolic volume, ml 50 ± 17 41 ± 16 0.007

LV ejection fraction, % 68 ± 5 74 ± 7 0.00003

LV mass index, g/m2 54 ± 11 72 ± 25 0.00002

Maximal LV wall thickness, mm 11 ± 1 20 ± 6 2 × 10−14

Left atrial diameter, mm 33 ± 7 39 ± 7 0.00004

ECG FEATURES

Heart rate, bpm 58 ± 11 58 ± 10 0.81

QRS axis, ◦ 40 ± 34 13 ± 43 0.0007

QRS duration, ms 91 ± 9 98 ± 15 0.02

R wave amplitude 683 ± 200 764 ± 341 0.46

QRS amplitude, mV 1441 ± 414 1825 ± 652 0.002

QRS ascending slope 74 ± 22 89 ± 32 0.025

QRS descending slope −118 ± 51 −150 ± 57 0.001

Pathological Q wave 0 20 (23) 0.0004

T wave axis, ◦ 34 ± 17 69 ± 54 0.0001

Abnormal T wave axis 0 28 (35) 9 × 10−6

T wave amplitude, mV 356 ± 141 170 ± 257 0.0001

T wave inversion 0 26 (30) 0.00002

Giant T wave inversion 0 6 (7) 0.18

T peak to T end interval, ms 81 ± 14 85 ± 18 0.16

ST segment displacement, mV 42 ± 45 26 ± 49 0.14

QTc interval, ms 411 ± 17 440 ± 27 8 × 10−8

JTc interval, ms 300 ± 43 354 ± 99 0.00003

Mean ± standard deviation, or number of participants (%). BP, blood pressure; CMR,

cardiovascular magnetic resonance; LV, left ventricular. Bold values mean p-value

significant (p < 0.05).

RESULTS

Study Population Characteristics
The study population characteristics are summarized in Table 1.
HCM patients (n= 85) had a more leftward QRS axis, larger QRS
duration and amplitude, steeper QRS slopes and abnormal Q
waves compared with healthy volunteers (n = 38) (all p < 0.03).
They also showed lower T wave amplitude, T wave inversion
(TWI), abnormal T wave axis and prolonged QTc (all p <

0.001). Table 2 describes the clinical characteristics for the HCM
patients. Patients were mainly asymptomatic (median NYHA
functional class = 1) and were low risk for SCD (median HCM
Risk-SCD score = 2.5%; median total risk factor = 1). Nineteen
patients had an ICD implanted for primary prevention with a
median follow-up of 3 years. Only 1 patient (5%) received an
appropriate shock, which is in keeping with primary prevention
discharge rates seen in a previous study (Maron et al., 2000).

TABLE 2 | Clinical and genotype characteristics of HCM patients.

NYHA class, [median (range)] 1 (1–3)

NYHA III/IV 5 (6)

LVOT obstruction (gradient ≥30 mmHg) 11 (13)

Implantable cardioverter-defibrillator 19 (22)

Appropriate ICD shocks 1

ICD follow-up, years [median (range)] 3 (0–12)

HYPERTROPHY MORPHOLOGY

No LVH (G+LVH-) 9 (11)

Septal LVH 58 (68)

Apical LVH 4 (5)

Mixed septal & apical LVH 14 (16)

HCM Risk-SCD score, % [median (range)] 2.5 (0.8–11.0)

CONVENTIONAL RISK FACTORS

NSVT 23 (27)

Syncope 10 (12)

Family History SCD 17 (20)

Abnormal exercise BP response 7 (8)

Massive LVH ≥30mm 1 (1)

Total number of risk factors [median (range)] 1 (0–3)

0 Risk factors 34 (40)

1 Risk factor 45 (53)

≥2 Risk factors 6 (7)

GENOTYPE

Gene negative 27(32)

MYBPC3 33 (39)

MYH7 24 (28)

Troponin I 1 (1)

Number of patients (%). NYHA, New York Heart Association; LVOT, left ventricular

outflow tract; ICD, implantable cardioverter-defibrillator; LVH, left ventricular hypertrophy;

G+LVH-, genotype positive HCMwith normal wall thickness; SCD, sudden cardiac death;

NSVT, non-sustained ventricular tachycardia; BP, blood pressure; ESC, European Society

of Cardiology; HCM, hypertrophic cardiomyopathy; MYBPC3, myosin-binding protein C;

MYH7, beta-myosin heavy chain.

