
ORIGINAL RESEARCH
published: 16 March 2018

doi: 10.3389/fphys.2018.00227

Frontiers in Physiology | www.frontiersin.org 1 March 2018 | Volume 9 | Article 227

Edited by:

Billy Sperlich,

University of Würzburg, Germany

Reviewed by:

Ben Rattray,

University of Canberra, Australia

Giovanni Messina,

University of Foggia, Italy

*Correspondence:

Flávio O. Pires

piresfo@usp.br

Specialty section:

This article was submitted to

Exercise Physiology,

a section of the journal

Frontiers in Physiology

Received: 10 November 2017

Accepted: 01 March 2018

Published: 16 March 2018

Citation:

Pires FO, Silva-Júnior FL, Brietzke C,

Franco-Alvarenga PE, Pinheiro FA, de

França NM, Teixeira S and Meireles

Santos T (2018) Mental Fatigue Alters

Cortical Activation and Psychological

Responses, Impairing Performance in

a Distance-Based Cycling Trial.

Front. Physiol. 9:227.

doi: 10.3389/fphys.2018.00227

Mental Fatigue Alters Cortical
Activation and Psychological
Responses, Impairing Performance
in a Distance-Based Cycling Trial

Flávio O. Pires 1,2*, Fernando L. Silva-Júnior 3, Cayque Brietzke 1,

Paulo E. Franco-Alvarenga 1, Fabiano A. Pinheiro 1, Nanci M. de França 4, Silmar Teixeira 3

and Tony Meireles Santos 1,5

1 Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo,

Brazil, 2Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Santos, Brazil, 3 Brain

Mapping and Plasticity Laboratory (LAMPLACE), Federal University of Piauí (UFPI), Parnaíba, Brazil, 4 Physical Education

Program, Catholic University of Brasilia, Brasília, Brazil, 5 Research Center for Performance and Health, Physical Education

Program, Federal University of Pernambuco, Pernambuco, Brazil

Purpose: We sought to verify if alterations in prefrontal cortex (PFC) activation and

psychological responses would play along with impairments in pacing and performance

of mentally fatigued cyclists.

Materials andMethods: Eight recreational cyclists performed two preliminary sessions

to familiarize them with the rapid visual information processing (RVP) test, psychological

scales and 20 km cycling time trial (TT20km) (session 1), as well as to perform a VO2MAX

test (session 2). Thereafter, they performed a TT20km either after a RVP test (30min)

or a time-matched rest control session (session 3 and 4 in counterbalanced order).

Performance and psychological responses were obtained throughout the TT20km while

PFC electroencephalography (EEG) was obtained at 10 and 20 km of the TT20km and

throughout the RVP test. Increases in EEG theta band power indicated a mental fatigue

condition. Repeated-measures mixed models design and post-hoc effect size (ES) were

used in comparisons.

Results: Cyclists completed the trial ∼2.7% slower in mental fatigue (34.3 ± 1.3min)

than in control (33.4 ± 1.1min, p = 0.02, very large ES), with a lower WMEAN (224.5

± 17.9W vs. 240.2 ± 20.9W, respectively; p = 0.03; extremely large ES). There was

a higher EEG theta band power during RVP test (p = 0.03; extremely large ES), which

remained during the TT20km (p = 0.01; extremely large ES). RPE increased steeper in

mental fatigue than in control, together with isolated reductions in motivation at 2th km

(p = 0.04; extremely large ES), felt arousal at the 2nd and 4th km (p = 0.01; extremely

large ES), and associative thoughts to exercise at the 6th and 16th km (p = 0.02;

extremely large ES) of the TT20km.

Conclusions: Mentally fatigued recreational cyclists showed impaired performance,

altered PFC activation and faster increase in RPE during a TT20km.
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INTRODUCTION

Mental fatigue is a psychophysiological state caused by a
prolonged, high-demanding and sustained cognitive activity that
induces a feeling of “tiredness” and “lack of energy” (Boksem
and Tops, 2008; Ishii et al., 2014). Although the underlying
mechanisms have not been fully elucidated, mental fatigue has
been associated with alterations in frontal cortical areas (Lorist
et al., 2005; Käthner et al., 2014; Wascher et al., 2014) involved
in top-down modulation of behavior (Lorist, 2008). For example,
mental fatigue may affect high-order cognitive control (Lorist
et al., 2005) and reduce the ability to deal with attentional control,
encoding and storage of relevant information, thus leading to a
less efficient behavior and greater perceived cost-future reward
relationship in a given task (Lorist et al., 2005; Boksem and
Tops, 2008; Lorist, 2008; Käthner et al., 2014; Van Cutsem et al.,
2017).

