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Atherosclerotic plaque rupture and erosion are the most important mechanisms

underlying the sudden plaque growth, responsible for acute coronary syndromes and

even fatal cardiac events. Advances in the understanding of the culprit plaque structure

and composition are already reported in the literature, however, there is still much

work to be done toward in-vivo plaque visualization and mechanical characterization

to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this

work, a methodology for the mechanical characterization of the vessel wall plaque

and tissues is proposed based on the combination of intravascular ultrasound (IVUS)

imaging processing, data assimilation and continuum mechanics models within a high

performance computing (HPC) environment. Initially, the IVUS study is gated to obtain

volumes of image sequences corresponding to the vessel of interest at different cardiac

phases. These sequences are registered against the sequence of the end-diastolic

phase to remove transversal and longitudinal rigid motions prescribed by the moving

environment due to the heartbeat. Then, optical flow between the image sequences is

computed to obtain the displacement fields of the vessel (each associated to a certain

pressure level). The obtained displacement fields are regarded as observations within a

data assimilation paradigm, which aims to estimate thematerial parameters of the tissues

within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed,

endowedwith a forward operator which amounts to address the solution of a hyperelastic

solid mechanics model in the finite strain regime taking into account the axially stretched

state of the vessel, as well as the effect of internal and external forces acting on the

arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence,

the data assimilation and computational solid mechanics computations are parallelized

at three levels: (i) a Kalman filter level; (ii) a cardiac phase level; and (iii) a mesh partitioning

level. To illustrate the capabilities of this novel methodology toward the in-vivo analysis of

patient-specific vessel constituents, mechanical material parameters are estimated using

in-silico and in-vivo data retrieved from IVUS studies. Limitations and potentials of this

approach are exposed and discussed.

Keywords: parameter identification, reduced order unscented Kalman filter, IVUS, coronary arteries, arterial wall

model, computational models, high performance computing
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1. INTRODUCTION

Cardiovascular diseases are the principal cause of death and
morbidity worldwide (Mathers et al., 2016). The two principal
causes of death, cardiac ischemia and stroke, are intrinsically
related with the onset and progress and destabilization
processes of atherosclerotic plaque, which are still largely
unknown (Crea and Liuzzo, 2013; Bentzon et al., 2014).
At the final stage of the destabilization process, the plaque
ruptures releasing thrombotic components into the blood stream
which in turn generate thrombi that block the vessel lumen
causing ischemia. Thus, the prediction of rupture events and
the identification of the so-called culprit plaques is of the
utmost importance for diagnostics and therapeutics. Through
computational simulations is it possible to study the arterial
wall stress state, which may compromise plaque integrity
and induce rupture. Moreover, computational models also
allow to recreate different physiological and pathophysiological
conditions (hypertension, hyperemia, exercise, stenosis) (Taylor
et al., 1999, 2013; Torii et al., 2007; Blanco et al., 2015), as well
as interventions (angioplasty balloon inflation, stent deployment,
stent-plaque interaction, among others) (Conway et al., 2012,
2014) that are valuable resources for diagnosis, treatment and
surgical risk assessment.

In order to accurately simulate patient specific conditions,
three kinds of input data are required: (i) patient-specific
anatomical models of the vasculature, (ii) the loads to which
the anatomical structures are subjected to, and (iii) the patient-
specific distribution of the arterial-wall constituents and their
corresponding material parameters. As far as anatomical data
of the arteries is concerned, it can be straighforwardly extracted
from different medical imaging modalities (Wahle et al., 1995;
Milner et al., 1998; Bulant et al., 2017). Regarding the force
exerted by the blood pressure, it can be accurately estimated from
cuff-pressure measurements (O’brien et al., 2001; Miyashita,
2012). Thus, we are left to the problem of setting patient-specific
material parameters for the models of the arterial wall. This has
long been the Achilles tendon in numerical simulations, most
of them relying in material parameters acquired from ex-vivo
material experimentation in cadaveric specimens (Walsh et al.,
2014; Karimi et al., 2015). In this sense, the in-vivo identification
of material parameters for the arterial-wall is still an open
research topic.

Toward covering the aforementioned gap, specifically in the
coronary artery disease domain, intravascular ultrasound (IVUS)
emerges as an suitable imaging modality to make the attempt to
retrieve the material parameters and distribution of the vessel
materials under in-vivo conditions due to its high temporal
and spatial resolution. The acquired images, when coherently
ordered, are capable of delivering the motion of the vascular
structures. Some works (Kawasaki et al., 2002; Nair et al.,
2002; Sathyanarayana et al., 2009) have successfully classified
the materials in few discrete categories (e.g., necrotic core,
fibrotic, fibro-fatty or lipid-pool, calcified) based on the acoustic
impedance response of the tissues in a determined frame of
the IVUS study. It has then been demonstrated that there is a
notorious variability of the stress-strain response of tissues within

the same category (Loree et al., 1994; Holzapfel et al., 2005;Walsh
et al., 2014) of such classification. Therefore, this information
is not specific enough for simulation purposes. As anticipated
above, the temporal resolution of the IVUS study can be exploited
to retrieve themotion (displacement field) of the vessel wall along
the cardiac cycle (for example by using optical flow techniques
or large deformation diffeomorphic metric mapping). Using the
displacement field as input, data assimilation techniques can be
supplied to estimate the material parameters.

Data assimilation techniques make use of measurable
quantities to adjust a physical model whose goal is to represent
the reality posed by the in-vivo scenario. In that manner, these
techniques permit not only to estimate specific quantities of
interest, but also to explore the underlying physical phenomena.
Also, measurement errors can be filtered by the physical model
being a quid pro quo benefit: the measurements instantiate the
model and the model filters the measurements. Such techniques
can be classified in two categories: (i) variational approaches and
(ii) sequential filtering approaches.

In the variational approach, a cost functional that measures
the difference between the observed measures and the model
prediction is constructed. The cost functional depends on the
parameters of interest (among other parameters required by the
model) to render a model prediction of the measured variable.
Then, the estimated parameters are those such that minimize
the cost functional. The more popular approach is to solve
the Karush-Kuhn-Tucker (KKT) necessary conditions which is
employed in several works for mechanical parameter estimation
(Lagrée, 2000; Martin et al., 2005; Sermesant et al., 2006; Perego
et al., 2011; D’Elia et al., 2012; Bertagna and Veneziani, 2014;
Ares, 2016). In Lagrée (2000), the viscoelastic parameters of large
arteries were estimated using displacement fields of the vessel
wall generated by computational models. Similarly, Martin et al.
(2005) explored the estimation of the vessel compliance in a
1D model using a 3D fluid-structure interaction (FSI) model to
generate the measured displacement of the vessel wall. Using
medical data of blood pressure and inner radius of the arteries,
Stålhand (2009) also used 1D models to estimate the material
parameters according to the model proposed in Holzapfel et al.
(2000). The works of Perego et al. (2011) and D’Elia et al. (2012)
formulate the inverse problem from 3D FSI models and analyze
the sensitivity in the identification of Young modulus to noise
in the measurements of arterial wall displacements. In the latter,
data assimilation is performed from flow velocity data as well.
The main drawback of these variational approaches is the large
number of evaluations of the cost functional (or its derivative)
which are required in the minimization problem (Lassila et al.,
2013). Furthermore, the use of more realistic models such as 3D
FSI models or complex heterogeneous anisotropic solid models
are many times mandatory to render accurate results, increasing
the computational effort. In some cases, reduced order strategies
combined with statistical approaches can be applied to reduce
the burden behind cost functional evaluations, as shown in
Lassila et al. (2013). Other approach is proposed in Bertagna and
Veneziani (2014), based on the application of model reduction
techniques coupled with a proper orthogonal decomposition to
accomplish the solution of 3D FSI in a computationally efficient
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way. Efficient implementations for solid mechanics problems
have also been proposed in Avril et al. (2010) and Pérez Zerpa and
Canelas (2016) using a virtual fields method and a constitutive
equation gap functional, respectively.

In turn, and for problems involving a small-to-
moderate number of unknown parameters, the sequential
filtering approach (also known as filtering methods) is
less computationally demanding and, at the same time,
embarrassingly parallel. These features make the filtering
approach an appealing strategy for the kind of problems
addressed in the present work. Conceptually, given a set
of observations, the method realizes a prediction for each
observation and, then, introduces corrections in the model
parameters based on the discrepancies between the model
estimation and the observed data. For each prediction-correction
step, several variations of the parameters are tested in the model
and, through statistical analysis of the model predictions, a
suitable correction is performed over the parameters. Several
methods based on the Kalman filter have been developed to deal
with linear and non-linear dynamic problems. As examples,
a non-linear extended Kalman filter (EKF) with collocation
feedback is applied to identify the Young modulus of different
regions of a heart model in Moireau et al. (2008), Moireau
et al. (2009), and Chapelle et al. (2009). The observations used
varied between the myocardium velocity (Moireau et al., 2008),
displacement (Moireau et al., 2009) and velocity of the heart
boundaries (Chapelle et al., 2009). The stability of such methods
was studied (Moireau et al., 2008) and in terms of accuracy it
is reported that Kalman filtering is optimal for linear systems
only, while extended algorithms based on linearized operators
may lead to efficient, albeit non-optimal, filtering procedures.
In Lipponen et al. (2010), the EKF is also applied to estimate
parameters of a reduced order Navier-Stokes model (through
an orthogonal decomposition of the velocity field) through
observations acquired from electrical impedance tomography.
In more recent works, Moireau and Chapelle (2011) presented a
reduced order Kalman filter based on the unscented transform
(abbreviated as ROUKF) that offers an interesting alternative
to the EKF method. Such an approach does not require neither
linearization nor calculation of the tangent operator of the
non-linear model, which substantially eases its implementation.
Noteworthy, the ROUKF features a higher order approximation
of the system states statistics, delivering more accurate outcomes
than EKF. In Bertoglio et al. (2012) and Bertoglio et al. (2014),
ROUKF was successfully applied for estimation of Young
modulus in arteries with tests in-vivo and in-vitro, showing a
simpler and more efficient implementation than EKF. Recently
in Caiazzo et al. (2017), terminal resistances and vessel wall
properties of a 1D vascular network were estimated via ROUKF
using blood flow and/or pressure measurements as observations.