Eleven percent of patients were G+LVH- and the majority had
isolated septal hypertrophy (68%).

Clustering Using QRS Morphology Only
Based on QRS morphology alone, three HCM groups were
obtained (Figure 2A), with the main differences in first, second
and third Hermite basis in lead II and lateral precordial leads
(Figures 2B–D; Supplementary Material 2.2, Figure S3). The
ECG features for the QRS-based groups can be found in
Supplementary Material 2.2, Table S1.

Group 1 was the largest with 52% of the patients, displaying
normal QRS morphology (Figures 2, 4A). Group 2 (22% of
patients) showed differences in V4 (in the first three Hermite
bases) compared to healthy volunteers and Group 1 but no
difference in V6 (Figure 2, all post-hoc p < 0.001). Thus, lead
V4 in Group 2 displayed shorter R wave duration (2: 38ms,
1: 47ms; 2 vs. 1, p = 0.003) and deeper S waves (2: −1,170 µv,
1:−568µv; 2 vs. 1, p= 0.0003) compared to Group 1 (Figure 4A;
Supplementary Material 2.2, Table S1).

Group 3 (26% of patients) exhibited vast differences in lead
II and V4-6 (in the first three Hermite bases) compared to

Frontiers in Physiology | www.frontiersin.org 5 March 2018 | Volume 9 | Article 213

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lyon et al. Four ECG Phenotypes in HCM

FIGURE 2 | Clustering using QRS morphology alone identifies three HCM groups showing group differences in 3 features in lead II and the lateral precordial leads. (A)

The three QRS-based HCM groups identified by cluster analysis using QRS morphological biomarkers alone are shown on the 2-dimensional space obtained by

dimensionality reduction, as described in Materials and Methods section. (B–D) These QRS-based HCM groups show differences in the 1st, 2nd, and 3rd Hermite

coefficients (mathematical functions representing the QRS shape: QRS morphological biomarkers) in leads II, V4 and V6. Healthy volunteers are shown for visual

comparison but were not included in Kruskal–Wallis ANOVA (**p < 1 × 10−6, *p < 0.001).

the other HCM groups and healthy volunteers (Figure 2, all
post-hoc p < 6 × 10−6). Differences in lead II were manifested
as abnormally shifted QRS axis toward left axis deviation (LAD)
(3: −37◦, 1: 30◦, 2: 29◦; 3 vs. 1 and 3 vs. 2, all post-hoc p
< 2 × 10−7). In V4, the R wave duration was shorter than
Group 1 and amplitude was shorter than Groups 1 and 2, S
wave duration was longer than Group 1, and S amplitude was
deeper than Group 1 (3 vs. 1 and 3 vs. 2, all post-hoc p <

0.003). In V6, R wave duration and amplitude were shorter,
and S wave duration and amplitude larger than both the
other groups (3 vs. 1 and 3 vs. 2, all post-hoc p < 0.01;
Figure 4A).

Although ECG features were significantly different between
the QRS-based groups, clinical features and markers of
arrhythmic risk were not (Table 3), suggesting that QRS
biomarkers alone, may not be useful for risk stratification.
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TABLE 3 | Clinical features for QRS-based HCM groups.

Group 1

(n = 44)

Group 2

(n = 19)

Group 3

(n = 22)

p-value

(group

comparison)

Age, years 47 ± 15 44 ± 12 43 ± 13 0.34

Male 30 (68) 12 (63) 16 (73) 0.79

Body mass index, kg/m2 27 ± 5 25 ± 4 25 ± 4 0.16

Systolic BP, mmHg 120 ± 13 117 ± 13 114 ± 15 0.28

Diastolic BP, mmHg 74 ± 11 73 ± 13 68 ± 12 0.13

HCM Risk-SCD score, %, 2.6 (1–11) 2.1 (1–6) 2.5 (1–9) 0.98

CONVENTIONAL RISK FACTORS

NSVT 14 (32) 4 (21) 5 (23) 0.69

Syncope 6 (14) 2 (11) 2 (9) 0.91

Family History SCD 7 (16) 5 (26) 5 (23) 0.60

Abnormal exercise BPR 5 (11) 0 2 (9) 0.44

Massive LVH ≥30mm 0 0 1 (5) –

HYPERTROPHY

LV mass index, g/m2 74 ± 28 63 ± 17 73 ± 26 0.30

Max LV wall, mm 19 ± 6 19 ± 5 21 ± 6 0.22

Hypertrophy morphology 0.006

No LVH (G+LVH-) 8 (18) 1 (5) 0

Septal LVH 23 (51) 16 (85) 20 (90)