Physical performance in self-paced exercises also seems to be
related to a correct perceived cost-future reward evaluation and
adequate top-down modulation (Smits et al., 2014; Robertson
and Marino, 2016). Even in a relatively simple cycling time trial
scenario athletes have to use inhibitory control and attentional
location on sensory cues while dealing with aversive sensations,
in order to adequately regulate their pace and finish the trial
as fast as possible (Brick et al., 2016; Martin et al., 2016;
Micklewright et al., 2017). In this scenario, mental fatigue may
be considered as a threat to a successful performance as this may
decrease the ability to deal with aversive sensations and affect the
perceived cost-reward relationship during exercise. For example,
a recent study reported that recreational, but not professional
cyclists slowed down their pace, thereby decreasing the 20min
cycling trial performance when they were mentally fatigued
(Martin et al., 2016). These recreational cyclists further rated
similar levels of ratings of perceived exertion (RPE) even when
the power output was lower during the trial. Ultimately, these
results may suggest that mentally fatigued recreational cyclists
were more affected by exercise-derived aversive sensations so
that they probably decreased performance by facing an increased
cost-reward relationship of exercise. Moreover, an impaired
inhibitory control (Martin et al., 2016) and attentional location
with mental fatigue (Brick et al., 2016) could also be involved in.

Importantly, that mental fatigue study used a time-closed
cycling trial, thus probably producing a less realistic scenario
when compared to conditions met in cycling training and
competitions. Pacing strategy differs between time-closed and
distance-closed cycling trials so that cyclists may prefer trials
closed by distance in a practical perspective, due to a more
realistic approach (Abbiss et al., 2016). The selection of an
optimal pacing strategy takes into account the trial distance,
rather than duration, as cyclists base their pacing on the perceived
distance (Nikolopoulos et al., 2001; Pinheiro et al., 2016). For
example, it is proposed that cyclists use a RPE template, created
from the momentary RPE in relation to the distance endpoint, to
pace themselves during the trial, supporting the notion that the
RPE progression may play a role for cycling pacing regulation
(de Koning et al., 2011; Schallig et al., 2017). Additionally,
the motivation to exercise at high effort levels has also been

considered as an important feature to a successful pacing
regulation during distance-based trials (Abbiss et al., 2016). As a
result, either a RPE progression higher than normal (Van Cutsem
et al., 2017) or an insufficient motivation required to overcome
exercise-derived aversive sensations (Baron et al., 2011) may
be involved in cycling pacing and performance. However, the
hypothesis that mentally fatigued recreational cyclists show an
impaired pacing regulation and performance, likely together
with a faster RPE progression and reduced motivation during a
distance-closed cycling trial needs confirmation. Furthermore, as
mental fatigue may also impair inhibitory control and attentional
location (Boksem and Tops, 2008; Lorist, 2008), one may argue
that mentally fatigued recreational cyclists further show less
emotional arousal and impaired capacity to allocate attention on
internal sensory signals during a distance-based cycling trial.

Alterations in cycling pacing regulation and performance
under mental fatigue may be associated with alterations in
prefrontal cortex (PFC) activation, as PFC was suggested
to be involved in proactive-behavior and goal-directed
exercises (Muraven and Baumeister, 2000; Ekkekakis, 2009;
Robertson and Marino, 2016). It has been suggested that PFC
translates information relative to exercise-induced metabolic
disturbances into emotional messages relevant to pacing
regulation (Robertson and Marino, 2016). A recent study
suggested that endurance regulation in cycling time trial was
likely related to the cyclists’ ability to preserve motor output
despite the reduced PFC activation (Pires et al., 2016). Thus,
measures of PFC activation in mentally fatigued recreational
cyclists may provide valuable information to understand
how mental fatigue may affect pacing and performance. It
is important to highlight that studies have suggested that
electroencephalography (EEG) theta band measured at PFC may
be particularly sensitive to distinguish a mental fatigue condition
(Käthner et al., 2014; Wascher et al., 2014), as an increased power
of this slow-frequency EEG band suggests a reduced top-down
modulation (Lorist, 2008).

Therefore, we verified if mentally fatigued recreational cyclists
would show impaired pacing regulation and performance
during a distance-based cycling trial. In addition, we verified
if alterations in PFC activation and psychological responses
would play along with impairments in pacing and performance.
Independent studies showed a decreased cycling performance
(Martin et al., 2016) and altered PFC activation under mental
fatigue (Käthner et al., 2014; Wascher et al., 2014), thus we
hypothesized that mental fatigue would impair pacing regulation
and performance, and alter PFC activation in a distance-closed
cycling trial. Furthermore, we expected that mental fatigue would
affect the RPE progression, motivation, emotional arousal, and
attention location during the trial.

