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Fast and accurate computational biology models offer the prospect of accelerating

the development of personalized medicine. A tool capable of estimating treatment

success can help prevent unnecessary and costly treatments and potential harmful

side effects. A novel high-performance Agent-Based Model (ABM) was adopted to

simulate and visualize multi-scale complex biological processes arising in vocal fold

inflammation and repair. The computational scheme was designed to organize the

3D ABM sub-tasks to fully utilize the resources available on current heterogeneous

platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further

parallelized and convolution-based diffusion is used to enhance the performance of the

ABM simulation. The scheme was implemented using a client-server protocol allowing

the results of each iteration to be analyzed and visualized on the server (i.e., in-situ) while

the simulation is running on the same server. The resulting simulation and visualization

software enables users to interact with and steer the course of the simulation in real-time

as needed. This high-resolution 3D ABM framework was used for a case study of surgical

vocal fold injury and repair. The new framework is capable of completing the simulation,

visualization and remote result delivery in under 7 s per iteration, where each iteration of

the simulation represents 30min in the real world. The case studymodel was simulated at

the physiological scale of a human vocal fold. This simulation tracks 17 million biological

cells as well as a total of 1.7 billion signaling chemical and structural protein data points.

The visualization component processes and renders all simulated biological cells and

154 million signaling chemical data points. The proposed high-performance 3D ABM

was verified through comparisons with empirical vocal fold data. Representative trends

of biomarker predictions in surgically injured vocal folds were observed.

Keywords: high-performance computing, agent-based modeling, biosimulation, inflammation, wound healing,

vocal fold, in situ visualization
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1. INTRODUCTION

1.1. Agent-Based Modeling (ABM)
Agent-basedmodeling is a widely used approach to quantitatively
simulate dynamical systems (Macal, 2016). The popularity of
ABMs can be observed in the variety of ABM frameworks
developed in the past decade (for reviews, please see An
et al., 2009; Gorochowski, 2016; Hellweger et al., 2016;
Macal, 2016). Each ABM is defined by a set of autonomous
agents whose interactions among themselves and with their
environment are governed by a number of stochastic or
deterministic rules (Hellweger et al., 2016; Macal, 2016). In
contrast to equation-based approaches, ABMs are decentralized.
That is, the system’s behavior is determined by the collective
behavior of each individual agent in the system. Although a
universal definition of ABMs remains debatable (Macal, 2016),
fundamental components of ABM typically include: agent set,
agent relationship set, and agents’ environment (Macal and
North, 2010).

Firstly, a set of agents includes the agents themselves,
their attributes and their behavioral rules. Agents’ behavioral
rules govern their decisions and actions. In ABM, agents
can represent a wide spectrum of individual entities such as
consumers, markets, and geographic regions in economic models
(Tesfatsion, 2006; Caiani et al., 2016), animals in ecosystems
(McLane et al., 2011, 2017), and biological cells and proteins
in systems biology models (D’Souza et al., 2009; Krekhov et al.,
2015; Shi et al., 2016). Secondly, the set of “agent relationships
and methods of interactions” (Macal and North, 2010) defines
the criteria of a group of entities each agent is bound to interact
with, and how these interactions are carried out. For instance,
some ABMs may allow agents to interact only directly with
other agents, some may allow only indirect interactions while
some may allow both (Ausloos et al., 2015). A direct interaction
represents an immediate impact one agent leaves on another.
Particle collision is an example of a direct interaction, where
colliding particle agents affect the states of each other directly.
On the other hand, indirect interactions have been used to
mimic the lingering effects of transmitted signals (Godfrey et al.,
2009; Crandall et al., 2010; Richardson and Gorochowski, 2015;
Gorochowski and Richardson, 2017). An example of indirect
agent interaction includes chemical secretion as a form of inter-
cellular communication. This chemical secretion example is
classified as indirect because the agents alter the states of the
environment to communicate, rather than altering the states
of the recipient agents directly. Lastly, the agents’ environment
houses the autonomous agents. This space can be discrete lattice-
based (Wilensky and Evanston, 1999), continuous lattice-free
(Van Liedekerke et al., 2018), or hybrid (Chooramun et al., 2012).
The environmentmaymaintain local attributes depending on the
application and underlying implementation (Drasdo et al., 2018).

Our first published ABM (Li et al., 2008) was programmed
on the platform of Netlogo and thus most of the terminology
used herein was adopted from the dictionary of NetLogo
(Wilensky, 2015). In our implementation, the 3D environment,
also known as the ABM world, represents a human tissue. The
3D environment is spatially discretized into rectangular volumes

called 3D patches. Each mobile agent represents an inflammatory
cell that can move from one patch to an adjacent patch and make
decisions to perform certain actions at discrete time steps. Agents
make decisions based on the state of the patches, which allow
them to alter their environment to interact indirectly with other
agents. Chemokines and extracellular matrix (ECM) proteins are
associated with the states of the patches.

