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A Dual-Domain Carbonic Anhydrase (DDCA) had been sequenced and characterized

from the ctenidia (gills) of the giant clam, Tridacna squamosa, which lives in symbiosis

with zooxanthellae. DDCA was expressed predominantly in the ctenidium. The complete

cDNA coding sequence of DDCA from T. squamosa comprised 1,803 bp, encoding a

protein of 601 amino acids and 66.7 kDa. The deduced DDCA sequence contained

two distinct α-CA domains, each with a specific catalytic site. It had a high sequence

similarity with tgCA from Tridacna gigas. In T. squamosa, the DDCA was localized apically

in certain epithelial cells near the base of the ctenidial filament and the epithelial cells

surrounding the tertiary water channels. Due to the presence of two transmembrane

regions in the DDCA, one of the Zn2+-containing active sites could be located externally

and the other one inside the cell. These results denote that the ctenidial DDCA was

positioned to dehydrate HCO−

3 to CO2 in seawater, and to hydrate the CO2 that had

permeated the apical membrane back to HCO−

3 in the cytoplasm. During insolation,

the host clam needs to increase the uptake of inorganic carbon from the ambient

seawater to benefit the symbiotic zooxanthellae; only then, can the symbionts conduct

photosynthesis and share the photosynthates with the host. Indeed, the transcript and

protein levels of DDCA/DDCA in the ctenidium of T. squamosa increased significantly

after 6 and 12 h of exposure to light, respectively, denoting that DDCA could participate

in the light-enhanced uptake and assimilation of exogenous inorganic carbon.
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INTRODUCTION

The fluted giant clam, Tridacna squamosa, is one of 12
species of giant clams from the family Cardiidae and subfamily
Tridacninae, which inhabit the shallow, tropical seawater of the
Indo-Pacific coral reefs (Lucas, 1988; Neo et al., 2017). Due
to the lack of overturn, tropical waters are low in nutrients
(de Goeij et al., 2013), but giant clams can attain high growth
rates (Rosewater, 1965) because they live in symbiosis with
dinoflagellates (Norton et al., 1992) of the genus Symbiodinium
(Clade A, C, and D; Trench, 1987; DeBoer et al., 2012)
commonly known as zooxanthellae. The symbiotic zooxanthellae
reside extracellularly inside a tubular system with a primary
tubule originating from the stomach of the host clam. The
primary tubule splits into smaller secondary and tertiary tubules
that permeate mainly the extensible, fleshy and colorful outer
mantle (Norton et al., 1992; Yellowlees et al., 1993). During
insolation, the symbionts undergo photosynthesis and transfer
some photosynthates to the host clam (Muscatine, 1990), which
can satisfy ∼100% of the host’s energy requirements (Fisher
et al., 1985; Klumpp et al., 1992). Hence, the availability of
light critically affects the zooxanthellae-giant clam association,
especially the growth of the host clam (Crawford et al., 1988).

While the host clam benefits from receiving photosynthates
from the symbiotic zooxanthellae (Streamer et al., 1993),
the symbionts require a supply of inorganic carbon (Ci)
from the host in order to support ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO)-catalyzed photosynthesis
(Furla et al., 2005). As metabolic carbon dioxide (CO2) produced
by the host is not sufficient to support the maximal rate of
photosynthesis (Yellowlees et al., 1993), zooxanthellae residing
extracellularly in the tubular system must gain access to the Ci

present in the ambient seawater through its host. Additionally,
giant clams can undergo light-enhanced calcification to increase
the rate of shell-formation, which requires Ci as a substrate
(Yellowlees et al., 1993). Hence, the host clam must absorb
exogenous Ci, presumably through its two ctenidia. A ctenidium
(gill) is basically a respiratory organ with a large surface area
for gas exchange, ion transport and acid-base balance in some
mollusks. It is the site of light-enhanced ammonia absorption
and assimilation (Hiong et al., 2017a), as well as light-dependent
H+ excretion (Hiong et al., 2017b), in T. squamosa.

Ci in seawater is present mainly as bicarbonate (HCO−

3 ) and
to a much lesser extent as dissolved CO2. These two forms
of Ci can interconvert according to the equation CO2 + H2O
⇌ H2CO3 ⇌ HCO−

3 + H+. The hydration of CO2 proceeds
at a moderate pace in the absence of a catalyst, with a rate
constant of 0.15 s−1. However, the dehydration of H2CO3 is
relatively rapid and has a rate constant of 50 s−1 (Maren, 1967).
This results in an equilibrium constant of K = 5.4 × 10−5

and a ratio of 340:1 for [CO2] to [H2CO3]. Notwithstanding
the moderate rate of CO2 hydration and the high rate of
H2CO3 dehydration without a catalyst, almost all organisms
possess carbonate anhydrases (CAs; EC 4.2.1.1), which are zinc-
containing enzymes catalyzing these reactions with dramatic
increases in the rate of CO2 hydration (Supuran, 2008). CAs
are needed because CO2 hydration and HCO−

3 dehydration

are commonly coupled to rapid physiological and biochemical
processes; in particular, HCO−

3 is associated with many transport
processes. There are four genetically distinct families (α, β,
γ, and δ) of CAs, and the largest and the most ubiquitous
family is α-CA (Chegwidden et al., 2000). As HCO−

3 in seawater
cannot freely permeate biomembranes, it has to be absorbed
through specific HCO−

3 transporters. Alternatively, HCO−

3 can
be converted to CO2 which can permeate biomembranes with
or without the involvement of specific channels (Nakhoul et al.,
1998), but the dehydration of HCO−

3 requires a supply of H+.
As expected, the ctenidium of T. squamosa expresses a Na+/H+

exchanger 3 (NHE3)-like transporter which excretes H+ in
exchange for Na+ and displays light-enhanced gene and protein
expression (Hiong et al., 2017b). However, even in the presence
of H+, the un-catalyzed reaction of HCO−

3 dehydration is a
slow process and therefore requires the participation of CAs
in the ambient seawater. In fact, there are secretory types of
CA (Aizawa and Miyachi, 1986; Badger and Price, 1994; Suzuki
et al., 1994), but CAs secreted freely into seawater would be lost
to the environment. Therefore, the ctenidium of T. squamosa
should preferably express a type of secretory CA which is
anchored to or partially embedded in the apical membrane of
the epithelium in contact with the external medium. Such a CA
would catalyze the formation of CO2 from HCO−

3 in the ambient
seawater in close proximity to the epithelial surface, facilitating
its absorption. Inside the ctenidial epithelial cells, the absorbed
CO2 must be converted back to HCO−

3 , presumably catalyzed by
a cytosolic CA, in order to maintain a favorable PCO2 gradient
for continuous CO2 uptake.