MATERIALS AND METHODS

Participants
Eight recreational, non-professional male cyclists (29.3 ± 7.9
years; 177.2 ± 4.6 cm; 67.6 ± 7.5 kg), with an average of
5.0 ± 3.2 years of experience training and competing at
the regional level, volunteered to participate in this study.
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These cyclists were non-smokers and free from cardiovascular,
visual, auditory and cognitive disorders. They were oriented
to avoid consumption of stimulant (coffee, energy drink, etc.)
and alcoholic beverages, as well as intense exercise for the
48 h preceding the sessions. Experimental procedures, risks, and
benefits were explained before collection of their signature on a
written consent form. Procedures of this study were approved
by a local Ethics Committee (Process: 04254112.9.0000.0029) and
performed according to the Declaration of Helsinki.

Study Design
Cyclists attended to four visits during the study: (1a) to
familiarize them with a short version (∼5min) of the rapid visual
information processing (RVP) test, psychological scales and a
20 km cycling time trial (TT20km); (2

a) to perform an incremental
VO2MAX test; (3a and 4a) to perform a TT20km, either after a
30min RVP test (experimental session) or after a time-matched
rest control session. The first and second sessions were performed
sequentially, while the third and fourth sessions were performed
in a counterbalanced order, after random designation. All the
tests were interspersed by a 3–7 days washout period, performed
within 30 days. All experimental procedures were performed at
the same time of the day, under controlled temperature (∼22◦C)
and humidity (50–60%). Physiological variables such as EEG and
psychological variables such as RPE, motivation, felt arousal scale
(FAS) and associative thoughts to exercise (ATE), were measured
during TT20km. Mood and affect were obtained before and after
the RVP test.

Regarding our experimental approach, two aspects should be
pointed out. Firstly, different from a recent mental fatigue study
using a 20min time-based cycling trial to investigate cyclists we
preferred to use a distance-based trial, as this may represent
a more realistic condition met in cycling competitions and
training sessions. Moreover, we wanted to use a distance which
has already been previously investigated, thus making possible
inferences to cycling literature (Silva et al., 2014; Pinheiro et al.,
2016). The TT20km filled these requirements, being a long-
endurance trial which may potentiate mental fatigue effects on
physical performance (Van Cutsem et al., 2017). Secondly, a
high-demanding cognitive task with the potential to induce
cerebral alterations and mental fatigue (RVP test) was used
(Coull et al., 1996; Lawrence et al., 2003; Lim et al., 2010;
Hilti et al., 2013). In order to ensure that mental fatigue
was induced we assumed that cyclists would have to show an
increased PFC EEG theta band power when mentally fatigued,
as suggested elsewhere (Sauseng et al., 2010; Käthner et al., 2014).
Furthermore, cognitive performance in RVP test and alterations
in mood state were used to confirm a mental fatigue state.

Rapid Visual Information Processing (RVP)
Test
The RVP test was performed in a comfortable, quiet and
illuminated room, while cyclists were placed frontally to a
17 inches colored monitor. The RVP test consisted of 30min
exhibiting numbers (from 1 to 9) in a black-blue box in the
center of the monitor, in a random order so that each number
were displayed individually (i.e., one by one) at a rate of 100

times per minute. Cyclists were asked to press the space bar
of a standard keyboard always when they identified a sequence
of three even (e.g., 2, 4, 6; 4, 6, 8) or odd numbers (e.g., 3,
5, 7; 3, 9, 7), shown 8 times a minute. Cognitive performance
was measured as false alarms (u.a), reaction time (ms) and
accuracy of answers (percentage of numerical sequences wrongly
identified). In order to have a control session without negative
or positive mental manipulation, cyclists remained resting for
30min in a comfortable seat in the laboratory. Although no active
intervention such as reading a magazine, listening to music,
watching a film, etc., was used during this time, no effort was
made to create an environment away from a laboratory routine.
Cyclists were informed about the objective of the RVP test after
they conclude the participation in the study.

Cycling Time Trial (TT20km)
Cyclists were initially familiarized with the TT20km during
a preliminary session, before performing the trial in control
and mental fatigue sessions. A road bicycle (SoulCycle R©, New
York, USA) was attached to a cycle simulator (Computrainer,
Racer Mate R© 8000, Seattle, USA) which provided power output
(W), cadence (rpm) and speed (km.h−1) data throughout the
test. The device was calibrated before each test according to
the manufacturer’s instructions. The bicycle was individually
adjusted, according to cyclists’ preferences.

After a standard 7min warm-up consisting of a 5min self-
paced warm up (gear and pedal cadence freely adjusted) followed
by a 2min controlled-pace warm up (cycling at a power output
of 100W and pedal cadence of 80 rpm), they immediately started
the TT20km. Cyclists were oriented to finish the trial within the
shortest possible time (sat down throughout the trial). They
were free to pace themselves in all the sessions, using distance
and elapsed time as a feedback. Due to experimental procedures
involving the completion of the questionnaire and scale, and
the EEG check, the TT20km started ∼10min after the RVP test
execution in mental fatigue session. Accordingly, the control
TT20km was initiated ∼10min after the 30min rest control
period.