1.2. Computational Challenges
The simulation of high-resolution ABMs in biology (Bio-ABM)
often deals with large data sets. Processing a large amount of
data demand significant computational resources. To address the
challenges of the significant computational demands of large-
scale ABMs, multiple high-performance computing (HPC) ABM
tools have been developed over the years. These tools have also
been used to parallelize bio-ABMs. For example, FLAME (Kiran
et al., 2010; Coakley et al., 2012) is an implementation of an
ABM framework for parallel architectures based on stream X-
machines. FLAME has been used to speed up the simulation
of ecological systems in various fields including systems biology
(Richmond et al., 2010). FLAME GPU (Richmond et al., 2009;
Richmond and Chimeh, 2017) and SugarScape on steroid
(D’Souza et al., 2007) represent efforts to support ABM
acceleration on GPU platforms. These tools have demonstrated
their applicability to biological system simulations such as tissue
wound and disease modeling (D’Souza et al., 2009; Richmond
et al., 2010; de Paiva Oliveira and Richmond, 2016). Repast HPC
(Collier and North, 2013) was developed as an MPI extension
to its predecessors, Rapast and Repast Symphony (Collier, 2003;
North et al., 2005). Repast HPC was adopted to accelerate the
simulation of bone tissue growth (Murphy et al., 2016).

Multiple HPC ABM tools have also been developed
specifically for systems biology applications. An example
includes a Repast-based framework for single-cells and
bacterial population called AgentCell (Emonet et al., 2005).
The AgentCell framework provides support for running
multiple non-interacting single-cell instances concurrently on
massively parallel computers. More examples include HPC
ABM frameworks for multi-core CPUs such as CompuCell3D
(Swat et al., 2012a,b), CellSys (Hoehme and Drasdo, 2010),
and Morpheus (Starruß et al., 2014). These frameworks target
multi-core CPU acceleration on a single compute node using
OpenMP. In addition, other techniques have been proposed
to accelerate specific biological models on multi-core CPUs
or GPUs (Christley et al., 2010; Falk et al., 2011; Zhang et al.,
2011; Cytowski and Szymanska, 2014). However, none of the
aforementioned HPC ABM techniques or tools exploit the
computing power of both CPUs and GPUs simultaneously,
resulting in a sub-optimal resource utilization.

Another significant challenge in systems biology modeling lies
in the multi-scale nature of the model (Dallon, 2010; Eissing
et al., 2011; Cilfone et al., 2014; Schleicher et al., 2017). To
ensure optimal performance, it is important for differences in
spatiotemporal scales between cellular and chemical interactions
to be handled in a cost-effective manner. Cellular movements
occur at a rate of micrometers per hour (µm/h), while cytokine
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diffusion in tissue occurs at a rate of micrometers per second
(µm/s). A naive approach would be to iteratively simulate
the model at the smallest temporal scale required. However,
this approach would result in a prohibitive increase in the
computational cost. A possible solution is to use coarse-graining
techniques to lower the computational intensity (Qu et al.,
2011). The concept of coarse-graining in ABM refers to the
simulation of super-agents whose rules represent aggregated
behaviors of smaller units (Chang and Harrington, 2006; Maus
et al., 2011; Sneddon et al., 2011). Our earlier 2D framework uses
a mechanism that captures the behavior of multiple iterations of
the finer-scale processes, i.e., chemical diffusion, over a coarse
time window using convolution (Seekhao et al., 2016). This
intensive computation is then offloaded to a single GPU while
the CPU cores focus on coarse-grain cellular processes.

An effective visualization component is essential for
understanding the progress of the simulation and emerging
trends. However, with billions of data points being produced
after each iteration, implementing real-time visualization is not
trivial. Usually, visualization is performed on pre-simulated/pre-
processed data that are stored on disk. Such amethod is known as
post-hoc visualization. On the other hand, large simulation data
sets have prompted work on coordinating the simulation and
visualization simultaneously, also known as in situ visualization
(Rivi et al., 2012; Nvidia, 2014). In situ visualization allows the
outputs to be analyzed on the same machine that produced
them. The ability to perform on-site data analysis reduces the
amount of data movements between the server and remote
users. This property makes in situ visualization an ideal way
to visualize simulations that produce large data sets such as
our case. Paraview Catalyst (Bauer et al., 2013; Ayachit et al.,
2015) and work reported in Kuhlen et al. (2011) are examples
of libraries developed to enable in situ processing of simulation
output on popular existing visualization frameworks such as
Paraview (Henderson et al., 2004) and VisIt (Childs et al.,
2005). A bitmap-based and a quadtree-based ABM approach
(Krekhov et al., 2015; Su et al., 2015) were proposed respectively
to analyze the numerical output in situ and reduce non-essential
simulation data. Most of these strategies were able to reduce
the disk loads, but still required disk storage for the remaining
essential data. In the present work, similar to (Seekhao et al.,
2016, 2017), VirtualGL was employed as a tool for developing
in situ visualization of an ABM that circumvents disk storage
and directly visualize simulated outputs written on to a RAM.
This real-time visualization feature would assist researchers in
tracking the progress and steering the course of the simulation.

