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We introduce and study some scalable domain decomposition preconditioners

for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance

Computing) architectures. The electro-mechanical model of the cardiac tissue is

composed of four coupled sub-models: (1) the static finite elasticity equations for

the transversely isotropic deformation of the cardiac tissue; (2) the active tension

model describing the dynamics of the intracellular calcium, cross-bridge binding and

myofilament tension; (3) the anisotropic Bidomain model describing the evolution of

the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4) the ionic

membrane model describing the dynamics of ionic currents, gating variables, ionic

concentrations and stretch-activated channels. This strongly coupled electro-mechanical

model is discretized in time with a splitting semi-implicit technique and in space with

isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel

Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC

preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The

results of several 3D parallel simulations show the scalability of both linear and non-linear

solvers and their application to the study of both physiological excitation-contraction

cardiac dynamics and re-entrant waves in the presence of different mechano-electrical

feedbacks.

Keywords: domain decomposition preconditioners, cardiac electro-mechanics, bidomain model, scalable parallel

solvers, re-entrant waves, mechano-electric feedback

1. INTRODUCTION

In recent years, several areas of medicine, and in particular cardiology, have undergone a cultural
revolution generated by new findings that have emerged from molecular biology. This new
knowledge has helped to identify, for each disease and for each patient, the specific mechanisms
of the disease and the resulting medical treatments, leading to the so-called personalized medicine.
For example, the use of mathematical models with parameters for the individual patient-specific
characteristics could allow cardiologists to predict the effectiveness of anti-arrhythmic drug
treatments or the proper installation of implantable defibrillators (see e.g., Nordsletten et al., 2011;
Constantino et al., 2012; Lamata et al., 2015; Trayanova and Chang, 2016).

The spatio-temporal evolution of the electrical impulse in the cardiac tissue and the subsequent
process of cardiac contraction-relaxation are quantitatively described by the cardiac electro-
mechanical coupling model, which consists of the following four sub-models:
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• the static finite elasticity model describing the deformation
of cardiac tissue, derived from an anisotropic strain energy
function which characterizes the passive mechanical
properties of the myocardium;

• the active tension system of non-linear ordinary differential
equations (ODEs), describing the dynamics of the intracellular
calcium, cross-bridge binding and myofilament tension;

• the anisotropic Bidomain model of the cardiac tissue, which
is a non-linear system of two partial differential equations
(PDEs) of reaction-diffusion type, describing the spatio-
temporal evolution of the intra- and extracellular electric
potentials in the cardiac tissue;

• the ionic membrane model of the cardiac myocyte, a stiff
system of ODEs describing the dynamics of ionic currents,
gating variables, ionic concentrations and stretch-activated
channels.

The theoretical and numerical challenges posed by this complex
non-linear electro-mechanical model are very interesting.
Indeed, the theoretical analysis of the well-posedness of the
cardiac electro-mechanical coupling model is still an open
problem, as well as the convergence analysis of its finite element
approximation. On the numerical level, the very different space
and time scales associated with the electrical andmechanical sub-
models, as well as their non-linear and multiphysics interactions,
make the approximation and simulation of the cardiac electro-
mechanical coupling model a very demanding and expensive
computational task.

In the last decade, several groups have performed cardiac
computational studies based on three-dimensional electrical
and electro-mechanical simulations (see Pathmanathan and
Whiteley, 2009; Göktepe andKuhl, 2010; Keldermann et al., 2010;
Gurev et al., 2011; Trayanova et al., 2011; Land et al., 2012b;
Nobile et al., 2012; Rossi et al., 2012; Dal et al., 2013; Sundnes
et al., 2014; Favino et al., 2016). However, the computational costs
required by the solution of the mathematical models describing
the cardiac bioelectrical and mechanical activity are still too
high to allow their use in a clinical setting. Therefore, there is
a strong effort in the research community to develop effective
computational tools and to speedup the simulation of the
cardiac electro-mechanical activity (see e.g., Vázquez et al., 2011;
Lafortune et al., 2012; Washio et al., 2013; Aguado-Sierra et al.,
2015; Gurev et al., 2015; Land et al., 2015; Augustin et al., 2016).

Among the most efficient high-performance solvers for these
complex cardiac models are parallel iterative methods, such
as the Preconditioned Conjugate Gradient method (PCG) and
Generalized Minimal Residual Method (GMRES), accelerated
by proper scalable preconditioners. For the bioelectrical
component modeled by the Bidomain system, several types
of preconditioners have been proposed, such as Block Jacobi
(BJ) preconditioners employing an incomplete LU factorization
(ILU) for each block (Colli Franzone and Pavarino, 2004), other
kinds of block preconditioners (Gerardo-Giorda et al., 2009;
Chen et al., 2017). geometric multigrid (Sundnes et al., 2002;
Weber dos Santos et al., 2004), algebraic multigrid (Plank et al.,
2007; Pennacchio and Simoncini, 2009, 2011), and domain
decomposition preconditioners such as Multilevel Schwarz

(Pavarino and Scacchi, 2008; Scacchi, 2008, 2011; Munteanu
et al., 2009; Pavarino and Scacchi, 2011; Charawi, 2017),
Neumann-Neumann and BDDC (Zampini, 2013, 2014). For
a general introduction to Domain Decomposition methods
we refer the interested reader to the monograph (Toselli and
Widlund, 2005). More recently, the study of efficient parallel
solvers and preconditioners has been extended also to cardiac
electro-mechanical models (see e.g., Colli Franzone et al.,
2015; Gurev et al., 2015; Pavarino et al., 2015; Augustin et al.,
2016; Colli Franzone et al., 2016a,b, 2017) and to cardiac and
cardiovascular flow (see e.g., Quarteroni et al., 2017a,b).

The goal of this work is to study the performance of
our parallel electro-mechanical solver in three-dimensional
left-ventricular simulations on two different HPC (High
Performance Computing) architectures. The finite element
parallel solver we have developed is based on Multilevel Additive
Schwarz preconditioners accelerated by PCG for solving the
discretized Bidomain system and on Newton-Krylov methods
with Balancing Domain Decomposition by Constraints (BDDC)
preconditioners for solving the discretized non-linear finite
elasticity system. Extensive numerical simulations have shown
the scalability of both linear and non-linear solvers and their
effectiveness in the study of the physiological excitation-
contraction cardiac dynamics and of re-entrant waves in the
presence of different mechano-electrical feedbacks.