Indeed, Yellowlees et al. (1993) demonstrated that the
ctenidium ofTridacna derasa contained a high CA activity, which
could be essential to regulating the Ci fluxes between the seawater
and the hemolymph (blood). Then, Baillie and Yellowlees (1998)
purified CAs from the host tissue of T. gigas, and identified two
CA isoforms from the ctenidium and the mantle. The larger
isoform (70 kDa; tgCA) was localized to the ciliated branchial
filaments and cells lining the tertiary water channels in the
ctenidium, in support of a role in Ci absorption. Subsequently,
Leggat et al. (2002, 2005) reported that the uncommon 70 kDa
membrane-bound tgCA contained two separate α-CA domains.
It has been proposed that tgCA plays an important role in
the acquisition of exogenous Ci by the giant clam, and in
facilitating Ci movement within its tissues and organs (Leggat
et al., 2002; Yellowlees et al., 2008). However, the advantages
of having two α-CA domains in the 70 kDa CA of T. gigas
and their specific functions remain enigmatic. Notably, symbiotic
cnidarians, including corals and anemones, are not known to
express CAs with dual domains.

To test the hypothesis that, like T. gigas, T. squamosa also
expressed a membrane-bound CA with two α-CA domains,
this study was undertaken to clone, sequence, and characterize
a Dual-Domain CA (DDCA/DDCA) from its ctenidium.
Particularly, efforts were made to analyze whether the DDCA
comprised any transmembrane region (TM), which might shed
light on the relative location of the two catalytic domains with
reference to the membrane. Furthermore, the gene expression
of DDCA in various tissues and organs were examined to test
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the hypothesis that the ctenidium was the main site of DDCA
expression. Efforts were also made to determine the effects of 3,
6, or 12 h of light exposure on the transcript level ofDDCA in the
ctenidium, as compared with controls kept in darkness for 12 h.
In order to elucidate whether the molecular changes observed,
if any, were related to circadian rhythm, the effects of exposure
to 12 h + 12 h (a total of 24 h) of darkness were also examined.
Furthermore, a polyclonal anti-DDCA antibody was developed
commercially to quantify the change in protein abundance of
DDCA in the ctenidium in response to light exposure, and
to elucidate the cellular and subcellular localization of DDCA
in the ctenidium through immunofluorescence microscopy. It
was hypothesized that the DDCA had an apical localization
in the ctenidial epithelia, and its gene and protein expression
levels could be up-regulated by light exposure. Results obtained
were expected to provide insights into how DDCA, with its
dual catalytic domains, could function to augment Ci uptake
and assimilation in the ctenidium of T. squamosa during
insolation.

MATERIALS AND METHODS

Human and Animal Rights
No institutional (National University of Singapore Institutional
Animal Care and Use Committee) approval is required for
invertebrates including giant clams at the time the laboratory
experiments were performed. The animals were anaesthetized
with 0.2% phenoxyethanol before killing to minimize stress and
suffering.

Animals
Adult specimens of T. squamosa (521 ± 184 g; mean ± SD)
were procured from Xanh Tuoi Tropical Fish, Ltd (Vietnam)
and kept in an indoor aquarium. Giant clams (N = 28) were
maintained in a glass tank with recirculating seawater. The
water conditions and light intensity were provided as described
previously (Ip et al., 2015). Experiments were conducted after
the animals were acclimatized to laboratory conditions for 1
month.

Experimental Conditions and Tissue
Collection
For molecular work, four giant clams were killed for tissue
sampling at the end of a 12 h dark period, and they were
regarded as controls (N = 4). Another 12 individuals were
exposed to light and sampled after 3, 6, or 12 h of light exposure
(N = 4 for each time point). In order to elucidate if there
was any circadian effect, four individuals were exposed to a
total of 24 h of darkness, which acted as parallel controls to
those exposed to 12 h of light, notwithstanding that giant clams
would never encounter more than ∼12 h of darkness in nature.
The anaesthetized clams were dissected along the pallial line
to obtain samples of the colorful and fleshy outer mantle.
Thereafter, the whitish inner mantle, ctenidium, hepatopancreas,
foot muscle, byssal retractor muscle, kidney and heart were
quickly excised, blotted dry and immediately freeze-clamped
with aluminum tongs pre-cooled by liquid nitrogen. The

frozen samples were stored in −80◦C until processing. For
immunofluorescence microscopy, the ctenidium samples were
collected from another 8 giant clams, 4 of which were exposed to
darkness for 12 h and another 4 exposed to light for 12 h (N = 4
each).

Total RNA Extraction and cDNA Synthesis
The extraction and purification of total RNA from the tissues of
T. squamosa were performed using the TRI ReagentTM (Sigma-
Aldrich, St. Louis, MO, USA) and the RNeasy Plus Mini Kit
(Qiagen, Hilden, Germany), respectively. A Shimadzu BioSpec-
nano spectrophotometer (Shimadzu, Kyoto, Japan) was used to
quantify the purified RNA, and its integrity was determined by
electrophoresis. Four micrograms of purified RNA were then
used to synthesize the first strand cDNA using a RevertAidTM first
strand cDNA synthesis kit (Thermo Fisher Scientific, Waltham,
MA, USA).