Procedures, Measures, and Data Analysis
Performance
The time to complete the TT20km and the mean power
output (WMEAN) recorded throughout the trial were used as
performance measures. Power output was further averaged every
2 km in order to analyze pacing strategy.

Electroencephalography (EEG)
PFC activation was continuously obtained by using an EEG unit
(NeuroSpectrum-5, Neurosoft R©, Ivanovo, Russia) with a 500Hz
sampling frequency. Active electrodes (Ag-AgCl) with resistance
∼5 K�were placed on the scalp, at the FP1 position, according to
the international EEG 10–20 system. This position was ensured
according to frontal and sagittal planes, referenced to mastoid.
After exfoliation and cleaning, electrodes were fixed with a
conductive gel, adhesive tape, and medical strips. Then, EEG
obtained at the FP1 position during 3min baseline, throughout
the RVP task, and during TT20km was analyzed to represent
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activation in PFC. In order to reduce artifacts, adhesive tape
was used to fix the EEG unit’s cables to the individuals’ trunk.
Importantly, cyclists were familiarized to be accustomed to
keeping their eyes opened and avoid jaw movements throughout
the EEG measurements during baseline, RVP test, and TT20km.
They were further familiarized to maintain upper limbs, head,
and neck as steady as possible during a 15 s period at the 10th and
20th km of the TT20km. These procedures allowed a reasonable
EEG signal at 50 and 100% of the cycling trial. Cases showing
spectral leakage (assumed as a signal ± 100 µv) were considered
as excessive artifacts (n = 1–2, depending on the part of the
setup).

The surface signal was amplified (gain of 1.000) and treated
with a notch (60Hz) and a 1–30Hz bandpass filter. The data
collected during the RVP test as well as during the cycling trial
was normalized to the signal captured between 120 and 180 s
of the baseline period. Thereafter, the EEG data were analyzed
in frequency domains through a fast-Fourier transformation.
A Blackman window, having a zero padding, was applied to
avoid frequency leakage and obtain a power spectrum frequency
resolution of 0.2Hz. The area under the theta band power
spectrum (3–7Hz) was calculated over 15 s windows as previous
EEG studies have suggested that EEG theta band (a slow-
frequency EEG band) is sensitive to distinguish a mental fatigue
state (Smith et al., 2003; Sauseng et al., 2010; Käthner et al., 2014;
Wascher et al., 2014). Thus, the EEG obtained throughout the
RVP test was analyzed at 10, 20 and 30min, and the EEG obtained
during exercise was analyzed at 10th and 20th km of the TT20km.

Psychological Responses
Cyclists completed the mood and affect questionnaires before
and immediately after the RVP test. Briefly, a shortened version
of the profile of mood states (POMS) questionnaire composed
of 24 single-word mood descriptors was used to measure anger,
confusion, depression, fatigue, tension, and vigor through a 5-
points Likert scale ranging from 0 (zero meaning “nothing”)
to 4 (meaning “extremely).” Previous studies have applied this
questionnaire in physical exercise approaches (Viana et al.,
2016), reporting large internal consistency for these subcategories
(values expressed as Cronbach’s alpha >0.70) The total mood
disorder (TMD) was calculated by summing subcategories such
as anger, mental confusion, depression, fatigue, and tension,
thereafter subtracting them from vigor (TDM was obtained
adding 100 to the final value). Increases in TMD can be
interpreted as a decreased mood state and decreases in TMDmay
be interpreted as an increasedmood state. Cyclists also completed
the positive and negative affect schedule questionnaire, which
consists of a 10-item scale providing independent measures
of positive and negative affect (Carvalho et al., 2013). This
questionnaire uses a 5-point Likert scale so that 1 corresponds
to “no or very little” while 5 corresponds to “very.”

Psychological responses (i.e., RPE, motivation, FAS, and ATE)
were assessed every 2 km of the TT20km. The RPE was obtained
through a 15-points Borg scale (Borg, 1982) as suggested
elsewhere (Borg, 1982; Pires et al., 2011). In order to have
comparisons with previous studies (Pinheiro et al., 2016; Viana
et al., 2016) the RPESLOPE was calculated (as a function of the

distance), thus indicating the rate of linear increase in RPE.
Furthermore, motivation was assessed through a 5-points Likert
scale with two opposite motivational descriptors, that is “very
unmotivated” and “highly motivated.” This Likert scale is similar
to that used in previous studies (Smirmaul et al., 2015).

