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Endothelial cells surround the lumen of blood vessels and modulate many physiological

processes, including vascular tone, blood fluidity, inflammation, immunity and

neovascularization. Many pathological conditions, including hyperglycemia, may alter

endothelial function through oxidative stress, leading to impaired nitric oxide bioavailability

and to the onset of an inflammatory state. As widely shown in the last decade,

dietary intervention could represent a good strategy to control endothelial dysfunction

and atherosclerosis. In particular, extensive research in the field of antioxidant

natural derivatives has been conducted. In this study, we evaluated the capability of

Chamazulene (Cham), an azulene compound from chamomile essential oil, to attenuate

ROS levels in bovine aortic endothelial cells (BAECs) stressed with either high glucose or

H2O2. Cell viability at different concentrations of Cham was evaluated through the WST-1

assay, while ROS production acutely induced by High Glucose (HG, 4.5 g/L) treatment or

H2O2 (0.5mM) for 3 h, was quantified with 2′-7′-Dichlorofluorescein diacetate (DCFH-DA)

probe using confocal microscopy and flow cytometry. Our results showed a reduction

in ROS produced after simultaneous treatment with High Glucose or H2O2 and Cham,

thus suggesting an in vitro antioxidant activity of the compound. On the whole, this study

shows for the first time the potential role of Cham as a scavenging molecule, suggesting

its possible use to prevent the rise of endothelial ROS levels and the consequent vascular

damage.

Keywords: Chamazulene, oxidative stress, H2O2, glucose, bovine aortic endothelial cells, flow cytometry, confocal

microscopy, ROS

INTRODUCTION

In recent years studies on free radicals, as reactive oxygen species (ROS) and reactive nitrogen
species (RNS), and their role in mediating different functions in our organism are increasing.
Free radicals, ROS and RNS normally produced in living cells, can increase due to external
sources, such as X-rays, air pollutants or chemical compounds, or can be endogenously produced
by essential enzymatic or non-enzymatic processes (Lobo et al., 2010). These molecules are
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involved in oxidation-reduction (redox) reactions. Indeed, free
radicals are characterized by an unpaired electron that makes
these molecules highly unstable and able to act both as
oxidants or reductants. Such characteristics are fundamental
in the regulation of different cellular functions, collectively
indicated as “redox signaling” (Sies, 2015), and underline the
role of these molecules both in physiological and pathological
conditions. For example, ROS produced by phagocytic cells
are fundamental in the first defense against infections (Finkel
and Holbrook, 2000), but their uncontrolled rise with the
consequent generation of a redox state, called the oxidative
stress status, can be deleterious for cellular structures, like DNA,
proteins and lipids, with the consequent modification of their
function (Espinosa-Diez et al., 2015). Possible generation of
systemic long term complications, such as chronic inflammation,
endothelial dysfunction, atherosclerosis and cancer, can be
related to this condition (Sies, 2015). To control the production
of free radicals, ROS and RNS, animal cells use different systems
generically called antioxidants, molecules able to donate an
electron to free radicals, neutralizing them and confining cell
damage. Antioxidants are classified in enzymatic and non-
enzymatic molecules. Among enzymatic there are superoxide
dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-
Px), thioredoxins (TRX), peroxiredoxins (PRX), glutathione
transferase (GST). Examples of non-enzymatic antioxidants are
glutathione (GSH), ferritin, transferrin, uric acid, coenzyme Q
(Birben et al., 2012). The importance of diet antioxidants that
can modulate and sustain endogenous defenses is emerging:
carotenoids, vitamin C, vitamin E, omega-3 fatty acids, β-glucans
and polyphenols, present in food, can be used by the organisms
to reinforce their antioxidant response (Kofuji et al., 2012;
Pisoschi and Pop, 2015). Furthermore, in last years, the role
of officinal plants as cellular endogenous defense enhancers
or free radical scavengers emerged and the possible use of
plant extracts, essential oils or isolated molecules of traditional
relevance as antioxidants is nowadays strongly investigated
(Agatonovic-Kustrin et al., 2015; Pisoschi and Pop, 2015).
Among officinal plants, chamomile (Matricaria chamomilla
L.) demonstrated several beneficial properties in cell cultures
and in in vivo studies (McKay and Blumberg, 2006). In fact,
chamomile infusions and extracts showed anti-inflammatory,
anti-microbial, hypocholesterolemic and anti-genotoxic effects
(Petronilho et al., 2012). Different studies showed that secondary
metabolites, in particular terpenoids and flavonoids, isolated
from chamomile, are able to neutralize the propagation of
radical chains thank to their molecular structure, underlining
the possibility to classify these molecules as natural antioxidants
(Singh et al., 2010). Among bioactive compounds present in
chamomile essential oil, Chamazulene (Cham), a sesquiterpene
derived from matricine (Singh et al., 2010), has been proposed as
a free radical scavenger. Results obtained with antioxidant assays,
like that based on the 2,2′-azino-bis-3-ethylbenzthiazoline-6-
sulphonic acid (ABTS) radical (Capuzzo et al., 2014; Agatonovic-
Kustrin et al., 2015), suggested the possible antioxidant role
of this molecule in a cell model of acute or chronic oxidative
stress. Although available data in literature suggest Cham as
a radical scavenger, there are no studies on its possible effect