1.3. Case Study—Vocal Fold Inflammation
and Repair
1.3.1. Problem Background
In the United States, voice problems were estimated to affect
one in 13 adults annually (Bhattacharyya, 2014). In one study,
nearly one third of the sampled population has experienced
voice disorder symptoms at some point in their lifetime (Roy
et al., 2004). In particular, voice disorders constitute a major
occupational hazard in many professions such as salespeople,

teachers, performing artists, attorneys, and sport coaches, due to
the intensive vocal demand of the job (Vilkman, 2000; Verdolini
and Ramig, 2001; Jones et al., 2002; Fellman and Simberg, 2017).
The estimated lifetime prevalence of voice disorders is as much as
80% in occupational voice users (Cutiva et al., 2013;Martins et al.,
2015). Human vocal folds are under continuous biomechanical
stress during voice production. Excessive phonatory stress can
induce a cell-mediated inflammatory response and structural
tissue damage, leading to a pathological condition (Gunter, 2004;
Li et al., 2013; Kojima et al., 2014). Patients with phonotraumatic
lesions are usually prescribed behavioral voice therapy (Johns,
2003; Misono et al., 2016) or surgical excision of the lesion in
combination with various adjunctive treatments (Hansen and
Thibeault, 2006; Hirano et al., 2013; Ingle et al., 2014;Moore et al.,
2016). Unfortunately, the healing outcome of voice treatments
often depend on the lesion, the treatment dose, and the patient’s
vocal needs (Abbott et al., 2012; Roy, 2012; Li N.Y. et al., 2014).
The success rate of voice treatment varies extensively between
30 and 100% (MacKenzie et al., 2001; Zeitels et al., 2002; Wang
et al., 2014; Vasconcelos et al., 2015), making the treatment
planning process difficult for voice therapists and surgeons.
The unpredictable treatment outcome is axiomatic and takes
a huge toll on a person’s career, a clinician’s decision-making
process and society’s healthcare costs. A computational tool that
can estimate voice treatment success would spare patients from
unnecessary and costly treatments and potentially harmful side
effects.

Computer simulations have become central to personalized
medicine (Deisboeck, 2009; Chen and Snyder, 2012; Li et al.,
2016; Canadian Institutes of Health, 2017). This approach
involves the creation of computational models to estimate
treatment outcome and identify the best possible treatment for
a given patient. Simulation modeling involves the integration
of the best available knowledge into a computer platform to
represent the real-world problem. The process involves an
abstraction of causal relationships between patient variables
and health outcomes followed by a rigorous and iterative
protocol of model calibration and validation (Galea et al.,
2009; Marshall and Galea, 2014; O’Donnell et al., 2016).
The property that sets numerical simulation models apart
from standard statistical models is the observability of the
evolution of patient behaviors and health conditions in the
computer model as time passes during simulation. Such an
approach provides a computational tool for clinicians to evaluate
the impact of intervention or other modifiable variables on
health outcomes in advance or along any point during the
intervention.

Computer models have been developed for complex health
conditions, including sepsis (Clermont et al., 2004; Kumar et al.,
2004; Vodovotz et al., 2006), traumatic brain injury (Vodovotz
et al., 2010), acute liver failure (Wlodzimirow et al., 2012),
diabetes (Boyle et al., 2010; Day et al., 2013), obesity (El-Sayed
et al., 2013; Hammond and Ornstein, 2014), and cardiovascular
disease (Hirsch et al., 2010; Li Y. et al., 2014; Li et al., 2015). In
our case, a series of ABMs have been developed to numerically
simulate the essential biology underlying vocal injury and repair
with the goal of helping clinicians to better tailor treatments for
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patients with voice disorders (Li et al., 2008, 2010a,b, 2011; Miri
et al., 2015; Seekhao et al., 2016).

In the current study, an existing high-performance 2D ABM
(Seekhao et al., 2016) is substantially enhanced to a much larger
3D model in an attempt to faithfully capture the physiological
dimension of human vocal folds. A diffusion kernel reduction
technique is used to enhance the performance and ensure that
all necessary 3D data required for diffusion fits within the
GPU global memory. A scheduling scheme for a heterogeneous
compute node, which consists of multi-core CPU and many-
core GPUs, is then used to completely mask the execution
time of the computationally intensive diffusion and visualization
tasks. This low-cost, high-resolution, and high-performance
computing ABM platform with real-time visualization capability
is an original concept in diseasemodeling, and canmake complex
disease models practical in clinical settings.

1.3.2. Modeling Vocal Fold Repair With ABM

(VF-ABM)
In the vocal fold ABM (VF-ABM) used in this work, the
inflammatory cells were implemented as agents (Li et al.,
2008, 2010b, 2011). The chemokines and ECM proteins were
implemented as states of the patches. The aggregation of these
components yields the state of the vocal fold (ABMworld) at each
given point in simulated time. Table 1 summarizes the roles that
each type of cell agent plays in the healing process. At the time of
acute injury, the traumatized mucosal tissue within the damaged
area triggers platelet degranulation. Different chemokines get
secreted resulting in vasodilation stimulation and attraction of
inflammatory cells, namely, neutrophils and macrophages to
the wound site. Activated neutrophils and macrophages at the
wound area further secrete chemokines to attract fibroblasts and
remove cell debris. To repair the wound, activated fibroblasts
proliferate and deposit ECM proteins such as collagen, elastin,
and hyaluronan. These ECM proteins then form a scaffold for
supporting fibroblasts in wound contraction, cell migration,
and other wound repair activities (Bainbridge, 2013). The flow
diagram of the interactions between all the components in the
model is shown in Figure 1 (modified from Li et al., 2008). In
each iteration, the VF-ABM executes the following major steps:

• Seed Cells—Cell recruitment from surrounding native tissues
to the damaged area.
• Cell Function—Cell migration, proliferation, cytokine

production and ECM production (Table 1).
• ECM Function—Tissue repair. Fragments of ECM protein

acting as danger signals.
• ECM Fragmentation—Fragmentation of ECM proteins if

TNF-α or MMP is beyond a threshold.
• Chemical Diffusion—Mass diffusion of each of the chemical

signals including TNF-α, TGF-β , FGF, MMP8, IL-1β , IL-6,
IL-8, and IL-10.