The paper is organized as follows. The main four electro-
mechanical cardiac sub-models are briefly introduced in section
2 and discretized in time and space in section 3, where the main
computational kernels, parallel solvers and preconditioners are
also described. Section 4 contains the main results of the paper
obtained in large-scale 3D simulations using high-performance
parallel architectures.

2. ELECTRO-MECHANICAL CARDIAC
MODELS

We conside a cardiac electro-mechanical coupling model
consisting of the following four coupled sub-models; see also
Figure 1.

2.1. Cardiac Tissue Mechanical Model
We assume a quasi-steady state regime and model the cardiac
tissue as a non-linear hyperelastic material satisfying the
equilibrium equation

Div(FS) = 0, X ∈ �̂, (1)

with appropriate boundary conditions, where we denote by x =

x(X, t) the spatial coordinates of the deformed cardiac domain
�(t) at time t, by X = (X1,X2,X3)

T the material coordinates

of the undeformed cardiac domain �̂, by F(X, t) =
∂x

∂X
the

deformation gradient and by u(X, t) = x− X the displacement
field. Following the active stress approach, the second Piola-
Kirchhoff stress tensor S is written as the sum of passive (pas),
volumetric (vol) and active (act) components, i.e.,

S = Spas + Svol + Sact . (2)
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The passive and volumetric terms of S are defined as

S
pas,vol
ij =

1

2

(
∂Wpas,vol

∂Eij
+

∂Wpas,vol

∂Eji

)
i, j = 1, 2, 3,

where E = 1
2 (C − I) is the Green-Lagrange strain tensor and

Wpas is an exponential strain energy function describing the
myocardium as an hyperelastic material transversely isotropic
(derived form the orthotropic law proposed in Holzapfel and
Ogden, 2009; Eriksson et al., 2013)

Wpas =
a

2b

(
eb(I1−3) − 1

)
+
∑

i=l,n

ai

2bi

(
ebi(I4i−1)2 − 1

)

+
aln

2bln

(
eblnI

2
8ln − 1

)
, (3)

where a, b, a(l,n,ln), b(l,n,ln) are positive material parameters and

I4l = âTl C âl, I4n = âTnC ân, I8ln = âTl C ân.

We did not employ an isochoric-deviatoric decomposition of
the deformation gradient tensor. The volumetric term Wvol =

K (J − 1)2 is a penalization term added to enforce the nearly
incompressibility of the myocardium, where K is a positive bulk
modulus and J = detF. The model is closed by imposing
boundary conditions of mixed Dirichlet and traction type.

2.2. Mechanical Active Tension Model
The active tension generation model is based on calcium
kinetic and myofilament dynamics. Here we consider the model
proposed in Land et al. (2012a), where the active tension Ta

depends on the intracellular calcium concentration Cai, the fiber

stretch λ =
√
âT
l
Ĉal, the fiber stretch-rate dλ

dt
and auxiliary

variables included in vector z, i.e.,




dz

dt
= Rz

(
z,Cai, λ,

dλ

dt

)

Ta = fTa

(
z, λ,

dλ

dt

)
.

The generated active force is assumed to act only along the fiber
direction, so the active Cauchy stress is

σ act(x, t) = Ta al(x)⊗ al(x),

where al is a unit vector parallel to the local fiber direction and
Ta is the active fiber stress associated to the deformed cardiac
tissue. In the deformed configuration, the unit vector parallel to
the local fiber direction can be written as

al =
F̂al

||F̂al||
=

F̂al√
âT
l
Ĉal

, (4)

where âl is the fiber direction in the reference configuration. Then
the active stress component Sact of the second Piola-Kirchhoff
tensor is given by

Sact = J F−1σ actF−T = J Ta
âl ⊗ âl

âT
l
C âl

.

2.3. The Bioelectrical Bidomain Model
We denote by v, ue, w, c the transmembrane potential, the
extracellular potential, the gating and ionic concentrations
variables on the deformed configuration and by v̂, ûe, ŵ, ĉ
the same quantities on reference configuration. The Bidomain
model, written on the deformed configuration �(t) is given in
its parabolic-elliptic formulation by





cm
∂v

∂t
− div(Di∇(v+ ue))+ iion(v,w, c, λ) = iiapp

−div(Di∇v)− div((Di + De)∇ue) = iiapp + ieapp,
(5)

where cm and iion are the membrane capacitance and ionic
current per unit volume, respectively. We apply insulating
boundary conditions on ∂�(t), i.e.,

nTDi∇(v+ ue) = 0 and nTDe∇ue = 0,

with n being the normal to ∂�(t). In order to satisfty the

compatibility condition

∫

�(t)
(iiapp + ieapp)dx = 0, we choose

iiapp = −ieapp = iapp; see e.g., Colli Franzone et al. (2014). In

the Lagrangian framework, after the pull-back on the reference
configuration �̂ × (0,T), this system becomes





cmJ

(
∂ v̂

∂t
− F−T Grad v̂ · V

)
− Div(JF−1D̂iF

−T Grad(̂v+ ûe))

+ Jiion (̂v, ŵ, ĉ, λ) = Ĵiapp,

−Div(J F−1D̂iF
−T Grad v̂)− Div(J F−1(D̂i + D̂e)F

−T Grad ûe) = 0,

(6)

whereV =
∂u

∂t
is the rate of deformation; see Colli Franzone et al.