Polymerase Chain Reaction (PCR), Cloning
and RACE-PCR
The partial DDCA sequence was obtained using primers
(Table 1) designed according to the conserved regions of
T. gigas tgCA (AY790884.1) and Phreagena okutanii two domain
membrane-associated CA (LC007965.1). The primer set was
designed in such a way that they could differentiate against
the two CA sequences with double domains from the algae,
Dunaliella salina (U53811.1) and Porphyridium purpureum
(D86051.1). PCR, cloning and sequencing procedures were
performed according to the methods in Hiong et al. (2017a,b).
Analyses ofmultiple clones ofDDCA fragments did not reveal the
presence of isoforms. The complete coding sequence of DDCA
was obtained using a 5′ and 3′ RACE kit (SMARTer RACE
cDNA amplification kit; Clontech Laboratories, Mountain View,
CA, USA) and specific primers (Table 1). The cDNA sequence
of DDCA has been deposited into GenBank with the accession
number MF084997.

TABLE 1 | Primers used for polymerase chain reaction (PCR), rapid amplification

of cDNA ends (RACE) PCR, gene expression in tissues/organs, and quantitative

real-time PCR (qPCR) of the Dual Domain Carbonic Anhydrase (DDCA) and

α-Tubulin from the ctenidium of Tridacna squamosa.

Gene Primer type Primer sequence (5′
−3′)

DDCA PCR Forward: CAAAGATGTCTGGAGGTGG

Reverse: TCCAACAACTGCTAATCC

5′-RACE CAGTCAGCAGGCATTGTATTGGCGAA

3′-RACE CACACTCACAACGGCAGGAAATACCC

Gene expression Forward: CTATCCATGAATTTCGCCA

Reverse: TATTTCCTGCCGTTGTGAG

qPCR Forward: GATACCAACCAGCCCATCAC

Reverse: GAAGTCGTAAGCTCTACCCTG

α-Tubulin qPCR Forward: GTGCCAAAGGATGTCAATGTC

Reverse: CTTAGCCATATCTCCGCCTG
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Gene Expression in Various Tissues and
Organs
Using specific primers (Table 1) designed for DDCA of
T. squamosa, PCR was conducted on the cDNA of all tissues.
The cycling conditions were 94◦C (3min), followed by 35 cycles
of 94◦C (30 s), 50◦C (30 s), 72◦C (1min) and 1 cycle of final
extension at 72◦C (10min). Products were then separated by gel
electrophoresis using a 1% agarose gel.

Deduced Amino Acid Sequence and
Phenogramic Analyses
The DDCA of T. squamosa was translated into the deduced
amino acid sequence using the ExPASy Proteomic server
(Gasteiger et al., 2003; https://web.expasy.org/translate/). The
DDCA sequence obtained was then aligned and compared with
the T. gigas CA (AAX16122.1) using BioEdit (Hall, 1999). The
percentage sequence identity between DDCA of T. squamosa and
T. gigas CA was then computed. The TM and signal peptide
were predicted using the TOPCONS program (http://topcons.
cbr.su.se/). The glycosylphosphatidylinositol (GPI) anchor was
predicted using the PredGPI predictor program (http://gpcr.
biocomp.unibo.it/predgpi/pred.htm). A phenogramic analysis by
the neighbor-joining method with 1,000 bootstrap replicates
using Phylip (Felsentein, 1989) was performed with selected
amino acid sequences (mainly from human) from GenBank with
the aim to confirm that DDCA of T. squamosa was a type of
membrane-associated CA and was distinctly separated from the
CAs of algae.

qPCR
The mRNA expression levels of DDCA were determined using
the absolute quantification method with reference to a standard
curve (Gerwick et al., 2007). qPCR was performed according to
the procedures as described in Hiong et al. (2017a,b) and specific
primers (Table 1) for DDCA were used. The absolute number of
transcripts was computed using the standard curve and expressed
as copy numbers per ng of total RNA. Although the absolute
quantification method was adopted in this study, efforts were
made to confirm that the transcript level of a reference gene
(α-Tubulin) was not light-dependent. Using a pair of specific
qPCR primers (Table 1), it had been confirmed that the mRNA
expression level of α-Tubulin remained unchanged throughout
the 12 h of light exposure as compared to the control kept in
darkness (results not shown).

Sodium Dodecyl Sulfate-Polyacrylamide
(SDS-PAGE) Electrophoresis and Western
Blotting
Protein extraction and SDS-PAGE were performed following the
methods of Hiong et al. (2017a,b). Twenty five micrograms of
proteins from the ctenidium were electrophoretically separated
and transferred to PVDF membranes. Thereafter, membranes
were blocked with 5% skimmilk in TTBS (pH 7.6) for 1 h at 25◦C.
After blocking, membranes were incubated with a custom-made
DDCA antibodies (epitope: SYDGHGDTKGPSDW) developed
by GenScript (Piscataway, NJ, USA) using 1:800 dilution, or

anti-α-tubulin antibodies (12G10, 1:800 dilution) for 1 h at
25◦C. The primary antibodies were diluted in TTBS prior
to use. Subsequently, the membranes were incubated with
alkaline phosphatase-conjugated secondary antibodies (Santa
Cruz Biotechnology Inc.; 1:10,000 dilution) for 1 h at 25◦C.
A peptide competition assay was also performed to check for
specificity of the anti-DDCA antibody. Visualization of bands
at the predicted molecular mass was done using a BCIP/NBT
Substrate Kit (Life Technologies). The bands were quantified
as described in Hiong et al. (2017a,b) and the relative protein
abundance of DDCA normalized with α-tubulin was reported.

Immunofluorescence Microscopy
Immunofluorescence microscopy was performed following the
method of Hiong et al. (2017b). The concentrations of anti-
DDCA antibody and secondary antibody Alexa Flour 488 used
were 2.5 µg ml−1. Both primary and secondary antibodies
were diluted in Pierce Fast Blocking Buffer (Thermo Fisher
Scientific Inc.). A peptide competition assay was also performed
to confirm the specificity of the anti-DDCA antibody following
the methods of Hiong et al. (2017b). The slides were observed
using Olympus BX60 epifluorescence microscope (Olympus
Corporation, Tokyo, Japan) equipped withOlympusDP73 digital
camera (Olympus Corporation). Figures were prepared using
Adobe Photoshop CS6 (Adobe Systems, New York, USA).