in a cell model of oxidative stress. In fact its chemical nature
suggests its passage through the cell membrane and the possible
interaction with radical species (Figure 1). Oxidative stress cell
models can be determined in different ways depending on cell
type and on their susceptibility to specific stressors that can
cause pathophysiological conditions. For example, the diabetic
state is characterized by endothelial dysfunction, induced by
different stressors like high glucose concentrations (Zhou et al.,
2015), which cause diminished production of nitric oxide,
and, as a consequence, an imbalance in endothelium-derived
relaxing and contracting factors, up-regulation of adhesion
molecules, increased chemokine secretion, leukocyte adherence
and cell permeability, low-density lipoprotein oxidation, platelet
activation and vascular smooth muscle cell proliferation and
migration (Hadi et al., 2005). The aim of this study was
to evaluate the antioxidant properties of Cham on bovine
aortic endothelial cells (BAECs) acutely treated with two
different oxidative stressors already proposed in other studies
(Zhou et al., 2015; Nadeev et al., 2016): High Glucose
(HG, 4.5 g/L) concentrations or hydrogen peroxide (H2O2,
0.5mM).

MATERIALS AND METHODS

Chemicals
Chamazulene purification from chamomile (Matricaria
chamomilla L.) essential oil was performed according to Capuzzo
et al. (2014). The compound used was solubilized in absolute
ethanol (Sigma Aldrich Saint Louis, MO, USA) at the final
concentration of 10 mg/ml. Unless otherwise specified, all
reagents for cell culture and experiments were purchased from
Sigma-Aldrich.

Cell Culture
Bovine aortic endothelial cells-1 (BAECs, ECACC, Salisbury,
UK) were maintained in Dulbecco’s modified eagle medium
(DMEM) 1 g/L glucose supplemented with 10% FBS, 2mM
L-Glutamine and 50µg/ml Gentamycin, incubated at 37◦C in

FIGURE 1 | Chemical structure of Chamazulene, C.A.S. n 529-05-5.
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a humidified atmosphere containing 5% CO2. High glucose
(HG) treatment was performed using DMEM 4.5 g/L glucose
supplemented with 10% FBS, 2mM L-Glutamine and 50µg/ml
Gentamycin. H2O2 treatment was performed at the dilution of
0.5mM in DMEM 1 g/L glucose. BAECs were used from passages
3 to 6.

Assessment of Cell Viability After
Chamazulene Treatment
Cell proliferation reagent WST-1 (Roche Applied Science,
Mannheim, Germany) based on the cleavage of a tetrazolium
salt into a formazan product by living cell enzymes, in
particular mitochondrial dehydrogenases, was used to assess
cell viability. BAECs (1.6 × 103 cells/100 µl/well) were seeded
into a 96-well plate in culture medium and incubated at
37◦C for 24 h. Following incubation, cells were treated with
increasing concentrations (10, 25, 100, 250µg/ml) of Cham
or its solvent, ethanol, at the same dilutions (1:1000; 1:400;
1:100; 1:40) for 3 h. WST-1 solution (1:10) was added 2 h
before the end of the treatment. The absorbance at 450 nm
was determined by a microplate reader (Microplate Reader,
Bio-Rad, model 550). The effect of Cham on cell viability
was calculated from the absorbance of soluble formazan dye
generated by living cells and the results were expressed
as percentage of cell viability compared to control, fixed
at 100%.

Determination of the EC50 of Chamazulene
Half maximal effective concentration (EC50) of Cham was
obtained studying the effect of the compound at different
concentrations (10, 25, 100, 250µg/ml) for 3 h by means of the
WST-1 Assay; from these data, the EC50 was calculated using the
software CalcuSyn 2.11 (Biosoft, Cambridge, UK).