(2016a) for the detailed derivation. These two partial differential
equations (PDEs) are coupled through the reaction term iion with
the ODE system of themembranemodel, given in�(t)×(0,T) by

∂w

∂t
− Rw(v,w) = 0,

∂c

∂t
− Rc(v,w, c) = 0. (7)

The bioelectrical system (Equations 6, 7) is completed by
prescribing initial conditions on v̂,w, c, insulating boundary
conditions on ûe, ûi = v̂ + ûe, and the intra- and extracellular
applied current îapp = îiapp = −̂ieapp. We recall that the
extracellular potential ûe is defined only up to a time dependent
constant in space R(t), which can be determined by choosing a
reference potential. Here we select as a reference potential the
average of the extracellular potential over the cardiac volume,

i.e., we require

∫

�̂

ûe(X, t)J(X, t)dX = 0. Assuming transversely

isotropic properties of the intra- and extracellular media, the
conductivity tensors on the deformed configuration are given by

Di,e = σ
i,e
t I + (σ i,e

l
− σ

i,e
t )al ⊗ al,

where σ
i,e
l
, σ

i,e
t are the the intra- and extracellular conductivity

coefficients measured along the fiber direction al and any cross
fiber direction, respectively. From Equation (4), it follows that the
tensors Di,e(x, t) written on the reference configuration are

D̂i,e(X, t) = Di,e(x(X, t), t) = σ
i,e
t I + (σ i,e

l
− σ

i,e
t )

F̂al̂a
T
l
FT

âT
l
ĈaT

l

. (8)
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Therefore, the equivalent conductivity tensors appearing into the
bidomain model written in the reference configuration are given
by

JF−1D̂i,e(X, t)F
−T = σ

i,e
t C−1 + (σ i,e

l
− σ

i,e
t )

âl̂a
T
l

âT
l
ĈaT

l

. (9)

For the values of the conductivity coefficients of the Bidoman
model (see Colli Franzone et al., 2016a).

2.4. The Ionic Membrane Model and
Stretch-Activated Channel Currents
The ionic current in the Bidomain model (Equation 6) is given
by iion = χIion, where χ is the membrane surface to volume ratio
and the ionic current per unit area of the membrane surface Iion
is given by the sum Iion(v,w, c, λ) = Imion(v,w, c) + Isac of two
terms: the ionic term Imion(v,w, c) given by the ten Tusscher model
(TP06) (ten Tusscher et al., 2004; ten Tusscher and Panfilov,
2006), available from the cellML depository (models.cellml.org/
cellml), and a stretch-activated current term Isac. The TP06
ionic model also specifies the functions Rw(v,w) and Rc(v,w, c)
in the ODE system Equation (Equation 7), consisting of 17
ordinary differential equations modeling the main ionic currents
dynamics.

The stretch-activated current (SAC) is modeled as the sum of
a non-selective and a potassium selective currents

Isac = Ins + IKo,

as in Niederer and Smith (2007). The non-selective SAC current
is defined by

Ins = Ins,Na + Ins,K = gns γsl(λ) [ r (v− vNa) + (v− vK)],

with γsl(λ) = 10max(λ− 1, 0), gns = 4.13 · 10−3 mS/cm2 and the
value of r measures the relative conductance of the ions Na+ and
K+ and determines the reversal potential vns of Ins, varying the
degree of expression of the ions Na+ and K+. We have chosen
r = 0.2.

The K+ selective SAC current is defined by

IKo = gKo
γSL,Ko

1+ exp(−(10+ v)/45)
(v− vK),

where gKo = 1.2 · 10−2 mS/cm2 and γSL,Ko = 3max(λ − 1, 0) +
0.7.

3. NUMERICAL METHODS

3.1. Space and Time Discretization
3.1.1. Domain Geometry
We consider an idealized left ventricular geometry �̂ =

�(0) modeled as a truncated ellipsoid described in ellipsoidal
coordinates by the parametric equations





x = a(r) cos θ cosφ φmin ≤ φ ≤ φmax,
y = b(r) cos θ sinφ θmin ≤ θ ≤ θmax,
z = c(r) sin θ 0 ≤ r ≤ 1.

Here a(r) = a1 + r(a2 − a1), b(r) = b1 + r(b2 −

b1), c(r) = c1 + r(c2 − c1), and a1 = b1 = 1.5, a2 = b2 =

2.7, c1 = 4.4, c2 = 5 (all in cm) and φmin = −π/2, φmax =

3π/2, θmin = −3π/8, θmax = π/8. We will refer to the inner
surface of the truncated ellipsoid (r = 0) as endocardium
and to the outer surface (r = 1) as epicardium. Proceeding
counterclockwise from epicardium to endocardium, the cardiac
fibers rotate intramurally linearly with the depth, for a total
amount of 120◦. Considering a local ellipsoidal reference system
(eφ , eθ , er), the fiber direction al(x) at a point x is given by al(x) =
bl(x) cos(β)+ n(x) cos(β), where

bl(x) = eφ cosα(r)+ eθ sinα(r), with

α(r) =
2

3
π(1− r)−

π

4
, 0 ≤ r ≤ 1,

n(x) is the unit outward normal to the ellipsoidal surface at x and
β is the imbrication angle given by β = arctan(cosα tan γ ), with
γ = θ(1− r)60/π .

3.1.2. Time Discretization
The time discretization of the electromechanical model is
performed by the following semi-implicit splitting method,
where different electrical and mechanical time steps could be
used.

(a) given vn, wn, cn at time step tn, we compute the new
variables wn+1, cn+1 by solving the ODE system of the ionic
membrane model (Equation 7) with a first order implicit-explicit
(IMEX) method, i.e.,





wn+1 − wn

1t
− Rw(v

n,wn+1) = 0,

cn+1 − cn

1t
− Rc(v

n,wn+1, cn) = 0;

(b) given the calcium concentration Can+1
i , which is part

of the vector of concentration variables cn+1, we compute the
new deformed coordinates xn+1, providing the new deformation
gradient tensor Fn+1, by solving the variational formulation of
the mechanical problem (Equation 1) and the active tension
system, i.e.,





zn+1 = zn + 1tRz

(
zn+1,Can+1

i , λn+1,
λn+1 − λn

1tn

)

Tn+1
a = fTa

(
zn+1, λn+1,

λn+1 − λn

1tn

)

Div(Fn+1Sn+1) = 0;

(c) given wn+1, cn+1, Fn+1 and Jn+1 = det(Fn+1), we
compute the new electric potentials vn+1, un+1

e by solving the
variational formulation of the Bidomain system (Equation 6)
with a first order IMEX and operator splitting method, consisting
of decoupling the parabolic from the elliptic equation, i.e.,
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−Div(Jn+1 F−1
n+1D̂iF

−T
n+1 Grad v̂

n)− Div(Jn+1 F
−1
n+1(D̂i + D̂e)F

−T
n+1 Grad û

n
e ) = 0,

cmJn+1

(
v̂n+1 − v̂n

1t
− F−T

n+1 Grad v̂
n · Vn+1

)
− Div(Jn+1F

−1
n+1D̂iF

−T
n+1 Grad(̂v

n+1 + ûn+1
e ))+

Jn+1iion (̂v
n, ŵn+1, ĉn+1, λn+1) = Jn+1 î

n+1
app .