2. MATERIALS AND METHODS

The 3D ABM simulation suite includes both computation
and visualization components. The computational tasks can be

TABLE 1 | Summary of agent rules.

Agent Actions

Platelets Secrete TGF-β1 and IL-1β to attract other cells and regulate

ECM protein production.

Secret MMP8 to promote collagen fragmentation.

Neutrophils Secrete TNF-α to attract and promote activation of other

neutrophils and macrophages. TNF-α also plays a role in

regulating the production and fragmentation of ECM proteins.

Secrete MMP8 to promote collagen fragmentation.

Macrophages Secrete TNF-α, TGF-β1, FGF, IL-1β, IL-6, IL-8, IL-10 to

attract cells, regulate cell activation, fibroblast proliferation,

ECM protein production, and ECM protein fragmentation.

Clean up cell debris.

Fibroblasts Secrete TNF-α, TGF-β1, FGF, IL-6, IL-8 to attract cells,

promote cell activation and regulate fibroblast activation, and

promote ECM fragmentation and regulate ECM production.

Secrete ECM proteins to repair tissue damage.

ECM Managers Manages ECM functions and conversion. One manager per

patch.

TABLE 2 | Summary of NVIDIA Tesla M40 GPU specifications.

GPU Tesla M40

SMs (per Device) 24

CUDA Cores per SM 128

Registers per SM 64k

L2 cache size 3.0MB

Global memory (per device) 22.4GB

Max clock rate 1.11GHz

Memory clock rate 3.0GHz

Memory bandwidth 288GB/s

Compute capability 5.2

categorized as coarse- or fine-grain. Coarse grain tasks include
inflammatory cell and ECM functions, which involve more
complex control structures and relatively small data movements.
On the other hand, fine-grain tasks include the diffusion of the
different chemicals, which involves relatively simple operations
applied to large amounts of data. In this section, we start
by describing our hardware and software environment. We
will then discuss how task assignments and coordination are
performed to ensure correct synchronization and maximize
load balance. Finally, we will describe how each task category
underwent optimization specific to its computational and data
access characteristics. The model size and configuration details
are summarized in Table 3. The source code of the VF-ABM
prototype with optimizations described in this work can be found
at https://github.com/VF-ABM/hpc-abm-vf-version_0_6.

2.1. Hardware and Software Environment
Our high-performance VF-ABM was tested and benchmarked
on a compute node with a 44-core Intel(R) Xeon(R) CPU
E5-2699 v4 @ 2.20GHz host and two attached accelerators,
NVIDIA Tesla M40. Table 2 summarizes the GPU specifications.
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FIGURE 1 | Flowchart of vocal fold inflammation and healing events in the ABM. This diagram is modified from Li et al. (2008).

Each Tesla M40 GPU consisted of 3,072 cores per device with
24 GB of global memory. C++, a lightweight programming
language, was used to implement the program to ensure
fast and efficient simulation. To utilize the multiple CPU
cores available, Open Multi-Processing (OpenMP) was used
to parallelize coarse-grain cellular processes. OpenMP is a
highly portable Application Programming Interface (API) that
supports multi-threading on shared-memory platforms via a
set of platform-independent compiler directives (Dagum and
Enon, 1998). OpenMP was further used to allocate separate
threads to communicate and launch tasks on the GPUs. Chemical
diffusion tasks were offloaded to the GPUs due to their high
computational needs. These tasks were programmed using
the NVIDIA Compute Unified Device Architecture (CUDA)
(Nvidia, 2007) model. CUDA is a parallel computing platform
and programming model, which allows general purpose multi-
threaded programming of GPUs via C-like language extension
keywords. In the CUDA language, a GPU is presumed to be
attached to the host (CPU), which controls data movement
to/from the GPU. The CPU is responsible for launching kernels,
which are functions to be executed by all threads launched
on the GPU. Open Graphics Library (OpenGL) was used
to implement the visualization component of the simulation.
OpenGL is an open standard, cross-language API for 2D and 3D
rendering. OpenGL is widely used over a broad range of graphics
applications due to its portability and speed.

2.2. Scheduling and Coordination of
CPU-GPU Computation and Visualization
The 3D VF-ABM consisted of an environment with 154
million patches (Table 3). Each patch stored information

TABLE 3 | Summary of human simulation configurations.