Apical LVH 2 (4) 1 (5) 1 (5)

Mixed septal & apical LVH 12 (27) 1 (5) 1 (5)

OTHER CLINICAL FEATURES

LV end-diastolic volume, ml 152 ± 28 155 ± 33 156 ± 41 0.87

LV end-systolic volume ml 40 ± 14 43 ± 14 41 ± 21 0.50

LV ejection fraction, % 74 ± 8 72 ± 8 74 ± 7 0.61

Left atrial diameter, mm 40 ± 7 37 ± 6 38 ± 8 0.25

LVOT gradient, mmHg 7.0

(4–111)

6.7

(2–110)

6.8

(3–92)

0.92

GENOTYPE

Gene positive 28 (64) 13 (68) 17 (77) 0.59

Mean ± standard deviation, median (range) or number of patients (%). HCM,

hypertrophic cardiomyopathy; SCD, sudden cardiac death; NSVT, non-sustained

ventricular tachycardia; BP, blood pressure; BPR, blood pressure response; LVH, left

ventricular hypertrophy; LV, left ventricular; G+LVH-, genotype positive HCM with normal

wall thickness; LVOT, left ventricular outflow tract. Bold values mean p-value significant (p

< 0.05).

Combined Clustering With QRS
Morphology and T Wave Biomarkers
Identify Four HCM Phenotypes
With the addition of T wave biomarkers to QRS morphology
in the clustering analysis, four HCM groups were identified
(Figure 3). TWI of the averaged beat in at least two contiguous
leads in V3-6 was the principal T wave biomarker which
subdivided Group 1 into two separate clusters. Groups 2 and
3 remained unchanged. Group 1A (n = 20) had normal QRS
with TWI. Group 1B (n = 24) had normal QRS without TWI.
Group 2 (n = 19) had short R wave duration and deep S
wave amplitude in V4. Group 3 (n = 22) exhibited short
R wave duration and amplitude together with long S wave
duration and amplitude in V4-6, and left QRS axis deviation
(Figure 4A; Supplementary Material 2.3). Table 4 summarizes

the clinical and standard ECG features for the four HCM
groups. Of note, Group 1B had an absence of patients with
pathological Q waves (post-hoc p < 0.0005). There was no
difference in demographics, LV volumes or genotype between the
groups.

Differences Between the Four HCM
Phenotypes in HCM Risk-SCD Score and
Extent of LV Hypertrophy
Group 1A had the highest median HCM Risk-SCD score (1A:
4.0%, 1B: 1.8%, 2: 2.1%, 3: 2.5%; 1A vs. 1B, 1A vs. 2, 1A vs. 3, all
p ≤ 0.02; Figure 4C). NSVT differed between the 4 phenotypes
(p = 0.016) but this was not significant when corrected for the
three other risk factors also tested. Group 1A also contained the
only ICD patient with an appropriate shock. Group 1B contained
8 of the 9 G+LVH- patients (Table 4, post-hoc p = 0.0003), of
which 5 patients demonstrated ECG voltage criteria for LVH. In
spite of their more abnormal QRS morphology, Groups 2 and
3 patients had a lower HCM Risk-SCD score than Group 1A
patients (3: 2.5%, 2: 2.1%, 1A: 3.8%; 3 vs. 1A, 2 vs. 1A; post-hoc
≤ 0.02).

Group 1A exhibited a predominance of patients with mixed
septal and apical hypertrophy (1A: 11 patients, 1B: 1 patient, 2: 1
patient, 3: 1 patient; post-hoc p = 4 × 10−6; Figure 4B). Groups
1B, 2 and 3 had predominantly isolated septal hypertrophy (63,
85, and 90%, respectively).