In this work, we present a novel approach to construct patient-
specific mechanical models of the arterial wall using in-vivo data
from IVUS studies. In a nutshell, this approach integrates the
realms of image processing, optical flow, continuum mechanics,
and filtering data assimilation to effectively merge patient-
specific data with mechanical models, toward the in-vivo
estimation of material properties. From the IVUS study, a frame

of interest is selected and the corresponding arterial wall is
demarcated. For the mechanical model a finite strain framework
is considered, and the constituent tissues are assumed to behave
as isotropic Neo-Hookeanmaterials. Importantly, it is considered
that the arterial vessel corresponding to the diastolic phase is
at equilibrium with a certain diastolic pressure level, and it
is further subjected to a given axial stretch at that phase. By
using gating, registration and optical flow methods developed in
previous works (Maso Talou et al., 2015, 2017; Maso Talou, 2017),
the displacement field of the vessel wall is estimated along the
cardiac cycle. Then, the ROUKF is exploited as a data assimilation
procedure in which the previously obtained displacement field
is supplied as observational data, while the material parameter
of the Neo-Hookean models are the target parameters to be
estimated.

The manuscript is structured as follows. In section 2, the
proposed methodology is detailed, presenting image processing
techniques (section 2.1), the mechanical model for the arterial
wall (section 2.2), and, at last, the data assimilation process
for the estimation of the material parameters (section 2.3). In
section 3, the sensitivity of the data assimilation parameters
(section 3.1) and boundary conditions (section 3.2) and baseline
stress state (section 3.3) for the mechanical problems are studied
to assess their impact on the data assimilation outcomes. Hence,
the mechanical characterization is performed for four in-vivo
atherosclerotic lesions to analyze the performance of the method
in real case scenarios (section 3.4). Insights, strengths and
weaknesses of the methodology are then discussed in section 4
and final remarks are outlined in section 5.

2. METHODS

This section is divided in four parts. First, the IVUS imaging
processing methods are described, where we present the
procedures to obtain the displacement field of a specific
vessel cross-section along the cardiac cycle (see Figure 1).
Second, the mathematical model for the arterial mechanics
is formulated, defining the mechanical equilibrium and the
material constitutive behavior. Third, the data assimilation
algorithm is presented as a tool to estimate unknown material
properties in the mechanical models using the displacement
field retrieved from the IVUS images. Finally, an efficient three-
level parallelization scheme is described for high performance
computing environments.

2.1. Image Processing
The goal of the image processing stage is to deliver the
displacement field of the vessel wall along the cardiac cycle
at a particular site of interest within the artery. As this new
methodology is a proof of concept, the data from the in-vivo
cases will be extracted from a standard IVUS pullback as a
retrospective study. As the transducer is axially displaced from
frame to frame, only images corresponding to a single cardiac
cycle can be extracted for each cross-section to obtain small
topological variations between the images (spatial consistency).
Hence, the extraction of the frames at a particular location is
hindered due to the motion of the IVUS transducer exerted by
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FIGURE 1 | Proposed pipeline to estimate the patient-specific mechanical properties from IVUS medical images.

the myocardium contraction. To overcome this issue, gating and
registration procedures are performed using methods previously
presented in Maso Talou et al. (2015, 2017). To retrieve the
displacement field, a modified optical flow method is applied
to the extracted frames at the site of interest. As follows, the
treatment given to the IVUS images is briefly described.

2.1.1. Gating
The gating method aims to recover the cardiac phase at each
cross-sectional image of the study. To achieve this, a signal that
measures the total motion of each frame is generated as

s(n) = αg

[

1−

∑H
i=1

∑W
j=1

(

In(i, j)− µn

) (

In+1(i, j)− µn+1

)

σn σn+1

]

+ (1− αg)

H
∑

i=1

W
∑

j=1

−
∣

∣∇In(i, j)
∣

∣ , (1)

where In is the n-th image of the study with a resolution of
H × W pixels, µn and σn are the mean and standard deviation
of the intensity at In and αg a mixture parameter. The principal
frequency mode of the signal s(n) at the physiological heart-
frequency range (i.e., between 0.75 and 1.66 Hz) is extracted
to obtain the mean cardiac frequency of the study, fm. Then, a
low frequency signal sl(n) is generated by low-pass filtering s(n)
with cut-frequency fc = 1.4fm. If there is not severe arrhythmia
during the IVUS acquisition, sl presents one minimum per
cardiac cycle related to the end-diastolic phase, thus, all frames
for this phase are easily and directly extracted. Due to heartbeat
period variability along the study, some of these minima can
be displaced between s and sl, because of the lack of high
frequencies contributions. To avoid such inconsistencies, we
iteratively modify f kc = (k + 0.4)fm (k is the current iteration

number), recompute sk
l
with the new cut-frequency f kc and adjust

each minimum of iteration k − 1 to its nearest local minimum
in sk

l
. Interestingly, the iterative scheme aids in cases with mild

arrhythmia, i.e., where only few heartbeats of the study (not
contiguous) present delay or omission of the P-wave. In those
cases, the adjustment of the minima identified correctly the P-
waves or collapsed the twominima to the same time position (this
is the case when a P-wave did not occur and the heartbeat elapsed
twice its period). In both of the previous cases, the minima are
correct. In cases with severe arrhythmia, it is recommended the
use of ECG signal and manual segmentation of minima for a
proper gating. In the so-obtained phase, the cardiac contraction
is at its minimum, and so, it corresponds to the beginning of the
cardiac cycle, more precisely the beginning of the cardiac P-wave.

Since the heart frequency changes along the study, the
heartbeats are sampled with a variable amount of frames. This
variability in the heartbeat frequency affects mainly the relaxation
process of the heart and, consequently, the length of the T-P
interval. Despite this, the P-T interval remains almost invariant.
Taking this fact into consideration, the end-diastolic instant for
each cardiac cycle will be regarded as a reference for the definition
of S cardiac phases. Each available frame of the P-T interval
is then associated to a specific cardiac phase, obtaining phase-
coherent volume datasets. Further details of the gating method,
setup of the mixture parameter αg and validation with in-vivo
studies are described in Maso Talou et al. (2015).

2.1.2. Registration
All phase-coherent volumes are registered (axially and
transversally) against the volume dataset corresponding to
the end-diastolic phase. This procedure is performed for each
phase-coherent volume. The transversal registration is achieved
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by finding the in-plane rigid motion for each image in the current
phase that best matches the frame image in the end-diastolic
phase. To quantify the matching between two images, we use a
maximum likelihood estimator presented in Cohen and Dinstein
(2002) and Wachinger et al. (2008),

c(In, Im) =

H
∑

i=1

W
∑

j=1

[

In(i, j)− Im(i, j)− log
(

e2 (In(i,j)−Im(i,j)) + 1
)]

.

(2)
The rigid motion 4n for each cross-section is then estimated by
solving the following optimization problem

4n = arg max
4∗

c
(

IDn , I
s
n(x(4

∗), y(4∗))
)

, (3)

where Isn is the n-th cross-section of the phase-coherent volume
corresponding to the s-th phase, D denotes the end-diastolic
phase, and I(x(4∗), y(4∗)) is the image I after applying the rigid
transformation defined by 4∗ which is composed by an in-plane
translation plus a rotation with respect to the image center.

By virtue of the myocardium contraction, the same cross-
sections site at the different phases may be longitudinally
displaced. Therefore, it is necessary to perform an axial
registration to find the corresponding frames at different phases
for the same transversal site. Thus, after transversal registration of
all phase-coherent volumes, an axial registration against the end-
diastolic phase is applied. For each frame of each phase-coherent
volume (now transversally registered), the best matching frame
in the end-diastolic volume is sought out. To diminish the
computational burden, the search is limited to the 14 adjacent
frames in the end-diastolic volume which is within the range
of axial displacements of a transducer during the IVUS study
(Arbab-Zadeh et al., 1999). To quantify the matching between
two images, we use a neighborhood likelihood estimator defined
as

cw(I
s
n, I

D
m) =

w
∑

d=−w

φσG (d) c(I
s
n+d

, ID
m+d

)

w
∑

d=−w

φσG (d)

, (4)

where φσG is a Gaussian weight function with σG standard
deviation and w is the amount of adjacent frames used to
establish the matching between the two sites centered at Isn and
IDm respectively. It is important to note that w is not the search
range fixed at 14 frames, but is the size of the neighborhood used
for each comparison between two frames. Then, the position for
axial registration, i. e., frame of the end-diastolic phase that best
matches the current frame Isn is given by

m = arg max
k=n−7,...,n+7

cw(I
s
n, I

D
k ). (5)

Finally, given the site of interest at the n-th frame of the end-
diastolic phase volume, the set of frames that constitutes a
sequence along the cardiac cycle at this site is I = {Ĩsn, s =

1, . . . , S}, where Ĩsn is the n-th frame of the phase-coherent volume
corresponding to phase s after transversal and axial registration.

The reader is directed toMaso Talou et al. (2017) andMaso Talou
(2017) for further details of the registration methods.

2.1.3. Optical Flow
For a pair (or sequence) of images, optical flow techniques
aim at determining the displacement vector field that relates
the points of both images (Horn and Schunck, 1981). Because
optical flow strategies rely on the gray constancy assumption, a
denoising procedure is performed over the sequence. The applied
denoising method is a variation of the TV-L1 method (Rudin
et al., 1992; Chan et al., 1999) which modifies the data term
(absolute difference measurement of the images) by the negative
maximum likelihood estimator assuming one image with gamma
distributed noise and another noiseless image. Thus, the denoised
image I corresponding to the noisy image J is obtained as

I = arg min
Ĩ

∫

�

[

−γdνd(J− Ĩ)+δ
−γd
d

eγd(J−Ĩ)+αd|∇ Ĩ|
]

d�. (6)

where � is the image domain, γd, νd, δd are parameters of the
generalized gamma distribution that models the noise and αd the
regularization parameter for denoising.