Statistical Analyses
Statistical analyses were performed using the SPSS program
version 21 (IBM Corporation, Armonk, NY, USA). Results
were presented as mean + S.E.M. Data were evaluated for
homogeneity of variances using the Levene’s test. Differences
between means were evaluated using the one-way analysis of
variance (ANOVA), followed by multiple comparisons of means
by Tukey (for equal variance) or by Dunnett’s T3 (for unequal
variance), and were regarded as statistically significant when P is
smaller than 0.05.

RESULTS

Nucleotide Sequence, Deduced Amino
Acid Sequence, and Phenogramic Analysis
The complete cDNA coding sequence (1,803 bp) of DDCA
(Accession numberMF084997) was obtained from the ctenidium
of T. squamosa. It encoded for a protein of 601 amino acids with
an estimated molecular mass of 66.7 kDa. The deduced DDCA
sequence shared high similarity (84.3%) with the tgCA of T. gigas
(Accession number AAX16122).

A protein blast of the deduced DDCA of T. squamosa revealed
the presence of two α-CA domains and a signal peptide (residue
1–22; Figure 1A). The first α-CA domain (residue 43–285) bore
similarities with membrane-associated CAs (CA4/CA9/CA15;
Table S1) while the second α-CA domain (residue 315–564)
display high similarity with CA4 (Table S2). There was a ∼53%
sequence similarity between these two α-CA domains. Based
on the TOPCONS program (http://topcons.net/; Tsirigos et al.,
2015), the DDCA of T. squamosa probably consisted of two
TMs. The first TM (residue 156–176) was located inside the
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FIGURE 1 | Molecular characterization of the Dual Domain Carbonic Anhydrase (DDCA) of Tridacna squamosa. (A) An amino acid sequence alignment of the DDCA

of T. squamosa and tgCA of T. gigas. (B) A comparison of the two CA domains of the DDCA of T. squamosa. The shaded residues indicate identical or highly similar

(Continued)
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FIGURE 1 | amino acids. The signal sequence is labeled and indicated by a black box. The residues that are single underlined make up the first CA domain, while the

second CA domain is double underlined. The open star marks the putative residue which attaches a GPI anchor. The asterisks indicate the gatekeeper residues that

allow efficient proton-transfer. The residues that coordinate the catalytic Zn2+ ion are marked by hash signs. The open triangles indicate the residues that form the

CO2 binding sites. The hydrophilic residues that make up the binding sites for HCO−

3 are marked by arrows. The transmembrane domains (TMs) are indicated by a

red box. The lack of one hydrophilic residue that is involved in HCO−

3 binding in the first CA domain of DDCA is marked by a blue box.

first CA domain while the second TM (residue 580–600) was
located near the 3′ end of the second CA domain adjacent to
the C-terminus. The signal peptide (residue 1–22) was predicted
to be extracellular, and the GPI anchor was predicted to be
Ala576 located near the 3′ end of the second CA domain
(Figure 1A).

Each α-CA domain of the DDCA of T. squamosa had its
own set of catalytic and active sites (Figure 1B). The first α-
CA domain comprised the three histidine residues (His116,
His118, His141) which coordinate the Zn2+-containing catalytic
site, the hydrophobic residues (Val143, Val164, Leu224, Val233,
Trp235) that form the CO2 binding pocket, and the gatekeeper
residues (Glu128, Thr226). In the first α-CA domain, the active
binding site for HCO−

3 and H+ constituted five hydrophilic
residues (Asn85, His87, Gln114, Thr225, and Thr226), of which
His87 acted as a proton shuttle for CO2 hydration. Similarly,
the Zn2+-containing catalytic site (His391, His393, His416), the
hydrophobic residues that form the CO2 binding pocket (Val418,
Val439, Leu504, Val513, Trp515), and the gatekeeper residues
(Glu403, Thr506) were conserved in the second CA domain.
Unlike the first α-CA domain, six hydrophilic residues (Asn361,
His363, Gln366, Gln389, Thr505, and Thr506) were found in the
second α-CA domain, and His363 served as a proton shuttle for
CO2 hydration (Figure 1B).

A phenogramic analysis indicated that the DDCA was
probably a type of extracellular (membrane-bound and/or
secreted) α-CA (Figure 2). In addition, the genetic distance
signified the difference between theDDCA fromT. squamosa and
selected CAs from algae, confirming that it had a host (animal)
origin.

Gene Expression of DDCA in Various
Organs/Tissues of T. squamosa
Among all the organs/tissues examined, theDDCAwas expressed
predominantly in the ctenidium of T. squamosa (Figure 3). Thus,
this study focused on changes in transcript levels and protein
abundance of the DDCA/DDCA in the ctenidium.

Effects of Light Exposure on the mRNA
Expression Level and Protein Abundance
of DDCA/DDCA in the Ctenidium
There was a significant increase (2-fold) in the transcript level
of DDCA in the ctenidium of T. squamosa exposed to light for
6 h as compared to that of the control in darkness (Figure 4).
The transcript level of DDCA in the ctenidium of clams exposed
to 12 h of light was comparable to that of the control (12 h of
darkness) and the parallel control exposed to 24 h of darkness.
Results from Western blotting revealed a band of interest at
∼70 kDa, which was close to the estimated molecular mass of

FIGURE 2 | A phenogramic analysis of the Dual Domain Carbonic Anhydrase

(DDCA) of Tridacna squamosa. A phenogram illustrating the relationship of the

DDCA of T. squamosa with all known CAs of Homo sapiens, Tridacna gigas

CA (tgCA) and CAs of several species of algae. The Ca of the bacterium

Nostoc sp. (PCC7120) was used as the outgroup. The number located at

each branch point represents the bootstrap value (max = 1,000).

the DDCA (66.7 kDa) and therefore identified as the targeted
protein (Figure 5). There was a significant increase in the protein
abundance of DDCA in the ctenidium of T. squamosa exposed
to light for 12 h as compared to the control kept in darkness
for 12 h. Furthermore, the protein abundance of DDCA in
the ctenidium of individuals exposed to 24 h of darkness was
comparable to that of the control (12 h of darkness), and was
significantly lower than that of the clams exposed to 12 h of light
(Figure 5).