Item Unit Size

World

Size Patches × patches × patches 1,390 × 1,006 × 110

mm × mm × mm 20.85 × 15.09 × 1.65

Patch size µm × µm × µm 15 × 15 × 15

Total number of patches Unit 154 million

ECM data Types 3

Data points 461 million

Chemical data Types 8

Data points 1.2 billion

Inflammatory cells (initial)

Neutrophils Cells 1.72 million

Macrophages Cells 0.97 million

Fibroblasts Cells 12.20 million

Simulated time-step Minutes 30

of ECM proteins and chemical data. In addition, around
17 million mobile agents, representing the inflammatory
cells, resided in this ABM world. The model simulated
the dynamic biological processes pertinent to vocal fold
inflammation and repair at 30 min time intervals. At each
model iteration, the operations corresponding to ECM
functions, chemical diffusion, and cell (agent) functions
were executed followed by the update of the ABM world.
Given the computational complexity and the amount of
data involved, each iteration required a careful mapping and
scheduling of these operations on the available hardware
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resources. In addition, the visualization provides essential spatial
information of ECM proteins, chemicals, and inflammatory
cells during the simulation. The overall goal was to simulate
and visualize the 3D VF-ABM as fast as possible for each
iteration.

The typical approach to tackle such computational complexity
has been to use multi-core CPUs and many-core GPUs.
Accelerators such as GPUs need a CPU host, and each of
the GPU and CPU has a number of cores that can be
exploited using parallel programming techniques. However,
GPUs have received much more attention in general whenever
accelerated performance is the main goal due to their
extremely high performance in data parallel computations.
Often, this hardware preference results in idle CPUs, waiting
for GPUs to perform all the work after the dispatch of the
computing tasks to the GPUs. In this work, the aim was to
exploit the resources available on both the CPU and GPU
simultaneously so as to achieve the best possible performance.
In fact, a host-device computation overlap technique was
used in our earlier work, resulting in much improved
performance for the 2D ABM framework (Seekhao et al.,
2016). However, the 3D ABM framework was substantially
more computationally demanding. The previous methods were
thus further developed to achieve the desired high speed
simulation and visualization necessary for the 3D ABM
framework.

To achieve optimal resource utilization, it is important to
address the challenges of load balancing, minimizing data
movements between the CPU and GPU, and coordinating the
tasks on various devices. As we moved from 2D (Seekhao et al.,

2016) to 3D, the computational complexity of the simulation
and the amount of data involved increased substantially.
Furthermore, the execution time of the visualization component,
which was negligible in the 2D simulation, became significant.
Therefore, the issues of task assignment, load balancing,
and device coordination need to be revisited and addressed
properly.

Figure 2 illustrates the workflow of the 3D ABM simulation
during each iteration. Specifically, it describes the task allocation
on a platform consisting of a single multicore CPU with NGPU

GPUs attached to it. For our specific setup consisting of 2 GPUs,
the simulation started on the CPU host, and then split into three
paths: coarse-grain, fine-grain/visualization, and fine-grain. Each
of the paths was run on separate hardware resources. The first
path spawnedmultiple CPU threads to execute coarse-grain tasks
on CPU cores. The second path was responsible for visualization
and some of the fine-grain tasks that execute on a single GPU
resource. The remaining fine grain tasks executed on the rest of
the GPUs. All paths met at the end to exchange and update the
ABM world.

The overlap of visualization and computational components
required a careful device coordination as these components
now shared computing resources. Algorithm 1 describes,
at a high-level, how to map tasks and perform host-
devices synchronization. Each GPU task, computational or
visualization, has its own CPU thread for data management
and communication with the GPUs. Nested CPU threads were
launched at three levels. At the first level, the driver started
the execution by initializing the simulation and launching two
threads, one for visualization and the other for computation.

FIGURE 2 | Diagram illustrating the workflow of the three main types of tasks; coarse-grain (CPU), fine-grain (GPU), and visualization. The number of GPUs is two in

this setup. However, this scheme can be extended to use more GPUs as demonstrated in the gray part of the diagram. One of the GPUs is used for diffusion (fine-grain

tasks), while the other is used for both visualization and diffusion. With p available CPU cores, p− NGPU − 1 or p− 3 threads are allocated for coarse-grain functions.

The other NGPU threads are in charge of managing data transfers and dispatching fine-grain tasks to the GPUs, and the last thread is spared for visualization.
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Algorithm 1: Pseudocode describing CPU-GPU
scheduling related functions in Driver, Computation
and Visualization class

Function Driver::run():

init()

launchCPUthreads(2)
if thread_id == 0 then

Visualization.start()

else

Computation.start()

return

Function Visualization::start():

while !simulationDone do
renderOnGPU()

visualizationDone← 1 // Notify

// Computation class of

// visualization completion

while computationDone 6= 1 do
// wait for computation on both

CPU and GPUs to complete

computationDone← 0 // reset

computation completion flag

return

Function Computation::start():

while !simulationDone do
launchCPUthreads(2)

if thread_id == 0 then
executeCPUtasks()

else

executeGPUtasks()

syncAndUpdateWorld() // Sync CPU

// and GPU chemical data

computationDone← 1 // Notify

// Visualization class of

// computation completion

return

The visualization rendered the current state of the ABM world
using an available GPU, and then broadcast the completion of the
rendering task. Concurrently with the visualization execution,
the computation started by launching two more threads at
the second level. Both threads at this level further launched
multiple threads at the third level, depending on the number
of cores available. More specifically, the first thread at level
2 was responsible for executing CPU tasks, which launched
parallel threads for coarse-grain task parallelization i.e., level 3.
The second thread at level 2 spawned NGPU level-2 threads to
launch fine-grain computation tasks on available GPUs. Note
that if the visualization was not yet completed, one of the GPUs