The felt arousal was obtained through the 6-points FAS
(Svebak and Murgatroyd, 1985) which classifies arousal within
categories ranging from “low activation” to “high activation.”
The perception of high arousal may be interpreted as a state
of “worked-up,” while the perception of low arousal may be
interpreted as a feeling of “relaxation” (Svebak and Murgatroyd,
1985). Additionally, ATE was measured on a bipolar Likert
scale with ATE ranging from 0 to 100%. Cyclists rated the ATE
based on their internal cues, that is the sensations related to
body signals such as sweating, heart rate, breathing and muscle
discomfort. In contrast, dissociated thoughts were unrelated to
body sensations, thus normally associated with daily tasks such
as day-dreaming, personal projects, life, environment, etc. For
example, ATE measures close to 0–10% would suggest thoughts
highly dissociated from the exercise, otherwise, measures close
to 90–100% may suggest thoughts highly related to the exercise
(Tammen, 1996; Razon et al., 2009). Although being aware of
associated and dissociated thoughts, only ATE were reported.
Validity of this ATE scale has been indicated elsewhere (Razon
et al., 2009).

Statistical Analysis
Gaussian distribution and homoscedasticity were ensured
through Shapiro-Wilk and Levene tests, respectively. Effects
of RVP test were checked in two ways. Firstly, alterations
in mood and affect from pre to post RVP test were verified
by using a Wilcoxon test. Secondly, RVP test effects were
verified by comparing false alarms, reaction time, accuracy and
EEG responses during RVP test through a number of mixed
models, having time (i.e., 10, 20, and 30min) and mental
state (i.e., control and mental fatigue) as the fixed factors,
and cyclists as the random factor. The best repeated-measures
covariance structure fitting the dataset was obtained among a
number of structures, such as Compound Symmetric, First-order
Autoregressive (homogeneous and heterogeneous), First-order
Autoregressive Moving Average and Toeplitz (homogeneous and
heterogeneous). Multiple comparisons were corrected through
the Bonferroni’s test in cases of significant F-values.

We compared the time to complete TT20km and WMEAN

with a paired t-Student test. Furthermore, power output and
psychological responses (i.e., RPE, motivation, FAS and ATE)
during the TT20km were compared through a number of mixed
models, having distance (i.e., 2nd, 4th up to 20th km) and
mental state (i.e., control and mental fatigue) as the fixed
factors, the cyclists were the random factor. Accordingly, EEG
responses at 10 and 20 km of the TT20km were analyzed through
a mixed models comparison. In these analyzes, we further used
the best covariance structure fitted to the dataset, calculated
among different structures (Compound Symmetric, First-order
Autoregressive homogeneous and heterogeneous, First-order
Autoregressive Moving Average, and Toeplitz homogeneous
and heterogeneous). Multiple comparisons were corrected by
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Bonferroni test in cases of significant F-values. The RPESLOPE
was compared between control and mental fatigue by a paired
t-Student test. Importantly, as we did not perform a prior sample
size calculation, we calculated the effect size (ES) as a post-hoc
analysis for every significant result, using the appropriate index
for t-Student test, mixed models or non-parametric analysis. In
order to make the interpretation of different ES indexes easier for
the reader, we classified them as small, moderate, large, very large
and extremely large, similar to suggested elsewhere (Hopkins
et al., 2009). Statistical power was >0.80 for all analysis, and
significant results were accepted if p< 0.05. Results were reported
as the mean and standard deviation (± SD).

RESULTS

As a control of the study, we verified if there would have been any
order effect in performance responses. Comparisons showed no
difference between the first and second TT20km session, neither
for time to complete the trial (33.9 ± 1.7min vs. 33.8 ± 0.7min;
p = 0.77) nor for WMEAN (225.7 ± 36.0W vs. 226.2 ± 23.4W;
p = 0.97). Cyclists attained a peak power output of 318.9 ±

22.4W and a VO2MAX of 64.1 ± 4.8 ml·kg·min−1 during the
preliminary incremental VO2MAX test.

Effects of RVP Test on Cognitive
Performance, EEG and Psychological
Responses
Overall results showed that a 30min RVP test induced mental
fatigue. There was an impairment in cognitive performance
as RVP test progressed, since false alarms increased [10th
min = 29.7 ± 27.9, 20th min = 38.7 ± 31.6, 30th min = 44.4
± 43.6, F(4, 69), p = 0.03, η2 = 0.25, extremely large ES] and
accuracy decreased [10th min = 11.5 ± 9.2%, 20th min = 11.4
± 6.2%, 30th min = 15.5 ± 7.8%, F(3, 86), p = 0.04, η2 = 0.22,
extremely large ES] from 10 to 30min. No change was found in
reaction time (p > 0.05).

The RVP test also induced changes in EEG, as the PFC
theta band power increased as the RVP progressed. Multiple
comparisons detected a mental fatigue main effect [F(5, 81),
p = 0.03, η2 = 0.3, extremely large ES] so that Fp1 theta power
recorded at 10, 20, and 30min was higher than matched-time
control values. Additionally, neither time main effect (p > 0.05)
nor mental fatigue by time interaction effect (p > 0.05) was
observed in Fp1 theta power (Figure 1).