Then, the optical flow is estimated for the denoised sequence
of images using the method proposed in Brox et al. (2004).
Particularly, the flow (i.e., the displacement field) is computed
between the end-diastolic frame of the sequence to the other
frames, corresponding to the different cardiac phases. Thus, the
displacement field uOF = (uOF, υOF) between the end-diastolic
frame ID and the s-phase frame Is is given by

uOF =

R
∑

r=1

δur , (7)

where δur is the flow component corresponding to the image
resolution r that is obtained as

δur = arg min
δu

∫

�

[

ψ

(∥

∥

∥

∥

∂Ir

∂t
+ ∇Ir · δu

∥

∥

∥

∥

2

Gρ

)

+ αo ψ
(∥

∥∇(ur−1 + δu)
∥

∥

2

F

)

]

d�, (8)

where ur−1 =
∑r−1

t=1 δu
t , ‖·‖F is the Frobenius norm, αo is the

regularization parameter for optical flow. The functionψ and the
weighted norm ‖·‖Gρ are defined by

ψ(x) = 2κ2
√

1+
x

κ2
,

∥

∥

∥

∥

∂Ir

∂t
+∇Ir · δu

∥

∥

∥

∥

2

Gρ

= Gρ ∗
( ∂Ir

∂x

)2
δu2 + Gρ ∗

( ∂Ir

∂y

)2
δυ2

+Gρ ∗
( ∂Ir

∂t

)2
+ 2Gρ ∗

( ∂Ir

∂x

∂Ir

∂y

)

δu δυ

+2Gρ ∗
( ∂Ir

∂x

∂Ir

∂t

)

δu+ 2Gρ ∗
(∂Ir

∂y

∂Ir

∂t

)

δυ,

where Gρ is the Gaussian kernel with ρ standard deviation
and ∗ is the convolution operator. Note that the flow uOF is
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the displacement field between ID and Is, then the temporal
derivative is estimated as the variation of the intensity between
such frames.

Such strategy defines all displacement fields along the cardiac
sequence at the same reference phase (the end-diastolic phase),
which eases the integrability of the data into the assimilation
process introduced in section 2.3.

2.1.4. Patient-Specific Geometric Model
Using an IVUS study gated at the end-diastolic phase, a
geometrical model for a frame of interest is constructed (see
Figure 2). First, the intima-media area is manually segmented
by a specialist from the image using cubic splines to obtain a
2D patient-specific geometry. Then, the 2D geometry is extruded
0.05 mm in the axial direction to render a 3D slice of the arterial
vessel. The mesh generation from this geometry is described later
in section 2.2.5 when the numerical scheme for the mechanical
problem is introduced.

2.2. Mechanical Setup for the Arterial Wall
In this section, the main ingredients from continuum mechanics
required to describe the mathematical models are briefly
summarized. For further details the reader may refer to Ares
(2016) and Blanco et al. (2016).

Let us consider the domain of a cross-sectional slice of the
vessel wall. Its spatial configuration in the Euclidean space is
denoted by�s, with boundary ∂�s = ∂�W

s ∪ ∂�E
s ∪ ∂�

A
s , where

∂�W
s represents the interface between the vessel and the blood,

∂�E
s the external surface, and ∂�A

s =
⋃2

i=1 ∂�
A,i
s stands for

the set of 2 cross-sectional (non-physical) axial boundaries for
the vessel slice (see Figure 3). The unit outward normal vector is
denoted by ns. The coordinates at this configuration are denoted
by xs. Amaterial configuration, used as a reference configuration,
is denoted by �m, with coordinates xm. In the present context,
�s stands for the configuration at which mechanical equilibrium
is achieved for a given load condition (diastolic, systolic or
any other loaded state of the arterial wall). Residual stresses
are neglected, therefore, the material configuration �m is both
load-free and stress-free.

The displacement field mapping points from the material into
the spatial configuration is denoted by u. Then, we characterize
the deformation mapping from �m onto �s and its inverse by
the following expressions,

xs = χm (xm) = xm + um, (9)

xm = χs (xs) = χ−1
m (xs) = xs − us, (10)

where subscripts m and s denote the descriptions of the fields
in the material and spatial configurations, respectively. Thus, the
displacement vector field is given by

us(xs) =
(

um(xm)
)

s
= um

(

χ−1
m (xs)

)

, (11)

and its gradients with respect to material and spatial coordinates
are, respectively, obtained as

Fm = ∇mχm = I+ ∇mum, (12)

fs = ∇sχs = ∇sχ
−1
m = I− ∇sus. (13)

Observe that [F−1
m ]s = fs and [f−1

s ]m = Fm. Arterial wall tissues

are assumed to behave as incompressible materials, which is
mathematically represented by the following kinematic condition

det Fm = 1. (14)

In a general case the load state of the model of an arterial
cross-section is characterized as follows. Neumann boundary
conditions are considered to be given by the forces exerted
by the blood flow over ∂�W

s , i.e., through a traction field tWs
which is considered to be characterized as tWs = psns (here
we only consider the pressure load, and neglect the shear forces
imprinted by the blood flow on the vessel wall), and by the
tethering tractions tA,is acting over ∂�A,i

s , i = 1, 2. For ease
of notation, the tethering tractions are grouped into tAs , which
is defined over the whole ∂�A

s . The action of the surrounding
tissues is introduced as an elastic traction over the external
boundary, which is characterized by the elastic parameter τ and

FIGURE 2 | Vessel segmentation and geometric model generation: (Left) segmentation of the intima-media area over the IVUS image; (Middle) extruded volume of

the intima-media area; (Right) final 3D mesh.
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FIGURE 3 | Cross-sectional slice of an arterial vessel. Description of the spatial

domain �s and boundaries ∂�s = ∂�Ws ∪ ∂�Es ∪ ∂�As of the arterial wall.

depends on the displacement field at this boundary (see further
details in section 2.2.1). These tractions, representing the external
tissues influence, only act over the external surface ∂�E

s in the
physiological pressure range, i.e., at end-diastolic pressure or
higher. That is, during the preload problem (see section 2.2.2), the
boundary ∂�E is an homogeneous Neumann boundary (except
for a small region of arc length 1 = 0.1 mm which is fixed to
remove rigid motions).

The mechanical problem in variational form is framed as
a saddle-point problem to accommodate the incompressibility
constraint through the corresponding Lagrange multiplier, i.e.,
the pressure field in the solid domain.

Next, two variational formulations are presented which
formalize the concept of mechanical equilibrium for the
so-called preload and forward problems. In the preload
problem, the known configuration is that one at which
the body is at equilibrium (the spatial domain), and the
unknown configuration is the material configuration used to
define the constitutive equations. In the forward problem, the
known configuration is the material one, while the unknown
configuration is the one where equilibrium actually occurs.

2.2.1. Forward Problem
When the material (load- and stress-free) configuration �m is
known, the variational Equation (16) can be cast in the material
domain, yielding what we define as the forward problem. The
variational formulation then reads: given thematerial description
of the loads, pm and tA,im , find (um, λm) in Um × Lm such that

∫

�m

(1− det Fm)λ̂m d�m −

∫

�m

λm

(

F−T
m · ∇mûm

)

det Fm d�m

+

∫

�m

(Sm(Em)) · Ė
(

ûm
)

d�m

=

∫

∂�E
m

τ (um − (ud + uOF)m) · ûm |F−T
m nE0 | det Fm d∂�E

m

+

∫

∂�W
m

(

pmF
−T
m nW0 · ûm

)

det Fm d∂�W
m

+

2
∑

i=1

∫

∂�
A,i
m

(

tA,im · ûm
)

|F−T
m nA,i0 | det Fm d∂�A,i

m

∀(ûm, λ̂m) ∈ Vm × Lm, (15)

where Ė(ûm) = 1
2 [F

T
m(∇mûm) + (∇mûm)

TFm], n0 is the unit
outward normal vector in the material configuration. Recall that
τ is the elastic parameter characterizing the response of the
surrounding media, uOF is the displacement field which maps
the end-diastolic to the spatial configuration where equilibrium is
achieved (see Equation 7), and ud is the displacement field which
maps points from the material to the end-diastolic configuration.
Also, Um, Vm, and Lm are the counterparts of Us, Vs, and Ls,
respectively, with functions defined in�m.

Acceleration terms have also been neglected, since the stresses
associated to such inertial forces is much smaller than those of
constitutive origin (Ares, 2016; Blanco et al., 2016).

2.2.2. Preload Problem
Given the equilibrium configuration �s, the variational
formulation reads: given the loads tW,n

s and tAs , find
(us, λs) ∈ Us × Ls such that

∫

�s

[

−λs div ûs + σ s · εs
(

ûs
)]

d�s −

∫

�s

[1− det F−1
s ]λ̂s d�s =

∫

∂�W
s

tW,n
s ns · ûs d∂�

W
s +

2
∑

i=1

∫

∂�
A,i
s

tA,is · ûs d∂�
A,i
s

∀(ûs, λ̂s) ∈ Vs × Ls, (16)

where εs(û) = 1
2 (∇sû + ∇sû

T) is the strain rate tensor, Ls =

L2 (�s) and Us =
{

us ∈ H1 (�s) , us satisfies essential b.c.
}

are,
respectively, the linear space for pressures and the linearmanifold
for kinematically admissible displacements, and Vs =

{

ûs ∈

H1 (�s) , ûs satisfies homogeneous essential b.c.
}

is the space
of kinematically admissible variations. Also, σ s is related to the
second Piola-Kirchhoff stress tensor Sm through

σ s =
1

det Fs
Fs(Sm(Em))sF

T
s . (17)

where Sm is a function of the Green-Lagrange deformation
tensor Em = 1

2

(

FTmFm − I
)

via a constitutive equation (see
section 2.2.4).

In this work the preload problem is used to obtain the
material configuration that enables an appropriate calculation
of the stress field, which realizes the equilibrium in the end-
diastolic configuration. Note that in this case the action of
the surrounding media is omitted. This is due to the fact that
our hypothesis considers the end-diastolic configuration as a
reference configuration for the elastic response of the external
tissues.

2.2.3. Equilibrium Problems for a Given Set of

Material Parameters
The preload problem is a mandatory step toward characterizing
the mechanical state (the stress state) of the arterial wall in a
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geometry obtained from medical images (e.g., the end-diastolic
geometry) with given baseline hemodynamics loads. In this
context, these loads are given by the end-diastolic pressure,
also called preload pressure, and by the axial stretch caused by
tethering forces. The material configuration is required because
it is used to define constitutive equations, without which the
forward problem cannot properly be formulated. In our case,
such baseline geometry is obtained from IVUS study, while the
baseline hemodynamics loads (the blood pressure) are estimated
from patient specific data. Just after solving the preload problem,
the baseline mechanical state, that is the stress state due to
the preload pressure (i.e., pressure at diastole), is adequately
determined and the displacement field us—that maps the
material (load-free) configuration to the diastolic configuration–
is recalled as ud. Then, the forward problem is solved to determine
the equilibrium configuration for other hemodynamics loads
occurring during the cardiac cycle. In that manner both problems
are synergically coupled to solve a forward problem from an
adequately preloaded configuration.