Algorithm 2: Pseudocode describing VF-ABM
operations and workflow

Procedure executeCPUtasks()

/* model computation */

launchCPUthreads(p− NGPU − 1)
// p denotes the number of

// available CPU cores

for each Patch pt ∈ 3Dworld do
if pt.conditionMet() then

pt.seedCell()

pt.ECMFunction()
pt.fragmentECMs()

for each Cell c ∈ InflammatoryCells do
c.cellFunction()

/* model update (excluding

chemical data update) */

for each Patch pt ∈ 3Dworld do
pt.updateECMs()
pt.updatePatch()

for each Cell c ∈ InflammatoryCells do
c.updateCell()

Procedure executeGPUtasks()

launchCPUthreads(NGPU)

gpu_id← thread_id
if gpu_id == gpu_idvis then

while visualizationDone 6= 1 do
// wait for visualization on

// GPU to complete

visualizationDone← 0 // reset

visualization completion flag

for each ChemicalType

ct ∈ ChemicalTypeSet[thread_id] do
diffuseChemicalOnGPU(ct, gpu_id)
// using GPU FFT library

// (i.e. NVIDIA cuFFT) for

// convolution computations

would not be available and the fine-grain tasks will have to wait
(Algorithm 2). If a fine-grain task had grabbed the same GPU
used for visualization, it would have to broadcast its completion
so that the visualization can proceed.

2.3. Computational Optimization of
Diffusion
Chemical diffusion was the most demanding computational
component of the model. As previously mentioned, its
computational demand was primarily a result of the extremely
small spatiotemporal scale and high rate at which chemical
diffusion occurs. To reduce the computational load, a
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convolution-based method was used to simulate the diffusion
process (Seekhao et al., 2016). A Fast Fourier transform
(FFT) was then used to reduce the complexity of convolution
computations. Lastly, kernel size reduction was achieved by
extracting the most dense segment of the Gaussian kernel to
optimize the diffusion performance. Note that, since we deal
with regular grids for the ABM world, finite difference method
(FDM) is used as opposed to the more computationally intensive
integral schemes.

2.3.1. FFT-Convolution-Based Diffusion
In 3D, the diffusion equation with decay can be written as

∂c

∂t
= D

(

∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2

)

− γ c, (1)

where c is the chemical concentration, D is the diffusion
coefficient and γ is the decay constant. Assuming that 1x =
1y = 1z, and using a Taylor expansion to discretize the
continuous 3D diffusion equation, we get

c
(

x, y, z, t +1t
)

=

(

1−
4D1t

1x2
− γ1t

)

c
(

x, y, z, t
)

+

D1t

1x2

[

c
(

x+1x, y, z, t
)

+ c
(

x−1x, y, z, t
)

+

c
(

x, y+1y, z, t
)

+ c
(

x, y−1y, z, t
)

+

c
(

x, y, z +1z, t
)

+ c
(

x, y, z −1z, t
)

] (2)

subject to the stability constraints

1t ≤
1x2

6D
. (3)

As shown in Table 4, the largest value of D in the set of

chemical types in VF-ABM is 900 µm2

min (Spiros, 2000), with patch
width 1x = 15µm. The condition 1t ≤ 2.5 s needs to
hold to meet stability constraints. Clearly, the complexity of the
simulation would be unnecessarily high if the model evolved at
1τ = 2.5 s rather than 1τ = 30 min or 1, 800 s.

By letting λ = D1t
1x2

, Equation (2) can be rewritten as

c
(

x, y, z, t +1t
)

= (1− 6λ− γ1t) · c
(

x, y, z, t
)

λ · c
(

x+1x, y, z, t
)

+ λ · c
(

x−1x, y, z, t
)

+

λ · c
(

x, y+1y, z, t
)

+ λ · c
(

x, y−1y, z, t
)

+

TABLE 4 | Effective diffusion coefficients used in 3D VF-ABM.

Effective Diffusitivity (µm2/minute)

TNF-α TGF-β1 FGF MMP8 IL-1β IL-6 IL-8 IL-10

900 780 780 780 900 810 900 900

TNF-α, TGF-β1, IL-1β, and IL-6 values are taken from Spiros (2000).

λ · c
(

x, y, z +1z, t
)

+ λ · c
(

x, y, z −1z, t
)

(4)

or,

c
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where

f
(

x, y, z
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0 otherwise.