Immunofluorescence Microscopy
In T. squamosa, the DDCA-immunofluoresence was detected
predominantly at the apical membrane of some epithelial
cells surrounding the tertiary water channels (Figure 6) and
to a lesser extent at the apical membrane of some epithelial
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FIGURE 3 | Gene expression of the Dual Domain Carbonic Anhydrase (DDCA)

in tissues/organs of Tridacna squamosa. The mRNA expression of the DDCA

in the outer mantle (OM), inner mantle (IM), ctenidium (Cten), foot muscle (FM),

byssal muscle (BM), heart, hepatopancreas (HP), and kidney (Kid) of

T. squamosa kept in darkness for 12 h (control). A negative control (NTC) was

included in the first lane.

FIGURE 4 | Effects of light on the mRNA expression level of Dual Domain

Carbonic Anhydrase (DDCA) in the ctenidium of Tridacna squamosa. Absolute

quantification (×104 copies of transcript per ng of total RNA) of DDCA

transcripts in the ctenidium of T. squamosa kept in darkness for 12 h (control),

or exposed to light for 3, 6 or 12 h, or kept in darkness for another 12 h (a total

of 24 h in darkness). Results represent means + S.E.M. (N = 4). Means not

sharing the same letters are significantly different from each other (P < 0.05).

cells at the base of the ctenidial filament (Figure 7). Results
obtained through a peptide competition test validated the
DDCA-immunostaining (Figure 8). In corroboration with the
Western blotting results, more cells surrounding the tertiary
water channels of clams exposed to 12 h of light (N = 4) displayed

apical immunofluorescence epithelial cells as compared with the
control kept in darkness for 12 h (N = 4).

DISCUSSION

There are indications that CAs play an important role in alga-
invertebrate symbioses. Cnidarians containing endosymbiotic
zooxanthellae have significantly higher CA activity (>29
times) than azooxanthellate species (Weis and Reynolds,
1999). The administration of CA inhibitors (acetazolamide
and ethoxyzolamide) greatly reduces photosynthetic rates
in symbiotic corals and sea anemones, demonstrating the
importance of CA to the photosynthetic productivity of
zooxanthellae (Al-Moghrabi et al., 1996; Weis and Reynolds,
1999). In addition, CA can be involved in skeleton formation
in scleractinian corals by catalyzing HCO−

3 formation within
the sub-calicoblastic space (Tambutté et al., 2007; Moya et al.,
2008). In this study, we demonstrated that the DDCA was
expressed almost exclusively in the ctenidium of T. squamosa,
implying that it might have a specialized function unrelated to
photosynthesis of its symbionts which are concentrated in the
colorful outer mantle, and unassociated with shell formation
which involves the whitish inner mantle. We discovered that
the DDCA from the ctenidium of T. squamosa comprised two
separate Zn2+-containing active sites, one of which could be
positioned extracellularly in seawater while the other one could
be located intracellularly in the cytosol. In addition, the gene and
protein expression levels of the DDCA in the ctenidium were
enhanced by light exposure, corroborating the proposition that it
may take part in increased Ci uptake from the external medium
during insolation.

The DDCA From T. squamosa Could Be an
Integral Protein With One Extracellular and
One Intracellular Zn2+-Containing Catalytic
Sites
The DDCA from the ctenidium of T. squamosa comprised two
distinct α-CA domains (residues 43–285 and residues 315–564),
and each of them contained the active site essential for CA
catalytic activity as well as the histidine proton shuttle residues
(Lindskog, 1997). Hence, both α-CA domains in the DDCA are
potentially functional.

A phenogramic analysis revealed the grouping of the DDCA
of T. squamosa with extracellular CAs of human. This is
consistent with immunolocalization of the tgCA as a membrane-
associated protein in T. gigas (Baillie and Yellowlees, 1998; Leggat
et al., 2002). A putative GPI anchor residue was conserved at
Gly577 in the tgCA of T. gigas (Leggat et al., 2005; or Val575
using the PredGPI predictor program) and Ala576 in the DDCA
of T. squamosa, suggesting that they could be GPI-anchored
proteins. However, Baillie and Yellowlees (1998) demonstrated
that digestion with phosphoinositol phospholipase C did not
release tgCA from the crude homogenate of ctenidium, denoting
that it was probably an integral membrane protein with one
or more TM(s) besides being GPI-anchored. Indeed, using a
more advanced transmembrane prediction software (Reddy et al.,
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FIGURE 5 | Effects of light on the protein abundance of Dual Domain Carbonic Anhydrase (DDCA) in the ctenidium of Tridacna squamosa. The protein abundance of

DDCA in the ctenidium of T. squamosa kept in darkness for 12 h (control), or exposed to light for 3, 6 or 12 h, or kept in darkness for another 12 h (a total of 24 h in

darkness). (A) Examples of an immunoblot of DDCA and tubulin (reference protein), and an immunoblot of DDCA using the anti-DDCA antibody pretreated with

peptide competition (PC). (B) The optical density of the DDCA band for a 25 µg protein load was normalized with respect to that of tubulin. Results represent means

+ S.E.M. (N = 4). Means not sharing the same letter are significantly different from each other (P < 0.05).

2014), we demonstrated for the first time the presence of two TMs
in the DDCA of T. squamosa, one (residue 156–176) in the first
α-CA domain near the 5’-end, and another one (residues 580–
600) near the ending of the second α-CA domain close to the
3’-end. As the two active sites happened to be separated by a TM,
one of them would probably be exposed to the external medium
while the other one would be positioned in the cytoplasm. A
similar analysis indicated that these two TMs were also present
in the tgCA of T. gigas (residues 156–176 and residues 579–599,
respectively), although no attempt had been made to identify
them previously (Leggat et al., 2005).