We also evaluated the effect of excluding the 9 G+LVH-
patients on the results (Supplementary Material 2.4, Table S2).
The clustering algorithm yielded the same four remaining groups
as with G+LVH-patients, with the same differences in QRS
and T wave morphologies. Group 1A still exhibited a higher
HCM Risk-SCD score compared to Group 1B and to Group
3 (post-hoc p = 0.006 and 0.04, respectively), and there was
still a predominance of mixed septal and apical LVH in Group
1A.

DISCUSSION

The main findings of this study are that four HCM phenotypes
are identified based on QRS morphology and T wave biomarkers
analyzed computationally using high fidelity ECGs, and
they show differences in HCM Risk-SCD score and the
distribution of LV hypertrophy from CMR. Patients with
normal QRS morphology and primary TWI not secondary
to QRS abnormalities (Group 1A) had the highest HCM
Risk-SCD score and coexistence of septal and apical
hypertrophy. Groups 2 and 3 with abnormalities in QRS
morphology in V4 and V4-V6, respectively, had predominantly
isolated septal hypertrophy. Since the ECG reflects ionic
and structural abnormalities which are not captured by
current measures within HCM risk stratification, the ECG-
based classification proposed here may help to improve risk
assessment. Our study shows the benefits of using machine
learning methods to effectively dissect HCM heterogeneity,
and presents a step forward in improving individual patient
management.
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FIGURE 3 | Four distinct HCM subgroups are identified based on QRS and T wave morphologies. The four HCM groups identified by cluster analysis using both QRS

and T wave morphological biomarkers are shown on the 2-dimensional space obtained by dimensionality reduction, as described in Materials and Methods section.

QRS Morphology
QRS morphology reflects the cardiac depolarization sequence
and is therefore affected by structural abnormalities such
as hypertrophy, cardiac disarray or fibrosis. Here we have
quantitatively assessed the whole QRS shape (morphology)
mathematically rather than describing discrete features. Cluster
analysis with QRS morphology alone identified three groups
with unique QRS features (Figure 2) but these QRS variations
could not be accounted for by differences in hypertrophy. It is
therefore likely that fibrosis (Dumont et al., 2006) and disarray
affect depolarization andQRS particularly in patients in Groups 2
and 3. CMR studies using tissue characterization techniques such
as late gadolinium enhancement (focal fibrosis), T1-mapping
(diffuse fibrosis) and diffusion tensor imaging (disarray) are
likely to provide further insights. Our analyses suggest that
while QRS features may be informative for diagnosis in HCM
(Konno et al., 2004), categorizing HCM groups on this basis
showed no differences in association with known markers of
risk.

T Wave Inversion
Following the classification in three groups based on QRS
morphology, lateral TWI, a common repolarization abnormality
in HCM (Papadakis et al., 2009), as the critical T wave biomarker
which separated patients with normal QRS into those with
and without TWI. Groups with abnormalities in QRS were
not affected by the inclusion of TWI in the clustering. Group
1A patients with TWI, even though with a normal QRS, had

a higher HCM Risk-SCD score, an appropriate ICD shock
and a predominance of mixed septal and apical pattern of
hypertrophy. TWI can be considered as primary or secondary
abnormalities. Primary TWI occurs with altered heterogeneity
in action potential duration or morphology without changes
in depolarization (normal QRS). Secondary TWI occurs with
aberrant depolarization (abnormal QRS) in the context of normal
action potential characteristics (Fisch, 1992). Thus Group 1A
patients with normal QRS have primary. While TWI in Groups
2 and 3 with abnormal QRS represents secondary or combined
primary and secondary TWI (Rautaharju et al., 2009). However
only four patients in Group 2 and a single patient in Group
3 had TWI, while all 20 patients in Group 1A displayed TWI.
TWI per se in HCM has been shown to increase SCD risk in
some studies (Kuroda et al., 2002; Ostman-Smith et al., 2010)
but not in others (Maron et al., 1982; Sherrid et al., 2009).
Our results provide a more specific characterization of the
influence of TWI in SCD risk, highlighting the importance of
simultaneous normal QRS and TWI for increased risk. These
results suggest that it is a primary TWI that increases SCD
risk in HCM, rather than TWI secondary to depolarization
abnormalities. A larger cohort is needed to confirm whether
risk differs between patients with primary and secondary
TWI.