In practice, a set of physiological loads for the vessel will
be given. Individualizing the diastolic pressure level as ps, a set
of pressure loads between diastole and systole can be listed as
{ps1 , . . . , psS}. Through the forward problem, each load psi will
be in correspondence with an unknown spatial configuration
�si , i = 1, . . . , S. Notice then that, for a given set of material
parameters, the preload problem is solved only once and so
the forward problem is solved for each load psi in the set of
physiological loads.

2.2.4. Constitutive Models
The main components of the atherosclerotic plaque, i.e., fibrotic,
lipidic and calcified tissues, are modeled as isotropic Neo-
Hookean materials. In Walsh et al. (2014), it is shown that
fibrotic tissue in illiac plaque presents a quasi isotropic behavior.
Different from the fibrotic tissue, the lipidic and calcified tissues
do not display any contribution of smooth muscle cells or
oriented fibers that may endow their structures with anisotropic
behavior, what suggests that an isotropic hypothesis for these
materials is reasonable.

The isotropic Neo-Hookean model is suitable for materials
under large deformations where the stress-strain relationship
behaves as non-linear, elastic, isotropic and independent of
strain rate. Also, the model assumes an ideal elastic material
at every strain level which, for physiological ranges, is satisfied
by many biological tissues. The stress-strain relationship for a
Neo-Hookean material derives from the strain energy function

ψ =
c

2
(I1 − 3), (18)

where c is the material parameter that characterizes the stiffness
of the material and I1 is the first isochoric invariant of the
Cauchy-Green tensor

I1 = Tr
(

Cm(det Fm)
−2/3

)

, (19)

withCm = FTm Fm. Then, the second Piola-Kirchhoff stress tensor
(and the σm through Equation 17) is obtained as

Sm(Em) =
∂ψ

∂Em
. (20)

2.2.5. Numerical Methods
The preload and forward problems are linearized using the
Newton-Raphson method. Linear tetrahedral finite elements for
both displacement and pressure fields are used for the spatial
discretization of the corresponding linearized problems. To
stabilize the problem in the sense of the inf-sup condition,
the linearized (forward and preload) problems are modified
adding a diffusive term in the pressure equation. For the analysis
of the proposed approach, four patient-specific 3D geometries
were obtained using the technique described in section 2.1.4.
These geometries were discretized using Netgen 3D using
a characteristic element size ranging from 10µm to 40µm,
resulting in meshes with 6,521, 7,516, 4,835, and 3,808 nodes for
the cases 1–4, respectively. All these steps are performed using
an in-house solver. The resulting systems of linear equations
are solved using a direct solver based on LU factorization from
the SuperLU library (Li and Demmel, 2003). Further details
regarding the linearization and numerical schemes can be found
in Ares (2016) and Blanco et al. (2016).

The Newton iterative scheme in both equilibrium problems
finishes when ‖um+1

s − ums ‖L∞ < 10−4 mm and ‖λn+1
s −

λns ‖L∞ < 1 Pa. Such convergence criterion was chosen to yield a
higher precision than the optical flow processing applied to IVUS
images (16 · 10−3 mm assuming pixel precision).

2.3. Data Assimilation
In the data assimilation process, the displacement field uOF

obtained using the optical flow technique as explained in
section 2.1 and the mechanical models presented in the previous
section (section 2.2) are integrated by an unscented Kalman filter.

Let us define a partition for the domain of analysis�s =
⋃M

j=1�
j
s

composed byM disjoint regions. Each region�i
s is characterized

by its own material parameter, say ci, see Equation (18). The axial
loads tA,nsi

, the pressure level psi and the displacement fields uOFsi
(obtained by optical flow techniques) are known at S cardiac
phases (i = 1, . . . , S). Since our mechanical problem is time-
independent, the time instants in the context of the Kalman
filter simply correspond to filter iterations, while at each iteration
all forward problems must be solved. By using the mechanical
constitutive models, the material parameters grouped as θ =

(c1, . . . , cM), are estimated such that

θ = arg min
θ̂

S
∑

i=1

‖uMO
si

(θ̂)− uOFsi ‖2L2 , (21)

where uMO
si

(θ̂) is the displacement field at the configuration si
obtained by solving the preload and forward problems (described
in section 2.2) with pressure level psi and material parameters θ̂ .

The solution of the parameter identification problem eqution
(21), satisfies the discrete dynamic nonlinear system presented as
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follows

Xa
k = f (Xa

k−1, tk−1)+Wk,

Zk = h(Xa
k , tk)+ Vk,

(22)

where Xa
k
is the augmented state vector

Xa
k = [uks1 (x), . . . , u

k
sS
(x), λks1 (x), . . . , λ

k
sS
(x), c1, . . . , cM]T , (23)

which contains the displacement usi and pressure λsi fields for all
forward problems i = 1, . . . , S, and the material parameters of all
regions of the domain θ = (c1, . . . , cM); f (Xa

k
, tk) is the operator

that sequentially solves the preload and all forward problems for
parameters and initial state conditions in Xa

k
at filter iteration

tk (recall that these problems are time-independent, and so the
dependence on time is ruled out in practice); Wk are the model
errors at the k-th step; h(Xa

k
, tk) = HXa

k
is a linear observation

operator represented by the block matrix

H =
[

Iuu 0uλ 0uθ
]

, (24)

where block matrix indexes indicate the corresponding
dimensions; Z is the set of optical flow observations at each
cardiac phase, described by the column vector

Z = [uOFs1 (x), . . . , uOFsS (x)]T , (25)

where uOFsi (x) is the displacement field obtained by the optical
flow technique for the cardiac phase i, i = 1, . . . , S (observe
that for the present case of static problems, the observations are
fixed concerning the dynamics of the data assimilation process);
V is the vector of optical flow and interpolation errors for the
observation vector Z.

To obtain an estimate of the parameters θ , a reduced ordered
unscented Kalman filter (ROUKF) (Julier and Uhlmann, 2002,
2004) is applied to the system described in Equation (22). The
filter comprises the following steps

1. Spherical sigma-points generation σ
(n)
i , i = 1, . . . ,M + 1

with their corresponding weights w(i) (see Julier, 2003) and
initialization of the variables

R0 = σOF Iuu; L0 =

[

LX0
Lθ0

]

=





Lu0
Lλ0
Lθ0



 =





0uθ
0λθ
Iθθ



 ;

U−1
0 =







σĉ1 . . . 0
...

. . .
...

0 . . . σĉM






, (26)

Xa
0 = [X̂+

0 , θ̂
+
0 ]T = [0u, 0λ, θ̂0]

T , (27)

P+0 = L0U
−1
0 LT0 , (28)

where σOF is the uncertainty of the computed optical flow
and σĉi is the uncertainty of the parameter ci, i = 1, . . . ,M.
The sensitivity analysis of the uncertainty value is studied in
section 3.1.

2. The prediction step

X̂
(i)
k−1

= X̂+
k−1

+ LXk−1

√

U−1
k−1

σ
(n)
i , i = 1, . . . ,M + 1,

θ̂
(i)
k−1

= θ̂+
k−1

+ Lθk−1

√

U−1
k−1

σ
(n)
i , i = 1, . . . ,M + 1,

[

(X̂
(i)
k
)

(θ̂
(i)
k
)

]

= f
(

[

(X̂
(i)
k−1

)

(θ̂
(i)
k−1

)

]

, tk−1

)

,

X̂−
k
=

M+1
∑

i=1

w(i)X̂
(i)
k
, θ̂−

k
=

M+1
∑

i=1

w(i)θ̂
(i)
k
, Ẑk =

M+1
∑

i=1

w(i)Ẑ
(i)
k
.

(29)

3. The correction step

LXk = X̂
(∗)
k
Dw(σ

(∗))T , Lθk = θ̂
(∗)

k Dw(σ
(∗))T ,

{HL}k = Ẑ
(∗)
k
Dw(σ

(∗))T ,

Pw = σ
(∗)Dw(σ

(∗))T ,

Uk = Pw + {HL}TkR
−1
k

{HL}k,

X̂+
k
= X̂−

k
+ LXkU

−1
k

{HL}TkR
−1
k

(

Z − Ẑk

)

,

θ̂+
k

= θ̂−
k
+ LθkU

−1
k

{HL}TkR
−1
k

(

Z − Ẑk

)

.

(30)

The matrices σ
(∗), X̂

(∗)
k
, Ẑ

(∗)
k
, θ̂

(∗)

k are theM× (M+1) matrices

whose columns are the vectors σ (i), X̂
(i)
k
, Ẑ

(i)
k
, θ̂

(i)
k

with i =

1, . . . ,M+1, respectively.Dw is the diagonal (M+1)×(M+1)
matrix with values Dii = w(i), i = 1, . . . ,M + 1, i.e., the
sigma-point weights.

4. If stop criteria is not achieved, go to step 2 and k = k+ 1.

In this iterative scheme, the model errors Wk (inaccuracies
in the solution of the preload and forward problems) have been
neglected. The stop criteria used in this work is a fixed number of
iterations that is reported for each study case in section 3.