The CA active site is located in a large conical cavity with
a catalytic Zn2+ at its bottom (Lindskog, 1997). The Zn2+ is
held in place by tetrahedral coordination with three His residues
and a water molecule or hydroxide ion (Håkansson et al., 1992;
Christianson and Fierke, 1996). In the DDCA of T. squamosa,
the three His residues (His116, His118, His141) of the first α-CA

domain were located in front of the TM closer to the 5′ end,
denoting that they would be exposed to the external medium.
Furthermore, three of the five hydrophilic residues (Asn85,
His87, Gln114) of the active site which bind to HCO−

3 and H+,
were also located in front on the TM, while four out of the five
hydrophobic residues that make up the CO2 binding pocket were
positioned behind the TM. Taken together, it can be deduced for
the DDCA of T. squamosa that the active site of the first α-CA
domain probably functions in the external medium, binding with
exogenous HCO−

3 and H+, catalyzing the dehydration of HCO−

3
to CO2, and releasing the CO2 to the cytoplasm. By contrast,
the active site of the second α-CA domain is positioned in the
cytoplasm and would therefore function intracellularly. With the
3′-end of the DDCA attached to the plasma membrane through
another TM and a GPI anchor, the second α-CA domain could
function in close proximity to the inner surface of the plasma
membrane to catalyze the hydration of CO2 that has entered
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FIGURE 6 | Immunofluorescence localization of the Dual Domain Carbonic Anhydrase (DDCA) in the tertiary water channels (WCs) of the ctenidium of Tridacna

squamosa. Immunofluorescence localization of the DDCA in the WCs of the ctenidium of T. squamosa exposed to 12 h of light (A–D) or 12 h of darkness (control;

E–H). Differential interference contrast (DIC) images show the lattice formation of WCs (A,E). Anti-DDCA immunofluorescence is shown in green (B,F) with nuclei

counterstained with DAPI in blue (C,G). Green and blue channels are merged and overlaid with the respective DIC images (D,H). Arrowheads indicate

DDCA-immunostaining at the apical membrane of the epithelial cells surrounding the WCs. HL, hemolymph. Scale bar: 20µm. Reproducible results were obtained

from four individual clams for each experimental condition.

FIGURE 7 | Immunofluorescence localization of the Dual Domain Carbonic Anhydrase (DDCA) in the ctenidial filaments (CFs) of the ctenidium of Tridacna squamosa.

Immunofluorescence localization of the DDCA in the CFs of T. squamosa exposed to 12 h of light (A–D) or 12 h of darkness (control; E–H). Differential interference

contrast (DIC) images show the structure of CFs (A,E). Anti-DDCA immunofluorescence is shown in green (B,F) with nuclei counterstained with DAPI in blue (C,G).

Green and blue channels are merged and overlaid with the respective DIC images (D,H). Arrowheads indicate DDCA-immunostaining at the apical membrane of the

epithelial cells located at the base of CFs and those surrounding the tertiary water channels (WCs). Scale bar: 20µm. Reproducible results were obtained from four

individual clams for each experimental condition.

the cell to HCO−

3 . With the two catalytic domains working in
close proximity across the two sides of the plasmamembrane, the
DDCA was configured to facilitate the uptake of exogenous CO2

and the assimilation of CO2 into HCO−

3 in the ctenidial epithelial
cells of T. squamosa.

The Evolutionary Trend of CAs With Two
Catalytic Domains
Besides the DDCA of T. squamosa and the tgCA of T. gigas,
only four other CAs are known to contain two domains.
The deep-sea bivalve Phreagena okutanii (Hongo et al., 2016)
and the green alga D. salina (Fisher et al., 1996) express

CAs that comprise two α-CA domains, while the bacterium
Halothiobacillus neapolitanus (Sawaya et al., 2006) and the red
alga P. purpureum have CAs that consist of two β-CA domains
(Mitsuhashi and Miyachi, 1996).

β-CAs are a diverse but structurally related group of CAs
found in eubacteria, plant chloroplasts, red and green algae,
and the Archaea (Rowlett, 2010). They can adopt a variety
of oligomeric states with molecular masses ranging from 45
to 200 kDa, and the basic structural unit is a dimer or its
structural equivalent. The basic dimer consists of two identical
protein chains of 25–30 kDa, each with a catalytic domain
of 100% similarity. The β-CA of P. purpureum may act as a
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FIGURE 8 | A validation of the immunostaining of the Dual Domain Carbonic

Anhydrase (DDCA) using a peptide competition assay (PCA). The

immunofluorescence localization of DDCA in the ctenidial filaments (CFs) and

tertiary water channels (WCs) of a ctenidium of Tridacna squamosa exposed to

12 h of light using an anti-DDCA antibody (A,C), or the same anti-DDCA

antibody pre-incubated with the immunizing peptide in PCA (B,D). The

anti-DDCA immunofluorescence is shown in green, overlaid with DAPI nuclei

staining and differential interference contrast images. Arrowheads in

(A,C) indicate DDCA-immunostaining at the apical membrane of some

epithelial cells at the base of CFs and WCs. By contrast, there is a lack of

anti-DDCA antibody staining in the control with PCA (B,D) in both CFs and

WCs. HL, hemolymph. Scale bar: 20µm.

CO2-concentrating mechanism to maintain a favorable PCO2

in order to activate the RuBisCO-catalyzed photosynthesis. In
P. purpureum, the β-CA monomer consists of 571 amino acids
with amolecular mass of 55 kDa (Mitsuhashi andMiyachi, 1996);
the monomer comprises two catalytic domains with two atoms
of zinc, each equivalent to the catalytic domains of other β-CAs
(25–30 kDa). These two domains are arranged in tandem and
exhibit∼70% identity with each other. It has been suggested that
the β-CA gene of P. purpureum is formed by the duplication
and fusion of a primordial β-CA gene (Mitsuhashi et al., 2000).
On the other hand, CsoSCA is a bacterial carbonic anhydrase
localized in the boundary of a cellular micro-compartment called
the carboxysome, where it also converts HCO−

3 to CO2 for use in
carbon fixation by RuBisCO. While CsoSCA of H. neapolitanus
contains a pair of fused and homologous domains, the two
catalytic domains have diverged (with only ∼11% similarity) to
the point that only one domain in the pair retains a functional
active site (Sawaya et al., 2006). Hence, it would appear that
the evolution of dual domain β-CAs among different groups of
organisms involved disparate changes in the active sites of the
two catalytic domains.