Clearly, Equation (2) is equivalent to Equation (5), thus
c
(

x, y, z, t +1t
)

= c
(

x, y, z, t
)

∗ f (x), where ∗ represents the
convolution operation. To compute c

(

x, y, z, τ +1τ
)

, where
1τ = m · 1t, the chemical concentrations from the previous
step, c

(

x, y, z, τ
)

, is convolved with f
(

x, y, z
)

, m times. The
commutative property of convolution implies that convolving
f
(

x, y, z
)

with itselfm times results in fm
(

x, y, z
)

, and the diffused
concentrations at each iteration can be computed as

c
(

x, y, z, τ +1τ
)

= c
(

x, y, z, τ
)

∗ fm
(

x, y, z
)

. (6)

The diffusion computation can thus be accelerated by
computing Equation (6) at a large time step, 1τ , without
violating stability constraints. The effective diffusitivity of IL-1β

in tissue, for example, is 900 µm2

min (Spiros, 2000). In a 15 µm
patch world, a 30-min time step implies that the program has
to calculate c

(

x, y, z, τ
)

∗ f720
(

x, y, z
)

at each time step. In other
words, a chemical on a given patch (x,y,z) has a spatial diffusion
range of x ± 720, y ± 720 and z ± 720, within a window of
dimension 1, 441 × 1, 441 × 1, 441, which covers approximately
3 billion patches.

2.3.2. Kernel Reduction
The diffusion kernel was computed by convolving the initial
coefficient function, f (x, y, z), in Equation (5), with itself m =
1τ/1t times, where 1τ is the biological time step of 30 min and
1t = 1x2/6D is the diffusion time step subjected to the stability
constraints (Equation 3). As calculated earlier, the effective

diffusitivity of IL-1β of 900 µm2

min results in a 1, 441×1, 441×1, 441
kernel.

Note that f (x, y, z) is smoother as it gets convolved with itself,
thus a Gaussian shaped diffusion kernel is obtained. The values
in Gaussian distributions are highest at the center. These values
decrease and approach zero, the further they are from the center.
This observation enabled the reduction of the kernel size by
focusing on the center window, while keeping almost 100% of
kernel mass. The coverage levels of the kernel mass with respect
to extracted window sizes are plotted in Figure 3.
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FIGURE 3 | Diffusion kernel reduction mass vs. kernel width. This plot shows mass coverage with respect to extracted window width. The size of each kernel is

width3 patches. It is observed that by cutting down the size from 1, 4413 down to 1473, only a fraction of 0.0069 of the mass is lost in each iteration.

2.4. Visualization Optimization
The 3D VF-ABM processes at least 17 million agents in each
iteration while producing 1.23 and 0.46 billion chemical data and
ECM protein data points, respectively. The model currently does
not visualize the state of the ECM proteins on each individual
patch, but rather outputs the aggregated ECM protein statistics
at the end of the simulation. Due to the screen space, the user can
only select one out of eight types of chemicals to be visualized in
each frame. The visualization component is thus responsible for
visualizing 17 million biological cells and 154 million chemical
data points. To optimize the visualization of such a large amount
of data, sampling was used and its effects on output simulation
and corresponding performance enhancements were studied.
The performance evaluation is reported in section 3.1.2.

A client-server in situ visualization protocol was employed
to bypass the disk storage and provide users the ability to
steer computation in real-time. For a seamless simulation
and visualization experience, the latency of the server-client
visualization pipeline had to be kept as minimal as possible even
when a large amount of data is being simulated and visualized.
One possible approach is to redirect OpenGL commands to the
remote X server on the client side (Project, 2015). However,
this approach puts significant loads on the network due to the
transferring of both OpenGL calls and 3D data from the server to
the remote client. Moreover, this approach strains the client with
all of the rendering responsibilities, making the approach only
suitable for applications with small and static data or specifically
tuned OpenGL applications (Project, 2016). Another possible
approach would be to use remote display software. However,
some remote display software either lack the ability to run
OpenGL applications, or force OpenGL applications to use a
slow OpenGL software renderer (Project, 2016). Due to the size
of the data produced by the 3D VF-ABM, the most suitable

candidate is VirtualGL. The open source package, VirtualGL,
allows any Unix or Linux remote display software to display
OpenGL applications on the client’s machine, while taking full
advantage of the server’s 3D graphics accelerators (Project, 2015).
The OpenGL commands and 3D data are redirected to a 3D
graphics accelerator on the server by VirtualGL. Thus, instead
of sending a large amount of data points over the network, only
one single simulation image frame (shown in Figure 4), which
was visualized on the server, is sent to the client in each iteration.
Given that this protocol shifts most of the rendering loads to the
server, the client can take full advantage of the server’s hardware,
which is usually much more powerful than that of the client’s
machine. The employment of VirtualGL thus enhances the speed
of the visualization through the server’s accelerators without
costing the client much hardware overhead.

3. RESULTS

The simulation speed and accuracy are critical in making
any biological model clinically useful. This section starts by
examining the overall performance of the ABM simulation
for our case study of the 3D VF-ABM, thereby illustrating
the scalability of the model with respect to the number of
cores available. The impact on the simulation accuracy with
respect to the computational enhancement is then reported.
Section 3.1.3 analyzes the performance of the 3D VF-ABM
simulation suite and benchmarks its performance against existing
ABM frameworks. Finally, the verification of model outputs is
reported in section 3.2.