TWI may be caused by repolarization abnormalities due to
structural and ionic remodeling. In HCM, the overexpression
of the L-type Ca2+ current, increased late sodium current and
reduction of repolarization currents lead to prolongation and
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FIGURE 4 | Four distinct ECG phenotypes in hypertrophic cardiomyopathy exhibit differences in hypertrophy morphology and arrhythmic risk. (A) Representative

ECGs for patients in each of the four groups with distinct ECG morphology, identified by combined clustering with QRS morphology and T wave biomarkers. Group

1A—normal QRS with inverted T wave (primary T wave inversion), Group 1B—normal QRS with upright T wave, Group 2—short R wave duration and deep S wave in

V4, Group 3—left axis deviation, short R wave duration and amplitude, and long S wave duration and amplitude in V4 and V6. (B) Distribution of hypertrophy

illustrated using a representative CMR for each group (top), and the segment of maximum left ventricular wall thickness for each patient (marked as a dot) in each

group using the AHA 16-segment model (Cerqueira et al., 2002). Group 1A had a predominance of patients with mixed septal and apical left ventricular hypertrophy

(LVH; pink dots). Group 1B had the most gene positive patients with no hypertrophy (gray dots). Group 2 and 3 patients mainly had isolated septal hypertrophy

(orange dots). Four patients had apical hypertrophy (navy dots). (C) HCM Risk-SCD score for each group. Patients with primary T wave inversion not secondary to

QRS abnormalities (Group 1A), had the greatest HCM Risk-SCD score.
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TABLE 4 | Characteristics of the four HCM phenotypes from combined QRS and T wave clustering.

Group 1A

(n = 20)

Group 1B

(n = 24)

Group 2

(n = 19)

Group 3

(n = 22)

p-value

(group comparison)

Age, years 47 ± 12 48 ± 18 44 ± 12 43 ± 13 0.53

Male 15 (76) 15 (63) 12 (63) 16 (73) 0.78

Body mass index, kg/m2 28 ± 6 26 ± 4 25 ± 4 25 ± 4 0.06

HCM Risk-SCD score, % 4.0 (2–11)a,b,c 1.8 (1–4) 2.1 (1–6) 2.5 (1–9) 0.0001

CONVENTIONAL RISK FACTORS

NSVT 11 (55)* 3 (13) 4 (21) 5 (23) 0.016

Syncope 2 (10) 4 (17) 2 (10) 2 (9) 0.88

Family History SCD 5 (254) 2 (8) 5 (26) 5 (23) 0.36

Abnormal exercise BPR 2 (10) 3 (12) 0 2 (9) 0.51

Massive LVH ≥30mm 0 0 0 1 (5) -

Appropriate ICD shock 1 0 0 0 -

HYPERTROPHY

LV mass index, g/m2 90 ± 27a,b 62 ± 23 63 ± 17 73 ± 26 0.0003

Max LV wall, mm 22 ± 4a 16 ± 5 19 ± 5 21 ± 6 0.002

Hypertrophy morphology 1 × 10−7

No LVH (G+LVH-) 0 8 (33)* 1 (5) 0

Septal LVH 7 (35)* 15 (63) 16 (85) 20 (90)

Apical LVH 2 (10) 0 1 (5) 1 (5)

Mixed septal & apical LVH 11 (52)* 1 (4) 1 (5) 1 (5)