In comparison, the DDCA of D. salina comprises two α-CA
domains, probably also derived from an internal duplication and
concatenation (Fisher et al., 1996). The two catalytic domains
have 70% sequence similarity, indicating that they had diverged
after gene duplication and concatenation, similar to the dual
domain β-CA of P. purpureum. Notably, the DDCA of D. salina
is largely hydrophilic and does not contain any TM (Fisher et al.,
1996). As for the DDCA of P. okutanii (MCACO2; Hongo et al.,

2016), it consists of 594 amino acids with two α-CA domains,
which share only 37% sequence similarity. Its C-terminus
comprises a TM of 15 amino acids (residues 580–594) and a
possible GPI anchor residue (Ser570). In the ctenidium of P.
okutanii, the MCACO2 is postulated to be anchored at the 3’ end
to the apical membrane of the asymbiotic non-ciliated cells, and
the two catalytic sites are apparently positioned in the external
medium to facilitate the uptake of CO2 from seawater in support
of carbon fixation in the thioautotrophic bacterial symbionts
(Hongo et al., 2016). With the discovery of two TMs in the
DDCA of T. squamosa, and one of them separating the two active
sites in particular, it becomes apparent that the physiological
functions of DDCAs can be modified during evolution not only
through variations in the amino acid compositions of the two
catalytic domains, but also by the acquisition of TMs to anchor
the protein, or to position the two active sites in two separate
compartments across the plasma membrane, or both.

The DDCA of T. squamosa Is Localized to
the Apical Membrane of the Epithelial Cells
in the Ctenidium
Similar to the gills of fishes, the ctenidia of giant clams are
highly convoluted structures specialized for the exchange of gases
and small molecules between the hemolymph and the external
medium. The major anatomical features of the ctenidium are
finger-like filaments, ciliated water channels, haemal sinuses that
contain hemolymph, as well as a few tertiary tubules containing
zooxanthellae (Leggat et al., 2002). In T. gigas, the tgCA is found
in the ciliated cuboidal epithelium lining the water channels
of the ctenidium (Baillie and Yellowlees, 1998). In the case
of T. squamosa, we report for the first time the subcellular
localization of DDCA in the apical membrane of the epithelium
cells of the ctenidial water channels, which provides clues to its
possible physiological functions.

In non-symbiotic marine organisms, metabolic CO2 as a
waste product is excreted mainly through the gills. For example,
a membrane-associated CA has been localized to the basolateral
membrane of the branchial epithelial cells in crabs (Burnett and
McMahon, 1985; Henry et al., 2003). With such a location, the
catalytic CA domain is in direct contact with the hemolymph
and therefore catalyzes the dehydration of HCO−

3 therein into
endogenous CO2, which can then diffuse out to the seawater
for excretion (Burnett, 1984; Burnett et al., 1985). In contrast,
symbiotic organisms like giant clams need to acquire Ci from
the seawater. Therefore, the apical localization of DDCA in the
ctenidial epithelial cells surrounding the tertiary water channels
suggests that it would catalyze the conversion of HCO−

3 in
the seawater to CO2, and facilitate the diffusion of exogenous
CO2 through the epithelial cells of the water channels into the
hemolymph.

Light Enhances the Expression of
DDCA/DDCA in the Ctenidium and Its
Implications
In algae and plants, the activity and/or expression of CAs can be
changed by light (Majeau and Coleman, 1996; Moskvin et al.,
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2000) or UV radiations (Wu and Gao, 2009). By contrast, the
activity and/or expression of CAs in animals are not known to
be light-responsive, although they can be affected by CO2 (oyster;
Wang et al., 2017), salinity stress (crab; Henry et al., 2006; Serrano
et al., 2007), temperature (fish; Houston and Mearow, 1979),
copper and osmotic stress (fish; de Polo et al., 2014), or hypoxia
(human cancer cells; Ambrosio et al., 2016). In this study, we
have demonstrated that light can augment the transcript level
and protein abundance of the DDCA/DDCA in the ctenidium
of T. squamosa, with the former (at hour 6) preceding the latter
(at hour 12), indicating that the DDCA is regulated at both
the transcriptional and translational levels. The increase in the
protein abundance of the ctenidial DDCA after 12 h of light
exposure was apparently not a circadian phenomenon, because
such an increase was absent from the parallel controls exposed to
darkness for a total of 24 h. However, whether circadian rhythm
plays a role in regulating the expression levels of other genes and
proteins in various tissues/organs of T. squamosa deserves amore
detailed investigation in the future. Because of the daily light:dark
cycle, changes in transcript levels and protein abundance of
the DDCA/DDCA would logically be short-term and relatively
moderate as compared with changes in other types of animal CAs
in response to long-term environmental changes (e.g., salinity
changes in crabs; Henry et al., 2006; Serrano et al., 2007).

The increased expression of DDCA during light exposure
would theoretically catalyze a greater rate of CO2 formation
from HCO−

3 around the water channels and at the base of
the filaments. However, the increased dehydration of HCO−

3
requires a concurrently increase in the excretion of H+ to the
external medium. As expected, the transcript level and protein
abundance of the NHE3-like transporter are up-regulated in the
ctenidium of T. squamosa exposed to light, probably to augment
H+ excretion in the pursuance of whole-body acid-base balance
(Hiong et al., 2017b). Concomitantly, the excreted H+ can react
with the HCO−

3 in the external medium, catalyzed by the active
site of the first CA domain of DDCA, releasing the CO2 formed
to the cell interior. Once inside the epithelial cells, the absorbed
CO2 can be hydrated back to HCO−

3 catalyzed by the active
site of the second CA domain of DDCA. Then, HCO−

3 can exit
the basolateral membrane via some sort of HCO−

3 transporters
and pass into the hemolymph. Taken altogether, it is logical
to conclude that the DDCA, with its light-dependent gene and
protein expression, could augment the uptake of exogenous Ci

through the ctenidium of T. squamosa during insolation.