In our simulations, we use the electrical time step size 1et =

0.05 ms, and a mechanical times step five times larger, 1mt =

0.25 ms. In order to approximate the convective term in the
variational formulation of Equation (6), an upwind discretization
strategy is employed. We refer to Colli Franzone et al. (2015) and
Colli Franzone et al. (2016a) for more details about the numerical
scheme.

3.1.3. Space Discretization
The cardiac domain is discretized with a structured hexahedral
grid Thm for the mechanical model (Equation 1) and The for
the Bidomain model (Equation 6), where The is a refinement
of Thm , i.e., the mechanical mesh size hm is an integer
multiple of the electrical mesh size he. We consider the
variational formulations of both mechanical and bioelectrical
models and then approximate all scalar and vector fields by
isoparametric Q1 finite elements in space. In all our simulations,
we employ an electrical mesh size he = 0.01 cm in order to
properly resolve the sharp excitation front, while the smoother
mechanical deformation allow us to use a coarse mechanical
mesh of size hm = 0.08 cm. The resulting electrical mesh
consists of Nφ × Nθ × Nk elements, whose values will
be specified in each numerical test reported in the Results
section.

3.2. Computational Kernels and Parallel
Solvers
At each time step of the space—time discretization described
above, the two main computational kernels are:

(a) the solution of a non-linear system arising from the
discretization of the mechanical problem (1); to this end, we use
a parallel Newton-Krylov-BDDC (NK-BDDC) solver, where the
Krylov method chosen is GMRES and the BDDC preconditioner
will be described in the next sections;

(b) the solution of two linear systems deriving from
the discretization of the elliptic and parabolic equations
in the Bidomain model (Equation 6); to this eand, we
use a parallel Preconditioned Conjugate Gradient (PCG)
method, with Multilevel Additive Schwarz preconditioner
for the very ill-conditioned elliptic system and with
Block-Jacobi preconditioner for the easier parabolic
system.

The parallelization of these two main computational kernels
of our electro-mechanical solver is based on the parallel library
PETSc (Balay et al., 2012) from the ArgonneNational Laboratory.
All the parallel simulations have been performed on high-
performance supercomputers and Linux clusters described in the
Result section. For the parallel implementation of the BDDC
preconditioner, see Zampini (2016).

3.3. Multilevel Additive Schwarz
Preconditioners
Wenow describe theMultilevel Additive Schwarz preconditioner
employed in the PCG solution of the elliptic kernel (b) associated
with the Bidomain system. Let �k, k = 0, ..., ℓ − 1 be a family of
ℓ nested triangulations of �, with finer mesh sizes from level 0 to
ℓ−1, and let Ak be the matrix obtained by discretizing the second
equation of Equation (6) on�k; we have Aℓ−1 = Abid, whereAbid

is the stiffness matrix related to the elliptic equation of Equation
(6) discretized on the fne mesh. Denote by Rk the restriction
operators from �ℓ−1 to �k. We decompose each grid �k, for
k = 1, ..., ℓ − 1, into Nk overlapping subgrids �k

i for i = 1, ...,Nk,

such that the overlap size δk at level k = 1, ..., ℓ − 1 equals the
mesh size hk of the grid �k. We denote by Rki the restriction

operator from �ℓ−1 to �k
i and define Ak

i : = Rk
iA

kRkT

i . The
Multilevel Additive Schwarz (MAS(ℓ)) preconditioner is given by

B−1
MAS := R0TA0−1

R0 +

ℓ−1∑

k=1

Nk∑

i=1

RkT

i Ak−1

i Rk
i .

The resulting PCG algorithm has a convergence rate independent
of the number of subdomains Nk (scalability), the number of
levels ℓ (multilevel optimality), while it depends linearly on the
ratio Hk/hk of subdomain to element size on level k (optimality);
see Pavarino and Scacchi (2008), Scacchi (2008), and Pavarino
and Scacchi (2011) for the theoretical details.

3.4. Iterative Substructuring, Schur
Complement System and BDDC
Preconditioners
We then turn to the BDDC preconditioner used in the
mechanical computational kernel (a) above, i.e., the Jacobian
system arising at each iteration of the Newton method applied
to the non-linear elasticity system (Equation 1). For sake of
simplicity, in the following sections we will denote the reference
domain by � instead of �̂. We consider a decomposition of �

into N non-overlapping subdomains �i of diameter Hi

� =

N⋃

i=1

�i,

and set H = maxHi. We first reduce the Jacobian system

Kx = f , (10)

arising at each Newton step of the mechanical solver, to the
interface

Ŵ :=
( N⋃

i=1

∂�i

)
\∂�,
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by eliminating the interior degrees of freedom (dofs) associated
with the basis functions having support in each subdomain’s
interior and obtaining the Schur complement system

SŴxŴ = gŴ . (11)

Here SŴ = KŴŴ − KŴIK
−1
II KŴI and gŴ = fŴ − KŴIK

−1
II fI are

obtained from the global system (Equation 10) by reordering
the finite element basis functions into interior (denoted by the
subscript I) and interface (denoted by the subscript Ŵ) basis
functions

(
KII KIŴ

KŴI KŴŴ

)(
xI
xŴ

)
=

(
fI
fŴ

)
. (12)

The Schur complement system (Equation 11) is solved iteratively
by the GMRES method, where only the action of SŴ on a given
vector is required and SŴ is never explicitly formed; instead,
a block diagonal problem on the interior dofs is solved while
computing thematrix vector product. Once the interface solution
xŴ has been determined, the internior dofs xI can be found by
solving local problems on each subdomain �i. We then solve
by the GMRES method the preconditioned Schur complement
system

M−1
BDDCSŴxŴ = M−1

BDDCgŴ , (13)

where M−1
BDDC is the BDDC preconditioner, defined in Equation

(17) below.
Balanced Domain Decomposition by Constraints (BDDC)

preconditioners where introduced by Dohrmann (2003) and first
analyzed by Mandel and Dohrmann (2003) and Mandel et al.
(2005). In these methods all local and coarse problems are treated
additively and the user selects the so-called primal continuity
constraints across the subdomains’ interface. Usual choices of
primal constraints are e.g., point constraints at subdomain
vertices and/or averages or moments over subdomains edges or
faces. Closely related to BDDC methods are FETI and FETI-
DP algorithms, as well as the previous balancing Neumann-
Neumann methods; for more details, we refer the ineterested
reader to the domain decomposition monograph (Toselli and
Widlund, 2005, Ch. 6). See also Brands et al. (2008) and Klawonn
and Rheinbach (2010) for FETI-DP algorithms applied in other
fields of computational biomechanics.