As a result of the RVP test, there was a decrease in positive
(Pre = 21.3 ± 5.39 to Post = 16.6 ± 4.1, Z = −2.26,
p = 0.02; extremely large ES) and an increased in negative affect
(Pre = 13.7 ± 4.3 to Post = 22.2 ± 6.5, Z = −2.39, p = 0.03;
extremely large ES). Accordingly, mood responses were impaired
as there was a decrease in vigor (Z = −2.64, p = 0.01; extremely
large ES) and an increase in tension (Z = −2.23, p = 0.03;
extremely large ES) and mental confusion (Z = −2.37, p = 0.02;
extremely large ES), thus resulting in a greater TMD (Z =−2.54,
p = 0.01, extremely large ES). Other POMS subscales such as
depression, anger and fatigue were not affected by RVP test
(p > 0.05). When comparing time-matched responses between

mental fatigue and control sessions, that is mood responses after
the RVP test between mental fatigue and control, we observed
a greater TMD in mental fatigue session (Z = −2.26, p = 0.02;
extremely large ES). Table 1 shows these results.

Effects of RVP Test on TT20km Performance
and Pacing
The TT20km performance was significantly impaired when
cyclists were mentally fatigued, as the time to complete the

FIGURE 1 | Data were reported as mean ± SD. Fp1 theta power responses

during rapid visual information processing test. Open and filled boxes are

control and mental fatigue condition, respectively. #Mental fatigue main effect

(p = 0.03, ES = extremely large).

TABLE 1 | Profile mood state responses before and after the RVP test (mental

fatigue condition) or 30min rest (control condition).

Control Mentally fatigued

Tension Pre 2.1 ± 2.1 1.1 ± 1.7

Post 1.8 ± 3.0 2.7 ± 3.3#

Depression Pre 0.7 ± 1.1 0.8 ± 1.4

Post 1.2 ± 2.7 1.5 ± 2.7

Anger Pre 0.6 ± 1.4 0.6 ± 1.4

Post 1.3 ± 3.5 1.5 ± 3.1

Vigor Pre 9.2 ± 2.8 9.2 ± 2.0

Post 7.0 ± 4.1‡ 5.3 ± 2.3**

Fatigue Pre 1.3 ± 1.1 1.8 ± 1.3

Post 2.6 ± 3.0 3.5 ± 2.8

Mental confusion Pre 0.6 ± 1.4 1.0 ± 1.9

Post 1.7 ± 3.4 3.2 ± 3.4*

TMD Pre 96.6 ± 5.1 96.25 ± 6.4

Post 102.2 ± 14.8 106.7 ± 13.2†$

Data were reported as mean ± SD. TMD is total mood disorder. Comparisons between

conditions: #Z = −2.23, p = 0.03. Comparisons between pre and post moments:

**Z = −2.64, p = 0.01; ‡Z = −2.23, p = 0.03; *Z = −2.37, p = 0.02;
†$Z = −2.54,

p = 0.01.
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trial (34.3 ± 1.3min) was ∼ 2.7% slower in mental fatigue
than in control session (33.4 ± 1.1min) (t = −3.14, p = 0.02,
d = 0.74, very large ES). Accordingly, WMEAN was reduced
∼6.5% (t= 2.78, p= 0.03, d= 0.98, extremely large ES) inmental
fatigue (224.5 ± 17.9W) when compared to control (240.2 ±

20.9W). Cyclists adopted a “j-shaped” pacing strategy during
the TT20km in both condition, thus power output values from
the 18th km was greater than values from previous distances
[F(21, 11), p= 0.001, η2 = 0.12, very large ES; Figure 2].

Effects of RVP Test on EEG and Psychological

Responses During TT20km
Regarding EEG measures, mentally fatigued recreational cyclists
showed higher Fp1 EEG theta band power [F(5, 78), p = 0.01,
η2 = 0.29, extremely large ES] in mental fatigue than in control.
However, neither distance main effect (p > 0.05) nor mental
fatigue by distance interaction effect (p > 0.05) was observed
(Figure 3).