ROS Measurement With Confocal
Microscopy
BAECs production of ROS was assessed with confocal
microscopy using 2′-7′-Dichlorofluorescein diacetate probe
(DCFH-DA, Sigma). BAECs were seeded (4.8 × 104 cells/ml)
on uncoated glass bottom dishes of 35mm diameter (MatTeck
Corporation, Ashland, MA, USA) in DMEM 1 g/L glucose
and incubated at 37◦C for 24 h. Following incubation
cells were treated with Cham 25µg/ml, HG, H2O2 or
simultaneously treated with Cham 25µg/ml plus HG and
Cham 25µg/ml plus H2O2 for 3h; a control condition
with ethanol 1:400, correspondent to that present in the
25µg/ml Cham solution, was added to evaluate its effect
alone on the cells. DCFH-DA solution (1 µl/ml) was added
to each dish 30min prior the end of the treatment, then
cells were washed three times with PBS containing Ca2+

and Mg2+ to avoid cells loss. Fluorescence at 488 nm was
determined with confocal microscopy (magnification 60x).
Quantitative ROS production was calculated with the definition
and measurement of Regions Of Interest (ROIs) using the
software ImageJ (Rasband, W. S., ImageJ, U. S. National
Institutes of Health, Bethesda, Maryland, USA, https://
imagej.nih.gov/ij/, 1997-2017) and expressed as relative

Medium Fluorescence Index (MFI) compared to control,
fixed at 1.

ROS Measurement With Flow Cytometry
BAECs ROS production was assessed with flow cytometry (C6
Accuri, BD Bioscience) using DCFH-DA probe. BAECs were
seeded into a 6-well plate (7 × 104 cells/well) in culture medium
and incubated at 37◦C for 24 h. Following incubation, cells were
treated for 3 hwith Cham 25µg/ml, HG,H2O2 or simultaneously
treated with Cham 25µg/ml plus HG and Cham 25µg/ml plus
H2O2; a control condition with ethanol 1:400 was added to
evaluate its role in mediating the effect of Chamazulene. DCFH-
DA solution (1 µl/ml) was added to each well 30min prior the
determination of the fluorescence. A total of 10,000 events were
considered and ROS levels were recorded at 5min. Quantitative
ROS production was calculated as relative Medium Fluorescence
Index (MFI) compared to control, fixed at 1.

Statistical Analysis
All data were expressed as mean ± Standard Deviations of the
mean. For differences betweenmean values Bonferroni’s multiple
comparisons test was performed. Differences with P < 0.05 were
regarded as statistically significant.

RESULTS

BAECs Viability After Exposure to Different
Concentrations of Chamazulene
To assess Cham toxicity BAECs were exposed to different
concentrations of the compound (10, 25, 100, 250µg/ml) for 3 h;
its effects were evaluated by means of the WST-1 assay. None
of the concentrations tested was toxic at 3 h; and, as shown in
Figure 2, cells viability was not affected by ethanol at any of the
concentrations used, corresponding to the amount of the solvent
present in each Cham treatment.

These data were used to calculate the EC50 of Cham with
the software CalcuSyn and, as confirmed in Figure 2, 25µg/ml
increased cells viability at 50% in 3 h and represented the EC50

dose of the compound in these experiments. This concentration
was used in this preliminary evaluation of the antioxidant activity
of Cham in cells.

Chamazulene and ROS Levels After HG
Treatment
ROS production in BAECs after HG treatment was at first
evaluated by confocal microscopy using the DCFH-DA probe
(Figures 3A,B). Cells were treated for 3 h with HG, Cham
25µg/ml or simultaneously with both. High Glucose treatment
for 3 h induced augmented ROS levels that was balanced by
the simultaneous addition of Cham. A control condition with
ethanol 1:400, corresponding to the amount of solvent added to
cells with the 25µg/ml Cham treatment, had no effect on BAECs.
Results of confocal microscopy experiments were confirmed by
flow cytometry: high glucose treatment induced a significant
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FIGURE 2 | Effect of Chamazulene on BAECs at 3 h of treatment, as assessed by the WST-1 Assay. None of the concentrations used was toxic for BAECs. Cell

viability was not affected by ethanol (light gray bars) used at the same amount present in each Cham treatment. Data shown are mean ± SD of three independent

experiments and are expressed as percentage toward control (Data are presented from the lowest to the highest concentration used. Cham: 131.08 ± 13.91; 153.81

± 16.50; 191.56 ± 18.18; 200.36 ± 18.38. EtOH: 162.68 ± 48.13; 226.67 ± 16.97; 168.90 ± 9.02; 152.22 ± 3.94); *P < 0.05, ***P < 0.001, ****P < 0.0001.