3.4.1. Subspace Decompositions
Let V be the Q1 finite element space for displacements and
V(i) be the local finite element space defined on subdomain �i

that vanish on ∂�i ∩ ∂�D. This local space can be split into a
direct sum of its interior (I) and interface (Ŵ) subspaces V(i) =

V
(i)
I

⊕
V
(i)
Ŵ and we can define the associated product spaces as

VI :=

N∏

i=1

V
(i)
I , VŴ :=

N∏

i=1

V
(i)
Ŵ .

While our finite element approximations are continuous across
the interface Ŵ, the functions of VŴ are generally discontinuous
across Ŵ, We then define the subspace

V̂Ŵ := {functions of VŴ that are continuous across Ŵ},

and the intermediate subspace

ṼŴ := V1

⊕
V̂5,

defined by further splitting the interface dofs (denoted by the
subscript Ŵ) into primal (subscript 5) and dual (subscript 1)
dofs. Here:

(a) the subspace V̂5 consists of functions which are
continuous at selected primal variables. These can be e.g., the
subdomain basis functions associated with subdomains’ vertices
and/or edge/face basis functions with constant values at the nodes
of the associated edge/face. A change of basis can be performed
so that each primal variable correspond to an explicit dof.

(b) the subspace V1 =
∏N

i=1 V
(i)
1 is the product space of the

local subspaces V
(i)
1 of dual interface functions that vanish at the

primal dofs.

3.4.2. Restriction and Scaling Operators
The definition of our dual-primal preconditioners require also
the following restriction and interpolation operators, associated
with boolean matrices (with {0, 1} elements):

RŴ1 : ṼŴ −→ V1, RŴ5 : ṼŴ −→ V̂5,

R
(i)
1

:V1 −→ V
(i)
1 , R

(i)
5

: V̂5 −→ V̂
(i)
5 ,

(14)

where V̂
(i)
5 is the local primal subspace. Moreover, we define the

pseudo-inverse counting functions δ
†
i (x), which are defined at

each dof x on the interface of subdomain �i by

δ
†
i (x) :=

1

Nx
, (15)

with Nx the number of subdomains sharing x. We finally define

scaled local restriction operators R
(i)
D,1 by scaling by by δ

†
i the only

nonzero element of each row of R
(i)
1 . We then define the scaling

matrix

RD,Ŵ := the direct sum RŴ5 ⊕ R
(i)
D,1RŴ1. (16)

3.4.3. Choice of Primal Constraints
The efficiency of BDDC (and more in general dual-primal)
preconditioners is strongly dependent of the choice of primal
contraints. The simplest choice of selecting the subdomains
vertices as primal dofs is not always sufficient to obtain scalable
and fast preconditioners. Therefore, richer (and computationally
more expensive) primal sets have been developed in order to
obtain faster preconditioners. These stronger preconditioners are
based on larger coarse problems employing also edge and/or face
based primal dofs, see e.g., Toselli and Widlund (2005).

3.4.4. Matrix Form of the BDDC Preconditioner
Analogously to the dual-primal splitting introduced before, we
partition the local dofs into interior (I), dual (1), and primal
(5) dofs, so that the local stiffness matrix K(i) associated to
subdomain �i can be written as

K(i) =

[
K
(i)
II K

(i)T

ŴI

K
(i)
ŴI K

(i)
ŴŴ

]
=




K
(i)
II K

(i)T

1I K
(i)T

5I

K
(i)
1I K

(i)
11 K

(i)T

51

K
(i)
5I K

(i)
51 K55


 .
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The BDDC preconditioner is then defined as

M−1
BDDC = RTD,Ŵ S̃

−1
Ŵ RD,Ŵ , (17)

where the scaled restriction matrix RD,Ŵ has been defined in
Equations (14, 16), and

S̃−1
Ŵ = RTŴ1




N∑

i=1

[
0 R

(i)T

1

] [
K
(i)
II K

(i)T

1I

K
(i)
1I K

(i)
11

]−1 [
0

R
(i)
1

]
RŴ1+8S−1

558T .

(18)
The first term in Equation (18) represent the sum of local
problems on each subdomain �i, with Neumann data on the
local dual dofs and with zero Dirichlet data on the local primal
dofs. The second term in Equation (18) represents a coarse
problem for the primal variables involving the coarse matrix

S55 =

N∑

i=1

R
(i)T

5


K

(i)
55 −

[
K
(i)
5I K

(i)
51

] [
K
(i)
II K

(i)T

1I

K
(i)
1I K

(i)
11

]−1 [
K
(i)T

5I

K
(i)T

51

]
R

(i)
5

and a matrix 8 mapping primal to interface dofs

8 = RTŴ5 − RTŴ1

N∑

i=1

[
0 R

(i)T

1

] [
K
(i)
II K

(i)T

1I

K
(i)
1I K

(i)
11

]−1 [
K
(i)T

5I

K
(i)T

51

]
R
(i)
5 .

The columns of 8 are associated with coarse basis functions
defined as the minimum energy extension into the subdomains
with respect to the original bilinear form and subject to the
chosen set of primal constraints.