Regarding psychological responses, a distance main effect was
observed in RPE [F(73, 90), p < 0.0001, η2 = 0.84; extremely large
ES], motivation [F(5, 08), p< 0.001, η2 = 0.26; extremely large ES]
and FAS [F(24, 97), p < 0.0001, η2 = 0.64, extremely large ES], but
not in ATE (P > 0.05), thereby indicating a progressive change
in most psychological responses as the trial progressed. Although
no mental fatigue main effect has been detected (p > 0.05),
there was a distance by mental fatigue interaction effect since
motivation was lower at 2 km [F(2, 65), p = 0.04, η2 = 0.36,
extremely large ES], FAS was lower at 2 and 4 km [F(4, 58),
p = 0.01, η2 = 0.69, extremely large ES] and ATE was lower at
6 and 16 km [F(3, 05), p = 0.02, η2 = 0.56, extremely large ES] in
mental fatigue. Accordingly, mental fatigue speeded up the RPE
increase (t = −2.736, p = 0.002, d = 0.98; extremely large ES),
as RPESLOPE was greater in mental fatigue (0.4 ± 0.1 a.u·km−1)

FIGURE 2 | Data were reported as mean ± SD. Power output during TT20km
in control (open circles) and mental fatigue condition (filled boxes). #Mental

fatigue main effect (p = 0.03, ES = extremely large) (distance main effects

have been suppressed for a better view of the mental fatigue effects; readers

are referred to the Results section).

than in control (0.3± 0.1 a.u.·km−1). Figures 4A–D shows these
results.

DISCUSSION

This study showed that mental fatigue impaired cycling
performance without changing pacing strategy in a distance-
based cycling trial, as we observed that mentally fatigued
recreational cyclists impaired the TT20km performance by∼2.7%
(∼1min), but conserved a J-shaped pacing profile in both
conditions. Further, we observed that these mentally fatigued
cyclists showed a change in PFC activation, perhaps related to
changes in psychological responses.

The present study provides insightful information with regard
tomental fatigue effects on physical performance. It has been well
documented that attentional tasks requiring executive functions
such as alternating attention, goal-directed attention, sustained
attention, response inhibition and workingmemory can overload
cerebral areas involved in high-order cognitive control, thus
impairing top-down modulation (Lorist et al., 2005; Lorist, 2008;
Ishii et al., 2014). Hence, alterations in frontal cortical areas such
as PFC are expected to occur if a high-demanding attentional
task progresses (Käthner et al., 2014; Wascher et al., 2014).
Thus, similar to results reported elsewhere (Käthner et al., 2014;
Wascher et al., 2014) we also observed increased Fp1 EEG theta
power as RVP test progressed. Interestingly, such an increase in
Fp1 EEG theta power remained during the TT20km. Therefore,
alterations in PFC activation during TT20km were likely a result
of mental fatigue, rather than of changes in power output, as
alterations in EEG theta band were readily observed during RVP
test.

Furthermore, mentally fatigued recreational cyclists showed
an impaired TT20km performance, thereby corroborating a
possible connection between physical performance and changes
in PFC activation (Pires et al., 2016; Robertson and Marino,

FIGURE 3 | Data were reported as mean ± SD. EEG theta band measured at

PFC (prefrontal cortex) during TT20km in control (open boxes) and mental

fatigue condition (filled boxes) #Mental fatigue main effect (p = 0.01,

ES = extremely large).
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FIGURE 4 | Data were reported as mean ± SD. Ratings of perceived exertion (A), Felt arousal (B), Motivation (C), and Associative thoughts to exercise (D) responses

during TT20km in control (open circles) and mental fatigue condition (filled boxes). Distance by mental fatigue interaction effects were highlighted in squares (distance

main effects have been suppressed for a better view of the mental fatigue effects; readers are referred to the Results section). #Difference between mental fatigue and

control SLOPE (p = 0.002, ES = extremely large).

2016). It has been proposed that PFC plays a key role in
pacing and exercise regulation, as PFC is involved in proactive,
goal-directed behavior (Miller and Cohen, 2001; Ekkekakis,
2009). Studies have suggested that successful self-paced exercise
performance is related to superior inhibitory control (Muraven
and Baumeister, 2000; Martin et al., 2016) and attentional
location (Brick et al., 2016) so that the increased slow-frequency
EEG activity in mentally fatigued cyclists could reflect their lower
ability to preserve adequate inhibitory control and attentional
location during exercise. Consequently, they may have had less
cognitive ability to deal with aversive feelings while they had to
self-regulate pacing (Micklewright et al., 2017).

We have hypothesized that changes in PFC activation may
indicate impaired top-down modulation, thereby influencing
psychological responses such as RPE, motivation, emotional
arousal and attention location. Previous studies observed that
the linear increase in RPE was greater in mentally fatigued
individuals either in a controlled-pace cycling (Marcora et al.,
2009) or in a self-paced running (Pageaux et al., 2014), therefore
indicating that the perceived exertion was higher than normal in
mentally fatigued individuals. Accordingly, we observed that RPE
increased linearly throughout the TT20km in both conditions,
but the greater RPESLOPE in mentally fatigued cyclists indicated
that mental fatigue speeded up the linear increase in RPE.
Importantly, as this greater RPESLOPE was observed with a lower

WMEAN in mental fatigue, cyclists were likely less resistant to
exercise when they were mentally fatigued.