In this work, c was reparametrized as c = 2θ̂ (this approach
was introduced in Bertoglio et al., 2012) allowing θ̂ to vary in the
whole R (as occurs in the presented formulation 29, 30) without
delivering invalid values for c.1

2.4. Parallelization Scheme
The data assimilation scheme is a computationally demanding
task. However, it presents many independent or low dependent
tasks. Firstly, notice that all sigma point predictions can be
computed in parallel. As the forward problem is static, all
forward problems (one per load, for S different loads) are
computed in parallel and an extended observation vector
Ẑ(i) = [Ẑ(i),1, . . . , Ẑ(i),S]T for the i-th sigma-point is created

by appending the predicted displacements Ẑ(i),j of the j-th
forward problem corresponding to the pressure load psj . In

1The reparametrization 2θ̂ modifies the assumed distribution of the parameter

from normal distribution to log-normal distribution. Mean and covariance of θ

are propagated in a different fashion than mean and covariance of c. Nevertheless,

there is a similar statistical interpretation for c using these descriptors in an

exponential space of coordinates. For example, a covariance of σ = 1 must be

understood as giving the same probability of c being half or twice its initial value.
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that manner, at each Kalman iteration, the observations of all
frames, are processed at once. In turn, the forward problem
itself is parallelized by partitioning the mesh and communicating
among subdomains the results of the local operations in both
assembling and solving stages. Partitioning is accomplished using
ParMETIS (Karypis and Kumar, 1998), and the solution is
achieved using the SuperLU library (Li and Demmel, 2003).
Following such parallelization scheme, and assuming there are
enough computational resources, the cost per iteration of the
data assimilation process equals the cost of the computation
of one preload problem plus one forward problem, regardless
the number of cardiac phases or sigma-points employed (i.e.,
regardless the number of parameters to be estimated). Note
that the cost of the Kalman filter increases as more parameters
are estimated, although when compared to the computations
required for solving the mechanical equilibrium problems this
increment is insignificant (only a few dozens of parameters will
be required in the worst case). In Figure 4, the activity diagram
for the proposed parallel scheme is presented. Thus, the data
assimilation process is HPC ready and, even, capable to handle
large scale FEM problems.

3. RESULTS

In what follows, sensitivity analyses are carried out to study
the variation of the parameter estimation with respect to:
the parameter uncertainties, boundary conditions and baseline
stress state of the mechanical model (sections 3.1, 3.2, and
3.3, respectively). From these analyses, a reasonable setup of
the data assimilation parameters and mechanical conditions is
obtained for the present context of material identification in
patient-specific models. Finally, in section 3.4, 4 patient-specific
mechanical models are derived from in-vivo IVUS studies and the
obtained displacement errors between the model predictions—
with its parameters adjusted by data assimilation—and the
optical flow observations are assessed.

3.1. Uncertainty Parameters Sensitivity
Let us define a homogeneous ring-shaped domain �s with Neo-
Hookean constitutive behavior (see Equation 18). The inner and
outer radius of the ring are 2 and 2.71 mm, respectively. The
size and proportions are chosen to approximate an idealized
coronary artery. Loads of tW,n = 80 mmHg and tW,n = 120
mmHg are applied over the inner surface for the preload and
forward problems, respectively, and tethering tractions tA,is are
considered such that an axial stretch of 10% is prescribed. At the
outer surface, homogeneous Neumann boundary conditions are
assumed (τ = 0 in Equation 16). To avoid rigid movements in
this idealized geometry, only radial displacement is allowed for 4
equidistant nodes at the luminar perimeter. The forward operator
f , which comprises the preload and forward problems (see
Equations 15, 16), is solved at each filter iteration with an iterative
scheme where a Newton-Raphson linearization procedure is
applied as described in section 2.2.5 (further details in Blanco
et al., 2016).

Using this setting, we create an in-silico experiment to analyze:
(i) the sensitivity of the parameter estimates θ̂ with respect to the

σZ (the observations uncertainty, previously referred to as σOF);
and (ii) the sensitivity of the parameter estimates θ̂ with respect
to the σθ (the estimate uncertainty). Thus, the observations are
generated by computing Z = h

(

f (Xt)
)

where Xt = [0u, 0λ, θ
t]

is the true augmented state vector with the solution parameters

ct = 2θ
t
for the experiment. In this particular case, the domain is

homogeneous and the constitutive model has only one parameter
(c), then, only one parameter is estimated.

To analyze the sensitivity of θ̂ with respect to the observation
uncertainty σZ , the estimation of the parameter is performed
assuming different values σZ , ranging from 10−1 to 10−5 mm.
Also, three different materials are used for the ring, mimicking:
cellular fibrotic tissue (ct = 5 · 105Pa), lipidic tissue (ct =

1 · 105Pa) and calcified tissue (ct = 4 · 106Pa). The estimation
of the Kalman filter for all the 15 cases is presented in
Figure 5. The results showed that in all cases the parameter

uncertainty interval
[

2
θ̂−

√

diag(U−1)
; 2
θ̂+

√

diag(U−1)]
encloses the

true parameter value ct . Even though, a closer estimate across
the three materials is obtained for σZ = 10−3 mm which seems
reasonable as it is the precision of the displacements delivered by
the convergence process in solving the nonlinear operator f .

Regarding the filter convergence, it is observed that as the
uncertainty in the observations decreases, the method converges
faster. In Figure 5, it is shown that as the σZ increases its value,
the convergence is slower. Note that the estimator gain matrix is
computed as Kk = Lθ

k
U−1
k

{HL}T
k
R−1
k

and the only operator that

varies in the first iteration of the presented cases is R−1
0 . As the

spectral radius ofR−1
0 diminishes as σZ increases thenK0 spectral

radius diminishes as well, yielding a smaller correction of θ̂+
k

as
presented in the plot. At the same time, since Pw is constant, the
update of Uk = Pw + {HL}T

k
R−1
k

{HL}k is damped by Rk. This
damping effect is evidenced in the evolution of the parameter
uncertainty intervals plotted in Figure 5. In statistical terms, the
lack of confidence in the new observations leads to reducing its
weight at the correction step.

An analogous analysis was performed to study the sensitivity
of θ̂ with respect to the parameter uncertainty σθ . The
uncertainty levels for σθ ranged from 0.25 to 4 and the
experiment was repeated for the three different ring materials
(fibrotic, lipidic and calcified tissues). The results showed that
the bigger σθ , the wider the search space for the parameter, and
the faster the method converges when the initial value is far
from the true parameter value (see Figure 6). On the other hand,
high values of σθ may cause an overshooting in the estimation
and a slower convergence. In this scenario, the reparametrization
deteriorates the convergence even more. The reparametrization
imposes an estimation bias to stiffer values due to the fact that
displacements are less sensitive with respect to small variations
in stiffer than softer materials. Then, the mean observation error
(used as correction term in Equation 30) is biased to the sigma
points associated with stiffer materials. This is clearly evidenced
in Figure 7, where the initial overshooting delays the estimation
of the parameter. Hence, note that the initial uncertainty interval
does not necessarily has to contain ct to estimate its correct
value. In fact, the uncertainty parameter values are also iteratively
updated and similar values are obtained for all three σθ illustrated
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FIGURE 4 | Activity diagram depicting the parallel workflow for data assimilation. The three levels of parallelism are highlighted on the right side: (i) Parallelization of the

sigma points that are solved at the same time without communication among the threads; (ii) Parallelization of each load state of the artery (i.e., one load per cardiac

phase) that is fully parallelized without communication among the threads; and (iii) Parallelization of the FEM problem by mesh partitioning.

Frontiers in Physiology | www.frontiersin.org 11 March 2018 | Volume 9 | Article 292

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Maso Talou et al. Mechanical Characterization of the Vessels

FIGURE 5 | Sensitivity analysis of the parameter estimation with respect to σZ for the experiment of the 1-material ring fixing the parameter uncertainty σθ = 2: (Top)

Estimate using observation uncertainties of σZ = 10i mm, i = −5, . . . ,−1 where each dot corresponds to a data assimilation process (after 200 iterations). The color

indicates the material of the ring at each experiment, the dashed line is ct value and the whiskers denote the parameter uncertainty interval. (Bottom) Convergence of

the Kalman filter using observation uncertainties of σZ = 10i mm, i = −3,−2,−1 for ct = 4 · 10−6 Pa. The dashed line is ct value, the solid line the Kalman filter

estimate 2θ̂ and the colored ribbon denotes the parameter uncertainty interval. In both cases, the uncertainty interval is estimated as [2
θ̂−

√

diag(U−1 )
; 2
θ̂+

√

diag(U−1 )
].

in Figure 6. The role of the initial value of σθ is the dispersion of
sigma points around the mean initial guess, and large values may
accelerate convergence when the initial guess ci is far from ct .

Overall, a good agreement is found in term of accuracy and
convergence for parameters σZ = 10−3 mm and σθ = 4. These

parameters identify clearly the three different kinds of tissues
in this idealized problem. Also, the observations generated in-
silico present an accuracy of similar order than the obtained
(assuming no error carried by the optical flow) through the
IVUS image processing. For this reason, σZ = 10−3 mm
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FIGURE 6 | Sensitivity analysis of the parameter estimation with respect to σθ for the experiment of the 1-material ring fixing the parameter uncertainty σZ = 10−2:

(Top) Estimate using parameter uncertainties of σθ = 0.25, 0.5, 1, 2, 4 where each dot corresponds to a data assimilation process (after 200 iterations). The color

indicates the material of the ring at each experiment, the dashed line is ct value and the whiskers denote the parameter uncertainty interval. (Bottom) Convergence of

the Kalman filter using parameter uncertainties of σθ = 0.25, 1, 4 and ct = 4 · 106 Pa. The dashed line is ct value, the solid line the Kalman filter estimate 2θ̂ and the

colored ribbon denotes the parameter uncertainty interval. In both cases, the uncertainty interval is estimated as [2
θ̂−

√

diag(U−1 )
; 2
θ̂+

√

diag(U−1 )
].

is used in cases analyzed in forthcoming sections. The value
of σθ cannot be straightforwardly assigned because parameter
overshooting using in-vivo complex geometries may lead to
excessively soft materials which could cause contact at the inner

surface in when solving the preload equilibrium, yielding non-
free material configurations. Since stress-free configurations have
been assumed, a more conservative value of σθ = 0.5 is used to
avoid such problem.
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FIGURE 7 | Convergence of the Kalman filter for the experiment of the 1-material ring using σθ = 4, 16, σZ = 10−2 mm and 2θ
t
= 1 · 105 Pa. The dashed line is 2θ

t

value, the solid line the Kalman filter estimate θ̂ and the colored ribbon denotes the parameter uncertainty interval [2
θ̂−

√

diag(U−1 )
; 2
θ̂+

√

diag(U−1 )
].