For compressible linear elasticity problems it can be shown
that the BDDC algorithm is scalable and quasi-optimal, satisfying
a condition number bound (see e.g., Toselli and Widlund, 2005,
Ch. 6.4) as

cond(M−1
BDDCSŴ) ≤ C

(H
h

)(
1+ log

H

h

)2
,

with C( H
hm

) = α constant if the primal space is sufficiently rich,

while C(H
h
) = αH

h
if the primal space is the minimal one spanned

by the dofs associated with the subdomain vertices. We recall
that H is the characteristic subdomain size and h = hm is the
characteristic mechanical mesh size defined in section 3.1. We
could not prove a similar bound for the convergence rate of our
non-symmetric NK-BDDC preconditioned operator, since our
complex non-linear elasticity problem (Equation 1) involves an
exponential strain energy function. Nevertheless, the numerical
results presented in the next section suggests that such a bound
holds also for our operator and demonstrate the effectiveness and
scalability of the NK-BDDC method.

4. RESULTS

In this section, we report the results of several 3D parallel
simulations with our electro-mechanical Bidomain solver, using
two HPC architectures:

• the Marconi-A2 supercomputer of the Cineca Lab (http://
www.hpc.cineca.it/hardware/marconi), an Intel OmniPath
cluster with 3,600 nodes, each with 68 1.40 GHz Intel Xeon
Phi 7250 Knights Landing (KNL) cores and 16 GB/node, for a
total 244.800 cores;

• the Mira BG/Q supercomputer of the Argonne National Lab
(https://www.alcf.anl.gov/mira), an IBM BG/Q machine with
49,152 nodes, each with 16 1.60 GHz PowerPC A2 cores and
16 GB/node, for a total 786,432 cores.

4.1. Test 1: Double Reentry Simulation With
the Electro-Mechanical Bidomain Model
(Figures 2, 3)
We start by studying the performance of our electro-mechanical
Bidomain solver on a closed ellipsoidal ventricular geometry
during a double reentry dyamics initiated by an S1–S2 protocol.
Figure 2 shows the snapshots of the transmembrane potential
and mechanical deformation time evolution every 50 ms,
computed on 256 KNL processors of Marconi-A2. At each time
instant, we report the epicardial lateral view (top panel) and
selected horizontal and vertical transmural sections (bottom
panel). After three S1 stimulations applied at the apex every 500
ms (not shown), an S2 cross-gradient stimulation (visible as a
vertical strip in the t = 0 panel) is applied 280 ms. after the last
S1 stimulus, and this instant is taken as the reference time t = 0
ms for this simulation. Two counter-rotating scroll waves are
generated by the S2 stimulus, with transmural filaments located
near the apex and rotation period of about 250 ms (see the panels
t = 0, 250, 500 ms). The lateral epicardial view of the upper
panels shows mostly one of the two scroll waves, but the second
almost-symmetric one is visible in the transmural sections of the
lower panels.

This reentry dynamics is visible also in Figure 3 that reports
the waveforms at epicardial sites P1, P2, P3 (shown in Figure 3A)
of the transmembrane potential V (Figure 3B), extracellular
potential ue (Figure 3C), fiber stretch λ (Figure 3D), active
tension Ta (Figure 3E), intracellular calcium concentration Cai
(Figure 3F).

4.2. Test 2: Weak Scalability of the Elliptic
Bidomain - TP06 Solver (Figures 4, 5)
Figures 4, 5 (left columns) report the results of weak scalability
tests on MIRA BG/Q for the elliptic solver (PCG-MAS(4))
required by the bioelectrical Bidomain - TP06 model on a half
ellipsoidal domain representing an idealized half left ventricle.
The number of processors is increased from 1K to 163K cores
of the Mira BG/Q supercomputer of the Argonne National Lab.
Figure 4A1 reports the condition number (blue), iteration counts
(red), solution times (yellow) of the PCG - MAS(4) solver.
Both a fixed half ellipsoidal domain (Figure 4A1, top plot) and
an increasing ellipsoidal domain (Figure 4A1, bottom plot) are
considered, where in both cases the local meshsize (hence the
local problem size on each processor) is kept fixed at H/h = 16.
The results clearly show the very good scalability of the PCG -
MAS(4) solver, since all quantities are bounded from above as
the processor count is increased from 1K to 163K cores (a factor
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FIGURE 1 | The four electro-mechanical submodels.

163) and therefore the global problem size increases from about
O(106) to O(108) degrees of freedom. In particular, we remark
that in spite of this problem size increase of a factor 163, the
CPU times are almost constant in the case of an increasing half
ellipsoid (Figure 4A1, bottom plot) or increase by only a factor
2–3 in the case of a fixed half ellipsoid (Figure 4A1, top plot),
while being almost constant between 16K and 128K cores.

Analogously, Figures 4, 5 (right columns) report the results
of weak scalability tests on Marconi - A2 for the elliptic solver
(PCG-MAS(4)) and also the non-linear mechanical solver (NK-
BDDC), described in section 4.3 below. As before, the results

clearly show the very good scalability of the PCG-MAS(4) solver,
since all quantities associated with the elliptic solver are bounded
from above.

In order to study more in detail the weak scalability test
on a fixed half ellipsoid (Figure 4A1, top plot), we report
in Figures 5A1,B1,C1 the percent summary (given by the
LogView PETSc subroutine) of the main PETSc functions
called by the PCG - MAS(4) elliptic solver. These PETSc
functions, shown in the legend of each plot, range from
inner products (VecTDoc) and vector norms (VecNorm)
to the whole PCG solver (KSPSolve) and application of
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FIGURE 2 | Test 1, double reentry simulation: snapshots (every 50 ms) of the transmembrane potential and mechanical deformation time evolution. At each time

instant, we report the epicardial view (Top) and selected horizontal and vertical transmural sections (Bottom).

the MAS(4) preconditioner (PCApply). In particular, we
report the percent of: CPU time as a fraction of the
KSPSolve time (Figure 5A1), flops (Figure 5B1), messages
(Figure 5C1). When one of these PETSc functions has a
negligible percentage, the corresponding legend shows it
equal to 0. After an initial increase in some cases, all

reported quantities are very scalable up to 64K cores, and
most up to 163K cores, except the VecTDot percent of
flops (in Figure 5B1). As expected, the percentage of time
(Figure 5A1) and flops (Figure 5B1) are dominated by the
PCG solver (KSPSolve), followed by matrix multiplications
(MatMult) and inner products (VecTDot). The percentage
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FIGURE 3 | Test 1, double reentry simulation: waveforms at epicardial sites P1, P2, P3 shown in (A) of the transmembrane potential V (B), extracellular potential ue
(C), fiber stretch λ (D), active tension Ta (E), intracellular calcium concentration Cai (F).

of messages (Figure 5C1) is dominated by vector scattering
(VecScatterBegin), matrix multiplications (MatMult) and PCG
(KSPSolve).