FIGURE 3 | Chamazulene and ROS levels in confocal microscopy after HG treatment. (A) Images obtained with confocal microscopy and DCFH-DA probe

(magnification 60x). Fluorescence intensity is represented in pseudo color scale (“fire” in ImageJ software): HG treatment for 3 h induced augmented ROS levels as

underlined by the changing color of cells compared to control and it was balanced by the simultaneous treatment with Cham. (B) Histograms illustrate the relative MFI

toward control derived from images analysis and show augmented ROS levels when cells are treated with HG and their decrease in a simultaneous treatment with

Cham. Cham effect is not affected by ethanol. Data shown are mean±SD of three independent experiments (HG: 5.89±1.84; Cham: 0.65±0.47; HG + Cham: 0.29

± 0.10; EtOH: 0.22 ± 0.09); ***P < 0.001.

ROS increase in BAECs, as compared to cells maintained in low

glucose medium; Cham added together with HG was able to

attenuate the effect of HG while nor Cham nor EtOH alone did
not have any effect on ROS production (Figures 4A,B).

Chamazulene and ROS Levels After H2O2

Treatment
ROS levels, due to H2O2 treatment for 3h, and their
possible reduction induced by Cham, were quantified in

a second set of experiments with confocal microscopy
and flow cytometry using DCFH-DA probe. In confocal
experiments, as shown in Figures 5A,B, BAECs stressed
with H2O2 for 3 h revealed a higher production of ROS
and this condition was reverted by simultaneous treatment
with Cham 25µg/ml. As shown, treatment with ethanol in
which Cham was solubilized confirmed that ethanol had no
effect on ROS production, not even Cham 25µg/ml added
alone to the culture medium had any effect on ROS levels.
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FIGURE 4 | Chamazulene and ROS levels in flow cytometry after HG treatment. (A) Histograms illustrate the relative MFI toward control derived from flow cytometry

and show ROS levels when cells are treated with HG and their decrease in a simultaneous treatment with Cham and HG. Cham effect is not affected by ethanol. Data

shown are mean ± SD of three independent experiments (HG: 1.47 ± 0.35; Cham: 0.94 ± 0.03; HG + Cham: 0.96 ± 0.02; EtOH: 1.08 ± 0.02); *P < 0.05

(B) Representative graphs of flow cytometry in which is illustrated the variation in fluorescence in different treatments.

FIGURE 5 | Chamazulene and ROS levels in confocal microscopy after H2O2 treatment. (A) Images obtained with confocal microscopy and DCFH-DA probe

(magnification 60x). Fluorescence intensity is represented in pseudo color scale (“fire” in ImageJ software): H2O2 treatment for 3h induce augmented ROS levels as

underlined by the changing color of cells compared to control and it was balanced by the simultaneous treatment with Cham. (B) Histograms illustrate the relative MFI

toward control derived from images analysis and show high ROS levels when cells are treated with H2O2 and their decrease in a simultaneous treatment with Cham

and H2O2. Ethanol does not affect ROS level. Data shown are mean±SD of three independent experiments (H2O2: 6.86±1.00; Cham: 0.65±0.47; H2O2+Cham:

0.30±0.13; EtOH: 0.22±0.09); ****P < 0.0001.

These results were confirmed by flow cytometry experiments
(Figures 6A,B).

DISCUSSION

Cells are continuously exposed to physical and chemical
stressors. When endogenous and exogenous defenses are not
sufficient to balance the production of free radicals, ROS and
RNS, cells enter in an oxidative stress status which can be
deleterious for the structure and function of important molecules
like nucleic acids, proteins and lipids (Birben et al., 2012).
Several pathological conditions can contribute to the definition
of such status, characterized by the rise of reactive molecules;
as an example, endothelial cells exposure to high concentrations
of glucose, as it occurs in diabetic disease, can increase ROS
production, enhancing endothelial dysfunction that characterizes