OTHER CLINICAL FEATURES

LV EDV, ml 150 ± 26 154 ± 31 155 ± 33 156 ± 41 0.94

LV ESV, ml 35 ± 10 43 ± 15 43 ± 14 41 ± 21 0.26

LV ejection fraction, % 76 ± 7 72 ± 8 72 ± 8 74 ± 7 0.28

Left atrial diameter, mm 41 ± 5 39 ± 8 37 ± 6 38 ± 8 0.25

LVOT gradient, mmHg 6.5 (5–110) 7.2 (4–111) 6.7 (2–110) 6.8 (3–92) 0.81

GENOTYPE

Gene positive 9 (45) 19 (79) 13 (68) 17 (77) 0.08

ECG FEATURES

Heart rate, bpm 58 ± 10 58 ± 8 59 ± 13 58 ± 10 0.66

QRS axis, ◦ 14 ± 30c 44 ± 29e 29 ± 34f −37 ± 28 8 × 10−13

QRS duration, ms 94 ± 8 100 ± 21 96 ± 16 102 ± 13 0.23

QRS amplitude, mV 2006 ± 780 1762 ± 621 1807 ± 588 1737 ± 613 0.70

QRS ascending slope 93 ± 36 95 ± 33 92 ± 34 76 ± 23 0.19

QRS descending slope −160 ± 60 −139 ± 56 −155 ± 60 −149 ± 56 0.47

Pathological Q waves 3 (14) 0
†

8 (38) 9 (43) 0.0003

T wave axis, ◦ 156 ± 45a,b,c 42 ± 27 49 ± 47 68 ± 41 2 × 10−11

Abnormal T axis 17 (81)
†

0
†

6 (33) 5 (25) 7 × 10−8

T amplitude, mV −135 ± 202a,b,c 308 ± 144 219 ± 209 257 ± 214 9 × 10−8

T wave inversion 21 (100)
†

0 4 (21) 1 (5) 8 × 10−17

Giant T wave inversion 5 (24)
†

0 1 (5) 0 0.003

T peak to T end, ms 91 ± 17 80 ± 20 86 ± 16 84 ± 19 0.19

ST segment displacement*, mV −13 ± 51a,b,c 32 ± 33 38 ± 51 48 ± 38 0.0001

QTc interval, ms 452 ± 22 435 ± 26 429 ± 26 443 ± 29 0.05

JTc interval, ms 359 ± 47 349 ± 87 342 ± 97 366 ± 145 0.42

Mean ± standard deviation, median (range) or number of patients (%). HCM, hypertrophic cardiomyopathy; SCD, sudden cardiac death; NSVT, non-sustained ventricular tachycardia;

BPR, blood pressure response; LVH, left ventricular hypertrophy; LV, left ventricular; G+LVH-, genotype positive HCM with normal wall thickness; EDV, end-diastolic volume; ESV,

end-systolic volume; LVOT, left ventricular outflow tract.
aGroup 1A vs. 1B,b1A vs. 2, c1A vs. 3, d1B vs. 2, e1B vs. 3, f2 vs. 3, p < 0.05 on post-hoc pairwise comparisons (p-values multiplied by 6 for Bonferroni adjustment of 6 tests).

*,
†
p < 0.05 on post-hoc contingency table analysis (p-values multiplied by 16 and 8 for Bonferroni adjustment of 4 × 4 and 4 × 2 combinations, respectively). Bold values mean p-value

significant (p < 0.05).
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heterogeneity in repolarization (Coppini et al., 2013; Passini
et al., 2016). TWI may also be the result of ischaemia from
microvascular dysfunction commonly seen in HCM (Petersen
et al., 2007). A study has shown that patients with apical
HCM and cavity obliteration had increased perfusion defects
and NSVT rates as a result of ischaemia from extravascular
compression of the coronary artery due to myocardial pressure
during cavity obliteration (Matsubara et al., 2003). This may
also be in keeping with Group 1A having the greatest number
of patients with a mixed pattern of coexisting septal and apical
hypertrophy which tend to show cavity obliteration and a worse
prognosis (Yan et al., 2012); while Group 3 with 90% septal
hypertrophy, were at lower risk. Further imaging studies with
novel perfusion assessment may improve our understanding of
the mechanisms of ischaemia and in turn, the repolarization
abnormalities in HCM.

Low Risk Phenotypes
Patients in Group 1B with normal QRS morphology and upright
T waves were indistinguishable from healthy volunteers based on
the extracted ECG features both with and without the inclusion
G+LVH- patients. Finding the majority of G+LVH- patients (8
out 9 patients) in Group 1B showed that we can discriminate
these inherently low risk patients solely by the ECG, despite
5 of these patients meeting ECG voltage criteria for LVH.
Furthermore, the presence of G+LVH- patients in Group 1B
suggests that those patients with hypertrophy within this group
are likely to have less severe disease and better prognosis (McLeod
et al., 2009). We may also speculate that they will have minimal
ionic remodeling, fibrosis, disarray and ischaemia giving rise to
relatively normal depolarization and repolarization.