4.3. Test 3: Weak Scalability of the
Electro-Mechanical Solver (Figures 4, 5)
We then study the weak scalability of our electro-mechanical
solver from 128 to 2048 KNL processors of Marconi-A2, in
particular of the twomain computational kernerls: the non-linear
mechanical solver (NK-BDDC) and the linear elliptic Bidomain
solver (PCG - MAS(4)). Figure 4A2 reports the CPU times
and iteration counts for both solvers, while Figures 5A2,B2,C2
reports the percent summary of the main PETSc functions called
by the electro-mechanical solver.

In this weak scaling test, the local meshsize (hence the
local problem size on each processor) is kept fixed at H/h =

16, while the global problem size grows proportionally to the
processor count by assigning one subdomain to each processor.
Hence, the computational domain consists of increasing portions
or an ellipsoidal domain. The results in Figure 4A2 clearly
show the very good scalability of the PCG - MAS(4) elliptic
linear solver, since both its CPU times and iteration counts
are bounded from above as the processor count is increased
to 2,048 cores. On the other hand, the timings of the non-
linear SNES solver are not scalable beyond 512 processors,
even if the iteration counts are. This is due to the non-
scalability of the coarse solver (Mumps) employed in the BDDC
preconditioner.
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FIGURE 4 | (A1) Test 2, weak scalability on MIRA BG/Q from 1K to 163K processors of the elliptic solver of the decoupled Bidomain - TP06 model. Condition number

(blue), iteration counts (red), solution times (yellow) of PCG solver with Multilevel Additive Schwarz preconditioner. (A2) Test 3, weak scalability on Marconi-A2 from

128 to 2048 processors of the electro-mechanical solver (NK-BDDC). CPU times and iteration counts.

In order to study more in detail this scalability test, we
report in Figures 5A2,B2,C2 the percent summary (given
by the LogView PETSc subroutine) of the main PETSc
functions called by the electro-mechanical solver. These PETSc
functions, shown in the legend of each plot, range from
inner products (VecTDoc) and vector norms (VecNorm) to
the linear solvers (KSPSolve) and preconditioner applications
(PCApply) required by both the linear (PCG-MAS(4)) and
non-linear (NK-BDDC) solvers. In particular, we report the
percent of: CPU time (Figures 5A2), flops (Figure 5B2) and
messages (Figure 5C2). When one of these PETSc functions
has a negligible percentage, the corresponding legend shows it
equal to 0). All reported pertentages are very scalable, showing
quite flat plots, except the time percentages (Figure 5A2), where
the KSPSolve and PCApply percentages grow considerably
beyond 512 cores, due mostly to the growth of MatSolve
and PCSetUp, which we know already from Figures 5A1,A2

are due to the nonscalable direct coarse solve (Mumps) of
the BDDC preconditioner called by the non-linear SNES
solver. As expected, the percentage of time (Figure 5A2)
and flops (Figure 5B2) are dominated by the PCG solver
(KSPSolve), followed by PCApply and MatSolve. The percentage
of messages (Figure 5C2) is dominated by vector scattering
(VecScatterBegin), matrix multiplications (MatMult) and linear
solves (KSPSolve).

4.4. Test 4: Strong Scalability of the
Non-linear Electro-Mechanical Bidomain
Solver (Figures 6, 7)
Figure 6 reports the results of strong scalability tests onMarconi-
A2 for the non-linear electro-mechanical Bidomain model on an
ellipsoidal domain during the time interval [0 100] ms. We study
the time evolution of CPU times and iterations of the two main
computational kernels of our electro-mechanical model: the non-
linearmechanical solver (NK-BDDC) and linear Bidomain solver

(PCG -MAS(3) for the elliptic solve and PCG-BJ for the parabolic
solve).

The global mesh size is fixed to 384× 192× 48 finite elements
while the number of processors is increased from 32 = 8 × 4 × 1
(with local mesh 48 × 48 × 48) to 256 = 16 × 8 × 2 (with
local mesh 24 × 24 × 24). Figure 6A shows the timings of the
NK-BDDC solver: after an initial superlinear speedup from 32
to 64 cores, the timings still reduce when going to 128 and
256 cores but with worse speedups (see also Figure 7A) and
start to increase at 512 cores or more (not shown). Figure 7B
shows the number of Newton iterations for each NK-BDDC
solve, which remain constant at 4 iterations independently of
the number of processors. Figure 7C reports the cumulative
GMRES iterations for each NK-BDDC mechanical solve, which
increase in time since the Jacobian mechanical system becomes
increasingly ill-conditioned due to the spreading of the electrical
activation front and subsequent mechanical contraction. The
number of iterations is reduced when going from 64 to 128
and to 256 cores, but unexpectedly in the 32 core test we got
the lowest iteration counts after 20 ms. Figure 7D shows that
the number of PCG iterations for each Bidomain elliptic solve
are almost constant independently of the number of processors
used. The timings of each Bidomain elliptic (Figure 7E) and
parabolic (Figure 7F) solve show a reduction when the number
of processors is increased, but with reduced speedup when using
256 cores or more.