3.2. Boundary Conditions Sensitivity
As described in section 2.2.1, the observational datum uOF

is considered as an additional information over ∂�E through
a penalization factor τ (i.e., a Robin boundary condition).
This strategy is an attempt to incorporate the contribution
of surrounding tissues through a surrogate surface model.
Moreover, since uOF can be exposed to errors caused by
brightness variations, image artifacts or non-physical optical flow
regularization issues, the use of a Robin boundary condition
allows the model to naturally filter out the field uOF similarly
as a surface spring model. Then, a characterization of the
surrounding tissues provided by τ in the parameter estimation
is addressed in this section.

The in-silico study case used for this sensitivity analysis
was generated from the cross-section IVUS image depicted in
Figure 8 by considering the configurations corresponding to
two cardiac phases: end-diastole and systole. The geometrical
model was constructed for the end-diastolic configuration
following the pipeline described in sections 2.1 and 2.2.5. The
configurations at each one of the cardiac phases are related to
an end-diastolic load (i.e., the preload) of tW,n = 80 mmHg
and to a systolic load tW,n = 120 mmHg, accordingly.
The loads are applied over the inner surface of the vessel
in the preload and forward problems, respectively. Finally,
tethering tractions tA,is are considered such that an axial stretch
of 10% is prescribed in the end-diastolic configuration. The
remaining setup of boundary conditions is defined for each
of the following analyses: (i) parameter estimation sensitivity
as τ decreases from a large value (almost Dirichlet condition)
to a small value (almost Neumann condition); (ii) parameter

estimation robustness when observation uOF features errors at
the boundaries.

3.2.1. Test 1: Sensitivity of τ for Error-Free

Observations
For this analysis, the observations for the ROUKFwere generated
by solving the mechanical equilibrium with our model, avoiding
observational and modeling errors. Thus, a Robin boundary
condition was imposed at the outer surface in the forward
problem with τ = 106 (practically yielding a Dirichlet boundary
condition). This setting rendered a ground truth displacement
field uGT1 for this test. Using observations uGT1 , the data
assimlation algorithm was executed for τ ∈ {106, 104, 102}
(higher values of τ were not analyzed since τ = 106 is already
almost a Dirichlet boundary condition). The geometric model
was partitioned in sextants with two concentric layer yielding 12
regions each with its own material parameter ci.

The results are presented in Figure 9, depicting the parameter
estimation and predicted observations variations as the Robin
boundary condition moves toward a Neumann boundary
condition. The decrease of forces at the boundaries caused by
the decreasing value of τ is compensated by the estimation of
softer materials (which experiment higher strains) to match the
uGT1 observations. Particularly, the method recovers the correct
material parameters when the penalization value is the true value
used to generate the observations. i.e., τ = 106. For the parameter
estimation with τ = 104, a qualitatively similar distribution
of materials is observed with an uniform reduction in the
magnitude of the material parameter. The lowest penalization
value, τ = 102, delivers a totally different arrangement of
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FIGURE 8 | Optical flow and proposed ground truth for in-silico test: (Top) IVUS image at end-diastolic phase; (Bottom-left) optical flow uOF used in the data

assimilation process extracted from the in-vivo IVUS pair of images between end-diastole and systole phases; (Bottom-right) proposed ground truth u
GT
2 generated

using homogeneous Neumann boundary condition over the solid red line. The green dashed line indicates the position of the guidewire artifact in the image, and

therefore the area in which the optical flow displacement field can be largely affected.

materials. This result emphasizes the important contribution
of the surrounding tissues for a correct estimation of material
parameters, which is clearly retrieved when sufficient large values
of the penalization parameter τ are employed.

The observation error |εZ|, which is defined as the Euclidean
distance between the observations Z and mean filter observation
Ẑk at the last iteration, increases as τ is decreased. Specifically,
the mean values of εZ are 7.16 · 10−5, 1.03 · 10−3 and 9.79 · 10−3

for τ = 106, 104 and 102, respectively. Clearly, should the
observations uGT1 be error-free at the boundaries, a Dirichlet
boundary condition (a higher value for τ ) would be the correct
choice. Notwithstanding this, the observations from in-vivo
scenarios are degraded by diverse sources of errors and, as it will
be shown next, an excessively stringent boundary condition (of
Dirichlet type) may not be the best option.

3.2.2. Test 2: Sensitivity of τ for Realistic

Observations
The current analysis aims at assessing the robustness of the
parameter estimation process when the uOF at the outer
boundary differs from the real in-vivo displacements. For this
purpose, an allegedly ground truth uGT2 is generated by altering
the observation uOF in a certain region (untrusted region) using
the mechanical model with Neumann conditions. Finally, the
assimilation process is performed with the observation uOF and
different values of τ , to assess if it is capable to approximate uGT2
despite the observation errors.

Thus, an IVUS sequence with a swinging artifact (induced by
the guidewire) was chosen to perform our analysis. The IVUS
cross-section depicted in Figure 8 presents an image artifact from
the IVUS guidewire at the bottom-right quadrant of the frame.
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FIGURE 9 | Sensitivity of the parameter estimation with respect to the penalization factor τ . (Top) In-silico model with the ground truth ct parameters and boundary

condition model with τ = 106 for the generation of Z = h(f ([0u,0λ, θ
t ])). (Middle) Estimated parameters θ̂ from the observation Z by using τ = 106, 104, 102 (from

left to right) in the forward operator f during the data assimilation process. (Bottom) Displacement error (εZ = Z − Ẑk mm) for the parameter estimation process using

τ = 106, 104, 102 (from left to right) in the forward operator f .

The guidewire projects a shadow that hides the arterial wall and,
as consequence, the optical flow is polluted with a swinging
movement not related with the true arterial-wall motion. Thus,
a displacement field, denoted by uGT2 , is generated from the in-
vivo data removing the guidewire influence, with the purpose
of comparing this ground truth against the Kalman predictions

Ẑk when the polluted optical flow uOF is used as observations.
In that manner, the difference εGT = Ẑk − uGT2 can be

regarded as an estimate of the error in the Kalman prediction
due to the artifact in the image processing data. At last, εGT is
computed for different values of τ to assess the discrepancies
in the predictions as the external Robin boundary condition is
characterized differently.

The displacement uGT2 is generated by solving the equilibrium
problems with a model constituted by a single material. To
define a reasonable value for this constitutive property, a data
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assimilation process was performed using uOF as observation and
τ = 104, yielding to c = 33.52 kPa. Note that the c is biased by the
image artifact among other errors in the displacement field and it
cannot be regarded as an estimate of the real material, thus, it is
analyzed the ranges among which the estimated ĉ varies. At the
boundary ∂�E

m, a Neumann homogeneous condition (τ = 0)
was applied in the area affected by the guidewire (see red line
in Figure 8) and a Robin boundary condition with τ = 104

was applied to the remaining part of the boundary. The obtained
displacement field uGT2 is displayed in Figure 8.

The sensitivity of εGT with respect to τ is then studied. For
each value of τ ∈ {10i, i = 5, 4, . . . , 0}, the data assimilation
process is executed using uOF as observation. The relative
difference between the generated ground truth uGT2 and the
Kalman predicted observation Zk, for each τ , is reported in
Figure 10. For τ greater than 103, the Robin condition guarantees
that the artifact-related displacements are preserved regardless
the impact on the induced internal stresses. When τ varies from
103 to 102, the relative error difference significantly drops at the
guidewire locus, from 1.33 to 0.58. As τ decreases even more,
the resulting force induced by the Robin boundary condition
diminishes its magnitude, yielding lower internal stresses, and
spreading the error outside the region of the guidewire shadow.
For values lower than 102, the error in the displacement field is
concentrated at the bottom area of the artery. Particularly, this
concentration of the error is explained by the fact the continuum
model is enforced to behave as incompressible, while the optical
flow is not divergence-free. In terms of the parameter estimation,
the value of c was of 123.96, 33.52, 27.93, 68.51, 144.88, and
125.04 kPa for τ = 105, 104, 103, 102, 101, and 100 respectively,
presenting mean and standard deviation value of 87.31 ± 50.70
kPa, all close to a cellular fibrotic tissue. Moreover, there is a large
sensitivity in the estimated parameter with respect to the chosen
value of τ . In comparison with the ground truth, the closest
matching prediction in terms of the displacement field (i.e., the
prediction for τ = 102, see Figure 10) presents an estimation
of c two times higher. This is a clear demonstration of the large
sensitivity in the estimated parameter with respect to the setting
of models for the external tissues. Even more, it indicates that the
minimization of the displacement field is not directly related to
the best parameter estimation.

3.3. Effects of Preload and Axial Stretch
An appropriate baseline stress state of the vessel is key toward an
accurate characterization of the stress state in arterial tissues. In
fact, as reported in Ares (2016), a preloaded and axially stretched
artery features notoriously different stress patterns compared to
the case when such loads are neglected. Therefore, it is important
to quantify the change in the parameter estimation when the
initial stress state is either considered or not in the analysis. To
quantify such disagreement, the parameters of an in-vivo study
were estimated assuming three different conditions, namely:
(i) the diastolic configuration is neither preloaded nor axially
stretched; (ii) the diastolic configuration is preloaded but not
axially stretched; (iii) the diastolic configuration is preloaded
and 5% axially stretched; and (iv) the diastolic configuration is
preloaded and 10% axially stretched. The choice for the last two

cases is based on the experimental observations of Holzapfel et al.
(2005) where it is reported a physiological range for axial stretch
in coronary arteries ranging between 5 and 10%.

The geometrical model and the optical flow uOF used
for this study are the ones previously presented in Figure 8.
The geometric model was partitioned in sextants with a
unique concentric layer leading to the estimation of 6 material
parameters (the same partition used in Figure 12. The remaining
parameters for the mechanical problems and data assimilation
process are described in Table 1 along with the estimated values
ci. The results showed different trends for soft (c < 200 kPa,
i.e., c1, c2, c3, and c5) and stiff materials (c ≥ 200 kPa, i.e., c4
and c6). The obtained parameter c increases in the soft tissues
and decreases in stiff tissues as the baseline stress increases
from a preload-free to a preloaded state. Further increments
in the baseline stress due to the axial stretch result in material
stiffening for these two categories of tissues. Interestingly, the
increment of the parameter uncertainty σθ or the decrement of
the observation uncertainty σZ in the stiff tissues increases the
estimate of parameter cmore in the preload-free state than in the
preloaded cases. In fact, in the cases 2 and 3, the preloaded and
5% axially stretched model (cases 2.C and 3.C) featured lower c
values in the stiff tissues than the preload-free model (cases 2.A
and 3.A), contrarily to case 1. Some of these findings may appear
counter-intuitive at first glance because as the baseline stress state
increases it would be expected that all tissues soften to maintain
the same deformation for the given load. Thus, the following
paragraphs address the role of assimilation uncertainties, image
artifacts, and the very mechanical model in the assimilation.