this condition (Rahimi et al., 2005). In this scenario, the role
of antioxidant molecules endogenously produced in cells or
derived from exogenous sources, represents the first line of
investigation in order to assess any increased cell defense against
oxidative stress status and thus preventing further cell damage.
Scavenger activity of exogenous antioxidants is usually tested
primarily with chemical assays, like the ABTS assay (Floegel et al.,
2011). Then, in order to classify a molecule as an antioxidant
in complex systems such as living cells, it is important to
evaluate how the molecule behaves in a cell model of oxidative
stress status. A molecule recently studied for its capability
to scavenge free radicals is Cham (Capuzzo et al., 2014), a
sesquiterpene spontaneously derived frommatricine and present
in high concentrations in chamomile (Matricaria chamomilla L.)
essential oil. Previous studies on Cham underline its antioxidant
activity as themolecule is able to scavenge preformed free radicals
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FIGURE 6 | Chamazulene and ROS levels in flow cytometry after H2O2 treatment. (A) Histograms illustrate the relative MFI toward control derived from flow

cytometry and show high ROS levels when cells are treated with H2O2 and their decrease in a simultaneous treatment with Cham and H2O2. Cham effect is not

affected by ethanol. Data shown are mean ± SD of three independent experiments (H2O2: 2.44 ± 0.13; Cham: 0.94 ± 0.03; H2O2+Cham: 1.68 ± 0.14; EtOH: 1.08

± 0.02); ****P < 0.0001 (B) Representative graphs of flow cytometry in which is illustrated the variation in fluorescence in different treatments.

(Capuzzo et al., 2014; Formisano et al., 2015). Our aim, in this
research paper, was to evaluate for the first time the role of Cham
as an antioxidant in endothelial cells in two different models
of oxidative stress. Since data showing the effect of Cham in
cultured cells are still unavailable, our first line of investigation
aimed to the determination of the concentration of the molecule
by which treating cells. Results obtained on BAECs treated with
different concentrations of Cham (Figure 2) showed no toxicity
of the molecule. These data were used to calculate the EC50

of Cham at 3 h, 25µg/ml, and it was used as our starting
point to study any antioxidant effect of the molecule on cells.
Cham was tested in two acute stress model that induced rise in
ROS: cells were treated with HG or H2O2 for 3 h (Zhou et al.,
2015; Nadeev et al., 2016). ROS levels were assessed using two
different approaches: confocal microscopy and flow cytometry.
Results obtained in confocal microscopy analysis showed a
reduction in ROS levels when cells were simultaneously treated
with HG or H2O2 and Cham (Figures 3, 5), and these data
were confirmed by flow cytometry analysis (Figures 4, 6). These
experiments underline the effect of Cham respect to different
stimuli, high glucose and H2O2. High glucose was chosen
to mimic the hyperglycemic state characteristic of diabetes.
In this condition endothelial oxidative stress occurs thorough
many pathways, including formation of peroxynitrite, reduced
NO production, inactivation and/or reduction of expression of
antioxidant enzymes, formation of AGEs (advanced glycation
end products; Incalza et al., 2018). H2O2 represents a direct
stronger insult that is able to induce covalent modifications of
cysteine thiolate residues located in active and allosteric sites
of specific proteins resulting in alterations on their activity
and function. Moreover, high concentration of H2O2 evokes
inflammatory responses leading to growth arrest and ultimately
cell death (Sies, 2017).

Therefore, in these models ROS levels rise in different ways,
but, in both conditions, Chamazulene was able to balance them.
The novelty of this study can be pointed out, as done before,
underlining that it has been the first work in which antioxidant

activity of Cham has been tested on a cell model, even if, as
previously said, results obtained were linked to short treatment
times, reflecting only acute effects and not long term events
such as gene expression. Furthermore, it could be interesting
to evaluate how Cham acts in a cell model increasing the
exposure time to different stressors and evaluating the effect
on gene transcription. Another aspect that can be interesting
to investigate, essential for the complete determination of its
antioxidant activity, could be the determination of the kinetics
and the dinamics of Chamazulene in in vivo studies.

Many natural antioxidants counteract oxidative stress, and
their use leads to an improvement in ROS generation-associated
diseases. New substances with antioxidant properties to balance
ROS overproduction and favor NO bioavailability can be
developed with the aim of preventing oxidative stress-induced
vascular damage, and Cham could be included in the list of these
molecules. Further studies on Cham and its potential application
will reinforce the efficacy of natural beneficial nutritional
components in delaying the onset of vascular dysfunction and
maintaining or restoring vascular health.
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