As before, we now study in Figure 7 the percent summary
(given by the LogView PETSc subroutine) of the main PETSc
functions in this strong scaling test for the electro-mechanical
solver. We report the percent of: flops (Figure 7C), CPU time
(Figure 7D), messages (Figure 7E), reductions (Figure 7F).
Again we find quite flat plots, except the time percentages
(Figure 7D), where the the KSPSolve percentage grows
considerably duemostly to the growth of PCApply andMatSolve,
which again we attribute mostly to the nonscalable direct coarse
solve (Mumps) of the BDDC preconditioner called by the
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FIGURE 5 | Left column Test 2, weak scalability on MIRA BG/Q from 1K to 163K processors of the elliptic solver of the decoupled Bidomain - TP06 model. Percent

summary of time (A1), flops (B1), messages (C1) of the nine main PETSc functions (from VecTDot to PCApply) called by the elliptic solver. Right column Test 3, weak

scalability on Marconi-A2 from 128 to 2048 processors of the electro-mechanical solver (NK-BDDC). Percent summary of time (A2), flops (B2), messages (C2) of the

nine main PETSc functions (from VecTDot to PCApply) called by the elliptic solver.

non-linear SNES solver. The percentage of time (Figure 7D),
flops (Figure 7C) and reductions (Figure 7F) are dominated
by the PCG solver (KSPSolve), but in Figure 7C the percent of
flops of KSPSolve and PCSetUp decreases when the processor
count increases, while the percentages of MatSolve, PCApply and
MatMult increase. The percentage of messages (Figure 7E) are
dominated by vector scattering (VecScatterBegin), linear solves
(KSPSolve) and matrix multiplications (MatMult).

5. DISCUSSION

We have developed a high-performance parallel solver for
cardiac electro-mechanical 3D simulations. After numerical

discretization in space with Q1 finite elements and IMEX
operator splitting finite differences in time, the main
computational kernels at each time step require: (a) the
solution of a non-linear system deriving from the discretization
of the cardiac mechanical problem (1) by a parallel Newton-
Krylov-BDDC (NK-BDDC) solver, where the Krylov method
chosen is GMRES; (b) the solution of the two linear systems
deriving from the discretization of the elliptic and parabolic
equations in the Bidomain model (Equation 6) by a parallel
PCG method with Multilevel Additive Schwarz and Block-Jacobi
preconditioners, respectively. The parallelization of our solver
has been based on simulations have been performed on the
parallel library PETSc (Balay et al., 2012) from the Argonne
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FIGURE 6 | Test 4: time evolution over the [0 100] ms interval of CPU times and iterations of the nonlinear mechanical solver (NK-BDDC) in strong scalability tests

from 32 to 256 processors of Marconi-A2. (A) timings of NK-BDDC solver. (B) Newton iterations for each NK-BDDC solve. (C) cumulative GMRES iterations for each

NK-BDDC solve. (D) PCG iterations for each Bidomain elliptic solve. (E) timings of each Bidomain elliptic solve. (F) timings of each Bidomain parabolic solve.

National Laboratory and large-scale 3D simulations have been
run on high-performance supercomputers.

We have investigated the performance of the parallel electro-
mechanical solver in both physiological excitation-contraction
cardiac dynamics and pathological situations characterized by
re-entrant waves.

5.1. Bidomain Solver
The results have shown that the electrical Bidomain solver
is scalable, in terms of both weak and strong scaling, and
is robust with respect to the deformation induced by the
mechanical contraction. Bidomain weak scaling tests have been

performed both on theMira BG/Q andMarconi-A2 clusters. The
two architectures and the number of cores used are different,
although the load per core is the same. Thus, we can not compare
fairly the performances obtained on the two architectures.
However, the CPU times reported in Figure 4A, bottom and
Figure 5A have the same order of magnitude, showing that the
solution of the Bodomain linear systems on the two architectures
exhibit comparable costs.

5.2. Mechanical Solver
The results have shown that also the mechanical NK-BDDC
solver is scalable in terms of non-linear and linear iterations

Frontiers in Physiology | www.frontiersin.org 13 April 2018 | Volume 9 | Article 268

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Colli Franzone et al. Cardiac Electro-Mechanical HPC Solvers

FIGURE 7 | Test 4: strong scalability from 32 to 256 processors of Marconi-A2 of the nonlinear mechanical solver (NK-BDDC). (A) Average times and (B) associated

speedup over the [0 100] ms interval of the nonlinear SNES solver. (C–F) Percent summary of flops (C), time (D), messages (E), reductions (F), of the nine main

PETSc functions (from VecTDot to PCApply) called by the elliptic solver.

counts, but the CPU timings, especially in the weak scaling
test, do not present a scalable behavior. Our results seem to
indicate that this increase of CPU timings can be attributed
to the increase of computational costs required by the BDDC

coarse solver. A possible remedy would be to employ a multilevel
BDDC solver, where the coarse problem is solved recursively by
a BDDCmethod with additional local and coarse problems, or to
employ an adaptive selection of BDDC primal constraints. The
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nonscalability and ill-conditioning of the nonlinear mechanical
system could also be associated with: (a) the penalty formulation
employed to enforce the almost incompressibility of the cardiac
tissue; (b) the presence of the stress induced by the active tension
contraction model; (c) the particular mechanical boundary
condition enforcing zero displacements on a fixed endocardial
basal ring and fixed intracavitary endocardial pressure.

5.3. Comparison With Previous Studies
So far, only few studies have developed and investigated parallel
numerical solvers for cardiac electro-mechanics. Lafortune et al.
(2012) have proposed a fully explicit Monodomain-mechanical
solver, obtaining good strong scalability results up to 500 cores.
The advantage of our approach with respect to that presented in
Lafortune et al. (2012) is that our solver, resulting from a semi-
implicit time discretization of the electro-mechanical model,
allows larger time step sizes and time adaptivity. Augustin et al.
(2016) have developed a very effective electro-mechanical solver,
tested on highly accurate patient-specific geometric models and
based on Algebraic Multigrid (AMG) preconditioners for both
the Bidomain and mechanical systems. The strong scalability
results they have reported show a very good performance of
AMG applied to the non-linear mechanical system, whereas the
AMG preconditioner is less effective for the Bidomain linear
system. The advantage of our solver compared to that introduced
in Augustin et al. (2016) is that both Multilevel Additive
Schwarz and BDDC preconditioners should be more robust

than AMG when high order finite elements or isogeometric
analysis (see e.g., Charawi, 2017) discretizations are employed.
On the other hand, while BDDC preconditioners can be easily
constructed for unstructured meshes, Multilevel Additive
Schwarz methods are more difficult to implement in case of
such grids.

5.4. Future Work
In order to improve our mechanical solver, further studies could
consider the following issues: (a) mixed formulations of the
mechanical system based on inf-sup stable displacement-pressure
discrete spaces; (b) alternative active tension contraction models;
(c) alternative mechanical boundary conditions and pressure-
volume relationships involving multielement Windkessel
models.
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