Firstly, as the baseline stress at the diastolic configuration
rises, the parameter estimation is less sensitive with respect to
variations between the predicted and the observed displacements
i.e., Z− Ẑk. For the different baseline stress states, it was assumed
the same observation uncertainty which is analog to establish
an uncertainty interval for the observed strains. As the Neo-
Hookean model consists of a quadratic stress-strain relation,
the increment of the baseline stress yields an increase in the
uncertainty interval of the stresses. And because the stress is
linear to the material parameter c, the estimated parameters
undergo the same increase of their uncertainties diminishing the
accuracy of their estimation. Moreover, the estimated value of c
increased as the baseline state is subjected to a more significant
preload condition, turning the data assimilation process even less
sensitive. In short, this implies that dealing with the real problem
–for which preload is definitely a condition of the vessels– is even
more challenging than the case where initial stress conditions are
neglected.

Secondly, the gap between the observations and the
predicted displacements, hereafter simply discrepancy, in the
data assimilation process is in part given by some observed
displacement components generated by errors in the image
processing stage and by physical phenomena which is not
recoverable by the proposed mechanical and material models
(e.g., external tissues, off-plane displacements, compressible
materials or, even, misrepresentation of the constitutive law).
These discrepancies could be referred to as out-of-model
components, introducing a bias in the predicted displacement

Frontiers in Physiology | www.frontiersin.org 17 March 2018 | Volume 9 | Article 292

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Maso Talou et al. Mechanical Characterization of the Vessels

FIGURE 10 | Relative difference εGTr =
εGT

〈‖uGT
2 ‖〉

with respect to the boundary parameter τ . 〈·〉 Denotes the mean value in �s. From top-to-bottom and left-to-right,

εGTr is presented for τ = 105, 104, . . . , 100.The estimation of c was of 123.96, 33.52, 27.93, 68.51, 144.88 and 125.04 kPa for τ = 105, 104, 103, 102, 101, and 100

respectively, while the value of c in the generated ground truth is c = 33.52 kPa.

TABLE 1 | Sensitivity of the parameter estimation with respect to the baseline stress conditions and uncertainty parameters.

Case σθ σZ Preloaded Axial Estimated parameters (in kPa) εZ

(in mm) stretch% c1 c2 c3 c4 c5 c6

1.A 1 10−2 No 0 53 26 30 394 45 578 0.1562

1.B 1 10−2 Yes 0 59 29 37 384 51 582 0.1571

1.C 1 10−2 Yes 5 61 30 39 409 53 630 0.1572

1.D 1 10−2 Yes 10 65 32 41 413 59 634 0.1573

2.A 4 10−2 No 0 51 25 30 467 40 664 0.1562

2.B 4 10−2 Yes 0 57 28 37 442 48 620 0.1571

2.C 4 10−2 Yes 5 60 30 39 456 51 648 0.1572

2.D 4 10−2 Yes 10 63 32 41 476 55 676 0.1573

3.A 1 10−3 No 0 51 25 30 412 40 694 0.1562

3.B 1 10−3 Yes 0 58 28 37 394 48 669 0.1571

3.C 1 10−3 Yes 5 60 29 39 408 51 695 0.1572

3.D 1 10−3 Yes 10 63 31 41 424 55 721 0.1573

In all cases, the boundary condition was fixed with τ = 102 and the initial guess for the parameters was θ̂+0 = [c0, . . . , c6 ] with ci = 500 kPa ∀i. The estimated parameters are reported

for each case, as well as the observation error |εZ |= |Z − Ẑk | after the data assimilation process.
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field and in the parameter estimation as well. Comparing the
estimations with different baseline assumptions, it is observed
that the discrepancies of the identified parameter value remain
below 37% and 10% for soft and stiff tissues, respectively.
Particularly, we choose to use the more complex model
(preloaded and axially stretched) in the following in-vivo studies
because it endows the mechanical setting with more relevant
physical features when compared to the other models.

3.4. In-Vivo Cases
The proposed methodology is now applied to 4 in-vivo
cases featuring atherosclerotic lesions to derive their specific
mechanical models. The goal is to analyze the accuracy of the
mechanical models to predict the optical flow observations,
as well as, to assess the usage of multiple (more than
two) cardiac phases (and then more than one optical flow
displacement field as observational data) in the parameter
estimation. For each lesion, the IVUS frames that are involved
in the data assimilation correspond to end-diastole, 50%-
systole and full-systole, as dictated by the ECG signal of
the IVUS study. Optical flow was estimated between end-
diastole and 50%-systole frames and end-diastole and full-
systole frames, denoted by uOF1 and uOF2 respectively (see
Figure 12). Then, we compare the resulting estimated parameter
for two cases: when the assimilation is performed using a
single optical flow displacement field as observation (Z =

[uOF2 ]T); and when two optical flow displacement fields are
utilized as observations (Z = [uOF1 , uOF2 ]T). Note that
the observed displacement field for maximum load, i.e.,
uOF2 , is employed in both cases because the displacement
between end-diastole and systole is expected to yield higher
strains.

The geometric model was partitioned in sextants with a
unique concentric layer (see Figure 11). Each partition contains
only a single type of material leading to a data assimilation
process with 6 material parameters. The diastolic configuration
is preloaded and 10% axially stretched for all cases and the blood
pressure at each phase was assumed to be 80, 100, and 120mmHg
for the end-diastole, 50%-systole and full-systole, respectively.
The parameter τ was set to 100 for lesions 1, 3, and 4 and 50 in
case 2, the latter avoided contact at the luminar surfaces during
in the preload problem. The ROUKF uncertainties were fixed to
σθ = 1 and σZ = 10−2 mm.

The proposed data assimilation process rendered the results
depicted in Figure 12. The material parameters estimated in
all cases remained within the physiological range (between 1
kPa to 10 MPa, see Walsh et al., 2014). Also, the addition
of an extra displacement field as observation showed no
considerable effect for cases 2 and 3. The reliability of the
results can be assessed in terms of the model prediction error
presented in Table 2. Due to intrinsic sources of errors in
the observations (motion artifacts, spatial incoherence between
cross-sections in the cardiac cycle and optical flow model
artifacts), it is expected an observation error of few pixel
spacing units (recall that the image discretization spacing is
16µm). Thus, model prediction errors for cases 3 and 4, and
even case 1 for a single optical flow field per cardiac phase,

seems highly reliable in terms of our observation precision
since the error results 26 ± 14µm (1.625 ± 0.875 pixel
spacing units), while case 2 seems to be the less reliable
estimation with an average error of 43 ± 24µm. Overall,
the average model prediction error was below 43µm and
61µm for the observation with one or two observational data,
respectively.

In case 1, it is observed that the material parameters estimated
with 1 and 2 optical flow displacement data are significantly
different. The flow uOF1 presents larger displacements than uOF2 ,
which seems counter-intuitive since the blood pressure variation
is smaller for the former condition. However, the motion exerted
by the cardiac contraction is higher, in fact the larger component
of displacement is rigid (a rotation of the structures). Thus, as
uOF1 presents the observation components with higher norm,
it features a larger contribution than uOF2 during the data
assimilation process (see Equation 30). In that manner, the
parameters estimated with 1 flow datum minimize discrepancies
against uOF2 while the ones estimated with 2 flow data minimize
mainly discrepancies against uOF1 .

Conversely in cases 2 and 3, the observation uOF1 is the
one with smaller displacements (≈4 and 2 times smaller for
cases 2 and 3, respectively), yielding a small contribution
to the data assimilation. This implies that the minimization
of the discrepancies between the model predictions and the
observations (i.e., Ẑk − Z) related to uOF2 dominates over the
discrepancies associated to uOF1 . In fact, Figure 12 shows that
the discrepancies represented by εr for uOF2 remained almost
invariant using 1 or 2 flows in the observation.

In case 4, the discrepancies between the model predictions
and the observations related uOF2 also remained invariant using
1 and 2 flows data in the observation, although the parameters
estimated in the lower part of the geometry varied significantly
(see Figure 12). As previously studied in section 3.2.2, the
guidewire artifact in the lower part of these images features a
swinging movement not related with the arterial-wall motion.
To approximate the artifact’s rigid motion, the local tissue is
stiffened during the assimilation process when 1 single flow
was employed as observation. Conversely when uOF1 is added
to the observations, the spurious motion of the guidewire is
negligible, and the data assimilation is not affected by this
artifact.

To determine the applicability of the current approach in
clinical practice, we execute the in-vivo cases in a single server
with 2 Intel Xeon CPU E5-2620 at 2.00 GHz processor (each
with 12 threads) and Kingston 99U5471-031.A00LF at 1333
MHz (latency of 27 ns) RAM memory. For data assimilation of
these in-vivo cases, mesh (3 threads per mechanical problem)
and sigma parallelism (1 thread per sigma point) were applied
because it delivered the best speed up for our 24 threads
(actually only 21 were employed). The wall clock time reported in
Table 2 for each execution showed that the current methodology
is appropriate for offline medical applications because the
processing times elapsed from 0.5 to 3 days. The use of clusters
would allow further processing speed up exploiting the load
parallelism as well as a more massive parallelization at the mesh
level.

Frontiers in Physiology | www.frontiersin.org 19 March 2018 | Volume 9 | Article 292

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Maso Talou et al. Mechanical Characterization of the Vessels

FIGURE 11 | Optical flow estimated between end-diastole and 50%-systole frames, uOF
1 , and end-diastole and full-systole frames, uOF

2 for 4 in-vivo atherosclerotic

lesions: (row 1) IVUS end-diastolic frame depicting the atherosclerotic lesions; (row 2) displacement field u
OF
1 ; (row 3) displacement field u

OF
2 .