Alterations in other psychological responses were less evident,
as most were observed only within the first 6 km of the TT20km

(i.e., a mental fatigue by distance interaction effect). Somehow,
these results may suggest that mentally fatigued recreational
cyclists were less cognitively resourceful to start a goal-driven,
motivational-behavior exercise focused on pace-related thoughts
such as memory and attention location (Miller and Cohen, 2001;
Ekkekakis, 2009; Martin et al., 2016; Micklewright et al., 2017). In
this sense, cyclists may have shown less ability to access attention
location at the first stages of the TT20km (Miller and Cohen, 2001;
Braver, 2012), as the lower FAS could indicate impaired vigilance
sustained-attention (Oliveira et al., 2013) and the lower ATE,
an inadequate attention on internal sensory monitoring (Razon
et al., 2009; Pinheiro et al., 2016). However, this suggestion should
be interpreted with caution, as the absence of a mental fatigue
main effect could indicate an accidental, rather than a systematic
mental fatigue effect. Future studies are required to confirm this
suggestion.

Practical Implications and Methodological
Aspects
Instead of using a time-based cycling trial (Martin et al., 2016), we
used a mental fatigue paradigm in a distance-based cycling trial,
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a laboratory trial (i.e., TT20km) traditionally used in scientific
investigations (Silva et al., 2014; Pinheiro et al., 2016). We
preferred a trial closed by distance as this may represent a
more realistic condition met in cycling competitions and training
sessions (Abbiss et al., 2016). Normally, cyclists take into account
the perceived trial distance, rather than duration, when selecting
an optimal pacing strategy (Nikolopoulos et al., 2001; Pinheiro
et al., 2016). Consequently, cyclists performed a J-shaped pacing
strategy and spurted at the end of the distance-based trial, as
they were allowed to refer to the available distance feedback to
base their perceived distance during the trial. Hence, similar to
results reported in running (Pageaux et al., 2014) we observed
that prior high-demanding cognitive task (RVP test) led to
a significant decrease in WMEAN and time to complete the
cycling trial, without changing the J-shaped pacing strategy yet.
Therefore, supporting this previous running study (Pageaux
et al., 2014) these results showed that mental fatigue impaired
the TT20km performance without changing the pacing profile
of recreational cyclists. However, we must highlight that the
robust pacing profile observed in these mental fatigue studies
may have been a result of the available distance feedback
(Smits et al., 2016), so that future studies are required to
verify how mental fatigue may affect pacing regulation when
the feedback of distance is unavailable. Importantly, the present
results provided insights into how mental fatigue may impact
cycling pacing and performance in recreational cyclists, as
most of them combine high-load aerobic training programs
with a strict-life style (food intake, alcohol consumption, etc.)
and daily activities (e.g., driving or moving through a busy
city, dealing with financial life, accumulating different jobs,
etc.).

Some aspects regarding EEG measures should be pointed out.
Firstly, recent study verified that mentally fatigued individuals
showed an increased PFC beta power when they were submitted
to a RPE-matched exercise, and this increased EEG beta power
was interpreted as an indication of mental fatigue in that study
(Brownsberger et al., 2013). However, an increase in theta
power rather than in beta power is suggested to reflect mental
fatigue in neuroscience literature (Käthner et al., 2014; Wascher
et al., 2014). Thus, we have used a standard slow-frequency
EEG band to confirm mental fatigue, that is, an increase in
PFC theta power. In addition, we also confirmed a mental
fatigue condition by reductions in mood and affect responses as
well as impairments in cognitive performance during RVP test.
Therefore, instead of isolated mood and cognitive performance

measures as traditionally reported (Van Cutsem et al., 2017), we
used a complete scenario to ensure that cyclists were mentally
fatigued.

Secondly, the use of EEG technique to monitor changes in
cortical activation during exercise has been criticized, as artifacts
derived from upper body movement can impair EEG analysis
(Thompson et al., 2008). During the experimental setup, we used
active electrodes, fixed cables, and electrodes, and familiarized
cyclists to keep their eyes opened without jaw movements,
while maintaining upper limbs as steady as possible during
EEG measures. Although carefully controlling our experimental
setup, we acknowledge that artifacts associated with whole-body
exercises may challenge the EEG interpretation. Apparently,
this is the first study providing EEG measures during cycling
trial in mentally fatigued recreational cyclists, future studies are
encouraged to improve the use of EEG measures in whole-body
exercises.

CONCLUSION

The present study showed that TT20km performance was
impaired when recreational cyclists were mentally fatigued,
although a J-shaped pacing strategy was conserved in this
distance-based cycling trial. Furthermore, PFC activation was
changed and RPE increased faster in mental fatigue, probably
playing along with this impaired cycling performance.
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