The Involvement of Other CAs and
Transporters to Deliver the Absorbed Ci to
the Symbionts
It has been reported previously that zooxanthellae isolated
from T. gigas possess a carbon-concentrating mechanism; they
can utilize CO2 and HCO−

3 from the ambient seawater and
accumulate Ci intracellularly (Leggat et al., 1999). Zooxanthellal
CA can be part of the carbon-concentration mechanism as the
isolated zooxanthellae display light-enhanced CA activity (Leggat
et al., 1999). At present, it remains unknown whether light affects
the transcript and protein expression levels of a specific isoform

of cytosolic CA in these isolated zooxanthellae. However, Ip et al.
(2017b) has recently cloned a CA2 homolog (CA2-like) of host-
origin from the fleshy and colorful outer mantle of T. squamosa.
CA2-like is localized to the tubule epithelial cells, and light
enhances its protein abundance significantly in the outer mantle.
Hence, CA2-like could probably take part in the increased supply
of Ci from the host clam to the photosynthesizing symbiotic
zooxanthellae during insolation. Unlike symbiotic cnidarians,
giant clams have distinct tissues and organs with high degree
of division of labor between them. Therefore, in the case of
T. squamosa, it is unsurprising that the uptake of exogenous Ci

and its delivery to the zooxanthellae by the host clam require
the cooperation between the epithelial cells of the ctenidium
and those of the zooxanthellal tubules with the involvement of
different types of host CAs. It is probable that some other CA
isoforms yet to be identified are also involved in these processes.

Perspectives on Light-Dependent
Expression of Enzymes/Transporters in
T. squamosa
The hemolymph of giant clams has a pH of 7.4–7.6 (Tridacna
maxima, Deane and O’Brien, 1980; T. gigas, Fitt et al., 1995).
In T. gigas, the concentration of Ci, present mainly as HCO−

3 ,
in the hemolymph ranges between 1.8 and 2.2 mmol l−1

(Yellowlees et al., 1993). During insolation, the concentration
of Ci in the hemolymph of T. gigas decreases to 1.6 mmol
l−1 (Yellowlees et al., 1993), while the pH of the hemolymph
increases by 0.5 unit, resulting mainly from the decrease in
inorganic carbon concentration (Fitt et al., 1995). This is logical
as light induces photosynthesis in the symbiotic zooxanthellae,
and photosynthesis would lower the HCO−

3 concentration in
and simultaneously increase the pH of the hemolymph in
the host clam. Therefore, the possibility of the transcript and
protein levels of DDCA/DDCA in the ctenidium of T. squamosa
changing in response to the hemolymph HCO−

3 concentration
(i.e., indirectly to light) cannot be ignored. However, other
enzymes and transporters, some of which unrelated to HCO−

3 ,
also display light-enhanced gene and/or protein expression in
T. squamosa. These include the Glutamine Synthetase (Hiong
et al., 2017a), the NHE3-like (Hiong et al., 2017b), and the
urea active transporter DUR3-like (Chan et al., 2018) of the
ctenidium as well as the Plasma Membrane Ca2+-ATPase (Ip
et al., 2017a) and the Na+/K+-ATPase α-subunit (Boo et al.,
2017) of the inner mantle. Hence, it is logical to conclude
that T. squamosa may have developed a general mechanism to
coordinate the expression levels of a variety of enzymes and
transporters in relation to various diurnally light-dependent
physiological processes, including light-enhanced Ci absorption,
light-enhanced ammonia absorption and assimilation, and
light-enhanced calcification. This could be a result of the
symbiotic relationship between the host clam and the symbiotic
zooxanthellae, as the host would also need to be light-responsive
in order to support the light-induced photosynthesis in its
symbionts.

Zooxanthellae can respond to light directly probably because
they possess a photoreceptor protein, opsin, and eye-spots made
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of crystalline clusters of uric acid (Yamashita et al., 2009).
However, the mechanism of light-dependent changes in gene and
protein expression in the host clam is intriguing, because the
ctenidium lacks pigment, and animal tissues without pigments
are usually not light-responsive. As proposed previously (Ip et al.,
2015; Hiong et al., 2017a), it is possible that the symbionts
produce some sort of signalingmolecules in response to light, and
when these signaling molecules are released to the extracellular
fluid of the host clam, they can activate the transcription and/or
translation of DDCA/DDCA and other enzymes/transporters in
the host cells. Another possibility is that light is sensed through
the host’s siphonal eyes (Wilkens, 1986), which then transmit
neural or chemical signals to other parts of the body. Hence,
efforts should be made in the future to elucidate the signaling
mechanisms pertaining to the light-enhanced expression of genes
and proteins in T. squamosa.

Transcriptional and translational processes entail energy
expenditure, and therefore the diel cycle of changes in gene
and protein expressions in T. squamosa would appear to be
energetically uneconomical. However, unlike free-living animals,
giant clams receive a continuous supply of nutrients from the
symbiotic zooxanthellae, including glycerol, glucose, and amino
acids (Muscatine, 1967; Muscatine et al., 1983; Edmunds and
Davies, 1986; Streamer et al., 1988; Davies, 1991). The quantity
of translocated nutrients is sufficient to meet the daily energy
and growth requirements of the host clam (Fisher et al., 1985;
Klumpp et al., 1992; Klumpp and Griffith, 1994; Hawkins and
Klumpp, 1995). Probably because of that, T. squamosa could
afford energetically to regulate light-inducible processes through

light-dependent diurnal changes in transcription and translation.
Such diurnal changes would imply that the related transcripts and
proteins must undergo rapid turnover, and therefore it would
be important to determine the half-life of these proteins and to
examine the regulatory mechanisms of the turnover process in
the future.
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