4. DISCUSSIONS

The presented methodology offers a workflow to estimate
material parameters for mechanical model of coronary arteries.
The strategy is composed by three key components: the image
processing, the mechanical model and the data assimilation
algorithm. The most appealing aspect of this proposal is that
the three components are loosely coupled as black boxes
which allowed us to modify, as required, each component
without the need for altering the remaining ones. In fact, the
image processing renders observations for the data assimilation,
regardless the imaging technique employed and the nature
of the displacement field. In turn, the mechanical model can
also be modified without influencing in the other components,
it simply must receive a set of parameters and return back
the internal state variables to the data assimilation strategy.
Due to this architectural design, this initial biomechanical
characterization approach can be further refined by improving

aspects of these individual components. Some identified hot-
spots for improvement are discussed in what follows.

The data assimilation showed high sensitivity with respect
to variations in the model boundary conditions which aimed
at mimicking the external tissues. As the displacement over the
boundary was increasingly constrained (large τ ) the model was
less sensitive to variations in the material parameters, hindering
the parameter estimation and, even, causing divergence of
the Kalman iterative process in some situations. Also, the
disagreement in the spatial arrangement of model forces and the
in-vivo (unknown) forces at the boundary notoriously affects the
outcome of the estimation. This was exposed in section 3.2.2
when an image artifact (the IVUS guidewire) induced a spurious
tangential displacement in the observation and the boundary
condition. It was also showed that if a homogeneous Neumann
condition is assumed at the site of such artifact, the parameter
estimation varies significantly (from 4 to 15 fold reduction of
parameter c). Improving the capabilities of themodel in this sense
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FIGURE 12 | Parameter estimation and discrepancies between the model prediction and observations for 4 in-vivo IVUS frames featuring atherosclerotic plaques (one

per column). (Row 1) Estimation of parameters ci using Z = [uOF
2 ]T ; (row 2) εr for the observations related to u

OF
2 ; (row 3) Estimation of parameters ci using

Z = [uOF
1 ,uOF

2 ]T ; (row 4) εr for the observations related to u
OF
1 ; (row 5) εr for the observations related to u

OF
2 . The relative displacement discrepancy between the

model predictions and the observations was defined as εr = ‖Ẑk − Z‖/〈‖Z‖〉 where Ẑk are the model predictions at the last Kalman iteration, Z are the optical flow

observations and 〈·〉 denotes the mean value in �s.

requires to incorporate the estimation of these forces exerted
by external tissues in the data assimilation process. In short,
parameter τ could be a further variable to be estimated.

It is also important to highlight that this approach can
be directly extended to account for more geometrically and
physically complex models. The set of here reported results

constitute a solid proof of concept toward the extension of this
methodology. Here, we derived a patient-specific mechanical
model for an orthogonal slice of the vessel assuming plane strain
state with an homogeneous axial traction force. However, there
are some assumptions that imply neglecting certain physical
components that may be necessary to increase the accuracy
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TABLE 2 | Model prediction error after data assimilation process for the 4 in-vivo cases using 1 or 2 loading conditions.

Case Amount of Observation Model prediction error Execution

different loads (S) component (Z
j
k
) Zj − Ẑ

j
k
(in mm) time (in hours)

Mean SD Max

1 1 Z1
k

0.023 0.014 0.122 18.32

2 1 Z1
k

0.043 0.024 0.155 35.78

3 1 Z1
k

0.026 0.014 0.094 12.20

4 1 Z1
k

0.021 0.014 0.069 9.17

1 2 Z1
k

0.061 0.016 0.271 33.37

Z2
k

0.029 0.041 0.113

2 2 Z1
k

0.032 0.022 0.111 77.37

Z2
k

0.043 0.024 0.155

3 2 Z1
k

0.012 0.008 0.071 41.07

Z2
k

0.026 0.014 0.094

4 2 Z1
k

0.015 0.010 0.064 16.39

Z2
k

0.021 0.015 0.074

The reported errors corresponds to the disagreement between mechanical model displacements (after estimate their material parameters with the proposed method) and the optical

flow observations. The execution time corresponds to the wall clock time elapsed for each case using only mesh parallelism (see Figure 4) with 24 CPUs.

of the estimated stress/strain state of the vessel. To list some
of them: (i) shear forces exerted by the blood flow which
are expected to be key in the study of plaque development
(Stone et al., 2003; Chatzizisis et al., 2008); (ii) out-of-plane
forces produced by the blood pressure due to the heterogeneous
constitution of the vessel wall and the tilting of the transducer
tip with respect to the cross-section; and (iii) variable axial
tractions along the cross-section due to the heterogeneous
composition of the vessel wall. These issues can be tackled
at once by making use of 3D models. In fact, the image
processing strategy allows the gating and registration of the
whole arterial 3D volume of the study. Also, the extension of
the optical flow techniques to 3D domains is straightforward by
a proper adaptation of the differential operators and Gaussian
kernel within the formulation. A further issue to address is
the spatial reconstruction to obtain the proper 3D geometrical
description of the vessel instead of its rectified representation
in intrinsic coordinates delivered by the IVUS study. The
integration of IVUS with angiographic images enabled us to
perform such 3D reconstruction, as reported in Maso Talou
(2013). These extensions imply in heavier computational cost
and complementary implementation aspects, yet, they present
no further conceptual differences regarding the methodology
presented in this work.

Extension to 3D problems discussed above, as said, becomes
computationally more demanding. Associated to the image
processing, the cost scales with the number of cross-sections
extracted from the IVUS dataset. However, the registration stage,
which is the most computationally intensive task, is fully parallel
(see Maso Talou et al., 2017) and gating cost is negligible. Thus,
the performance of the optical flow and the spatial reconstruction
process through the integration with angiographic images, turn
out to be key for the efficiency of the methodology in 3D cases.
Regarding the data assimilation procedure, the computational

cost continues to be the approximate solution of the mechanical
problem. As a significant increase in the number of degrees
of freedom is expected, the computational cost would raise as
well.

A first limitation in the present scheme is that the
displacement field retrieved from medical images is naively used
as observation from our model without further processing. This
implies that the performance of the method can be improved by
extracting the observation components that are spurious (such
as artifacts or unreliable regions of the optical flow displacement
field) or even incompatible with our model (e.g., use only the
divergence-free component of the field because the mechanical
model is incompressible).

Regarding the baseline stress state in our model, the
residual stresses produced during the arterial tissue genesis and
growth have clearly been neglected. In Wang et al. (2017), an
experimental test showed that the omission of these residual
stresses may produce a significant overestimation of internal
stresses (from 2- to 4-fold the actual stress). Furthermore,
it has been observed (Guo et al., 2017) that accounting for
residual stresses is also relevant for the proper material parameter
estimation. This seems to be natural, as residual stresses can
be considered as a subproduct of existing residual deformations
(that, in general, may not be kinematically compatible, i.e.,
they cannot be derived from continuous displacement fields) of
the elastin matrix. Consequently, not only the stresses are not
properly assessed, but the actual deformations observed at the
equilibrium states are misguided. These facts highlight the need
for further research to tackle simultaneously the estimation of
both material parameters and residual deformations in arterial
walls. In recent works (Ares, 2016; Ares et al., 2017), models
and methods for the estimation of such residual stresses were
proposed, with a similar spirit to the one developed in this
work.
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At last, it is worthwhile to remark that no validation
techniques are currently available for the assessment of stress-
strain state in in-vivo conditions. Even though, approaches
for an indirect in-vivo or ex-vivo validation can be discussed.
Techniques such as elastography and palpography (Ophir et al.,
1991; Shapo et al., 1996; Céspedes et al., 1997; de Korte et al., 1998;
Céspedes et al., 2000) deliver with some degree of reliability the
stresses in the innermost part of the vessel. In these cases a Bland-
Altman analysis can be applied to assess the similarity between
the prediction of our approach and elastographic solutions. A
more controlled experimental setup can be planned for ex-vivo
condition using coronary specimens. For each specimens, an
IVUS study can be acquired and a specimen-specific model can
be constructed employing the proposed methodology. Finally,
several mechanical tests can be carried out with the specimens
comparing their mechanical response with predictions given
by our specimen-specific models. Another in-vivo alternative
is to associate ranges of the estimated material parameters
to the underlying tissue composition, delivering a histological
description of the vessel (usually referred to as virtual histology).
As there are already methods that estimate the vessel histology
from IVUS images (e.g., Kawasaki et al., 2002; Nair et al.,
2002; Sathyanarayana et al., 2009), a comparative analysis can
be performed to evaluate the degree of agreement between the
proposed method and these virtual histologies. An appealing
aspect of this last validation is that the techniques presented
in those works are already validated with cadaveric specimens
of coronary arteries. The experimental settings suggested above
should serve to bridge the world of computational models and
methods with the experimental realm, toward gaining insight
into the complex mechanisms underlying the development of
cardiovascular diseases.

5. FINAL REMARKS

A data assimilation environment for analysis of arterial models
and material characterization was described. The proposed
methodology delivers the necessary tools to construct patient-
specific mechanical models of an arterial site using data from
standard IVUS studies. A complete sensitivity analysis of the

biomechanical characterization with respect to numerical and
physical parameters was reported to aid the methodology setup,
as well as the interpretation of data assimilation outcomes.

Validation in controlled scenarios was provided to demonstrate
the capabilities of the present approach.

The potential and limitations of this approach were exposed
and discussed in the previous section, delineating future research
to enhance the image processing stage and the mechanical model
of the arterial wall for this problem.

The applicability of this methodology on in-vivo scenarios
was proven in the characterization of the arterial tissue for 4 in-
vivo atherosclerotic lesions. After data assimilation, the obtained
mechanical models predicted the displacement field between
diastole and systole with errors below 43µm using frames of only
two cardiac phases. Although no validation was performed with
the in-vivo cases, the estimated material parameters remained
within the expected range for this kind of tissue.

The development of this tool for the biomechanical analysis
allows the indirect estimation of the internal stress state of
the arterial wall. Such information combined with the vessel
histology (that can be inferred from the material parameters
here estimated) enables the assessment of the structural integrity
of the atherosclerotic plaque to aid medical decisions and
research. In summary the proposed strategy provides an imaging-
assimilation-mechanics integrated environment to characterize,
within a truly in-vivo and patient-specific setting, the behavior
of the materials that compose the arterial vessels, specifically
coronary vessels, which is of the utmost importance in assessing
risk of plaque progress and rupture.
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