Despite the lack of hypertrophy, one G+LVH- patient was
found in Group 2 which had QRS abnormalities in V4. This
suggests that the ECG reflects the subtly abnormal myocardium
which in this case was not hypertrophied, but may have been
affected by disarray or ionic remodeling. Although risk is
thought to be significantly lower in G+LVH- than in HCM
with hypertrophy, there are still a very small number of SCD in
G+LVH- patients (Varnava et al., 2001a; Pasquale et al., 2012).
Further studies are needed to assess whether computational ECG
phenotypingmay aid stratification in this particularly challenging
low-risk group.

Group 3 patients had marked QRS abnormalities: LAD with
QRS differences in V4 to V6. LAD is well-known to be associated
with LVH but other factors such as a degree of left anterior
fascicular block could also account for this leftward axis. Group
3 patients mainly had isolated septal hypertrophy, yet QRS
abnormalities were seen in the lateral leads suggesting that
remodeling may occur distal from the septum causing less
uniform electrical propagation in the lateral leads. No genotype
association was seen across any group but our sample size may
not have had adequate power to assess genotype-phenotype
correlations.

Clinical Implications
This study provides evidence that ECG phenotyping with
advanced computational QRS morphology and T wave analysis
is a powerful method of characterizing HCM heterogeneity.

Data suggest that HCM patients with a primary TWI (with
normal QRS) are at greater risk of arrhythmia and SCD.
This risk was associated with the distribution of hypertrophy
(greater number of segments involved in mixed septal and apical
pattern of hypertrophy) rather than magnitude of hypertrophy
(as measured by maximum wall thickness or mass index). A
large scale longitudinal study with cardiovascular end-point
data will allow robust assessment of ECG phenotyping as an
independent tool for accurate risk stratification. Studies involving
computational image-based modeling and simulation are also
needed to disentangle the relative contribution of structural,
ischemic, and ionic factors which are likely to determine the
heterogeneity in ECG biomarkers (Dutta et al., 2016). This
improved understanding of HCM will eventually contribute to
the development of new disease-modifying therapies.

Limitations
Our study used digital ECG data from 12-lead Holter recorders.
This enabled the identification of four distinct phenotypes
using novel computational methods, which is not possible
with standard paper ECGs collected in large studies. For these
novel computational methods to be widely translated to clinical
studies and practice, there needs to be drive toward digital ECG
acquisition rather than paper print-outs, which require manual
digitization before mathematical modeling and machine learning
methods can be applied.

Given the large information content gathered for each patient
in our study, the database is necessarily limited in the number
of patients assembled. We included HCM patients without co-
morbidities (described in Supplemental Material 1.1) to ensure
there were no confounders in our data. Our analysis was
however able to identify different patient subgroups and also with
differences in risk. Over the next 5–10 years, a large prospective
long-term follow-up study such as the multicenter Hypertrophic
Cardiomyopathy Registry (HCMR) (2,750 patients) (Kramer
et al., 2015) may provide the data to determine whether our
findings allow improving current risk stratification for SCD
using scanned paper 12 lead ECGs. Our study provides the
detailed analysis based on high fidelity ECG recordings that
would enable such validation. As a follow-up, a larger dataset
would make possible to consider a supervised machine learning
approach, such as support vector machines, random forests or
neural networks (Lyon et al., 2018), taking as input both ECG
biomarkers and risk scores to identify the subgroup at higher
risk. It would also allow the use of more complex unsupervised
approaches such as self-organizing networks, as proposed in
Lagerholm et al. (2000). However, large databases usually do not
include the comprehensive set of modalities we include in our
study. For example, these big databases of 967 and 2,485 HCM
patients (McLeod et al., 2009; Cortez et al., 2017) do not provide
high-fidelity recordings and lack CMR data.

Limited accuracy of an ECG criterion can also result
from variations in electrode placement especially in precordial
electrodes (Kania et al., 2014). However, minimal changes in
morphology were observed in leads V4-6. Therefore, criteria
based on the lateral leads (which indeed demonstrated the
greatest discrimination in HCM) would be robust to the
inevitable variability of electrode site placement.
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CONCLUSIONS

Four HCM phenotypes were identified based on QRS
morphology and T wave biomarkers using a machine learning
approach. Patients with primary TWI not secondary to QRS
abnormalities had an increased HCM Risk-SCD score and
coexisting septal and apical hypertrophy. These results, and the
nature of the underlying processes captured by the ECG, suggest
that computational ECG phenotyping has the potential to be a
novel and independent factor for risk stratification.
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