3.1. Performance Evaluation
To optimize the overall simulation suite, each simulation
component underwent aforesaid optimization techniques. Each
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FIGURE 4 | Screenshot of simulation suite captured at the client side. The top and bottom screenshots were taken from the simulations of rat and human vocal fold

injury and repair, respectively. In each iteration, only a compressed image is sent over the network instead of sending the whole output data set. This approach allows

a fast and efficient transfer of comprehensible outputs to the client. The image transfer costs are the same regardless of the simulation size. Clients only need to install

a thin client package to see the visualized results. The 2D charts show total chemical aggregated statistics. Left most 3D volume in human simulation displays the

distribution of one of the eight chemicals selected by the user. The second and third volumes show macrophage (brown) and neutrophil (red) distributions,

respectively. The last volume on the right displays the tissue damage distribution (pink) and the distribution of fibroblasts (blue). Cell color codes are the same for both

rat and human VF-ABM simulations.

technique was tailored to the specific computation and data
access patterns of the respective component. Thus, their effects
on performance were studied with respect to computation,
visualization, and coupled simulation-visualization.

3.1.1. Computational Component
Due to the efficiency of the FFT-based diffusionmethod, diffusing
1.2 billion point chemical data on two GPUs only took 2.5 s

per iteration. However, the set of coarse-grain tasks (excluding
updates) took about 4 s to execute. As a result, the coarse-grain
tasks became the performance bottleneck. That is, the time that
the VF-ABM takes to complete the computational component of
a single iteration depends on how long it takes to execute the
cellular tasks plus the time to synchronize the results. Figure 5A
shows the execution time for the compute component using
different numbers of CPU threads overlapping with two GPUs.
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These results indicate that the best performance using 32 threads
takes approximately 6.2 s per iteration on average. The average
speedup of the computational component as well as the speedups
of its two main sub-components across 240 iterations over
different numbers of threads are plotted in Figure 5B. Tasks were
grouped into model functions (cell/ECM/synchronization) and
update routines, and their speedups within each respective group
were averaged. Notice that the update tasks consisted mostly
of memory access operations. These operations were memory
bound, thus showing poor scalability. Memory bound refers to
the problem of memory speed not being able to keep up with

the processor speed (McKee, 2004). The memory speed thus
becomes the bottleneck of applications with low ratio of number
of computation operations to number of memory operations. In
contrast, other model function tasks involvedmore computation,
and thus these tasks showed good scalability, making the overall
speedup of the simulation reasonable.

3.1.2. Visualization Component
The coarse-grain tasks (excluding updates) took about 4.7 s
to complete on the CPU. On the other hand, the fine-grain
tasks on the GPUs only took 2.5 s. This difference in execution

FIGURE 5 | Computation-only performance scalability. Graphs showing (A) execution time and (B) speedup of the 3D VF-ABM for different number of threads. Notice

that the average speedup of model function routines (orange-dotted) is much higher than the average speedup of the update routines (gray-dotted). The model

function routines performed more computations than memory access operations, while the update routines performed more memory access operations than

computations. As a result, a good scalability in model function routines was obtained but the scalability of update routines were relatively poor. Despite the

memory-bound update functions, the overall speedup of the program (blue-solid) is still satisfactory.
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time resulted an idle period on the GPUs. If the visualization
component was fast enough, this window would allow us
to integrate visualization with the GPU computation without
increasing the total execution time.

The visualization component included the rendering of cell
migration, chemical diffusion, and tissue damage tracking. The
most time consuming component was the chemical diffusion,
which required an access of 154 million points of data during
each iteration. As discussed earlier, data sampling was used
to improve the visualization performance. Figure 6 shows the
execution time and screenshots of chemical visualization using
different sampling window widths. The visualization of the entire
world looked almost identical for up to 63 sampling windows.
Results showed that, looking at the entire simulation area, enough
visual information was retained by using a fixed 63 sampling
window. However, if the user needed to zoom in to highly active
areas, a more sophisticated adaptive sampling technique could
be used instead of the fixed sampling used here (Seekhao et al.,
2017).

3.1.3. Coupled Simulation and Visualization
Since the visualization execution time was reduced from 23 s
down to 0.4 s using data sampling for chemical diffusion, the
visualization execution could then be placed in the idle period
on one of the GPUs. By placing the visualization execution in a
GPU idle gap, the total execution time remained unchanged at
6.2 s per iteration on average. This fast execution time enabled the
simulation to execute remote computation, remote visualization,
remote transmission of the result frame, and frame rendering on
the client’s machine in under 7 s/frame. This performance, as far
as we know, is the fastest known complex ABM simulation and
visualization at a similar scale.

For benchmarking purposes, the 3D VF-ABM was compared
to our previous and other ABM works of similar nature
(Figure 7). The M. Tuberculosis (MTb) ABM (D’Souza et al.,
2009) was benchmarked on a system with an NVIDIA GeForce
8800M GTX GPU, while GeForce GTX Titan was used
for FLAME GPU immune system ABM (de Paiva Oliveira
and Richmond, 2016). Despite the differences in underlying

FIGURE 6 | Visualization-only performance. This chart shows visualization screenshots and corresponding execution time for different sampling resolutions. The stride

denotes the gap between two consecutive sampled points, thus the higher the stride the coarser the sampling. The visual appearance of the each sampling case

looks almost identical for up to stride 6 or 63 sampling windows. The visualization was able to retain sufficient information by using 63 sampling.
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FIGURE 7 | Processing power of 3D VF-ABM vs. existing work comparison. This bar chart compares workload and execution time in terms of number of patches

(i.e., lattice points, grid points, stationary cells) per ms between the 3D VF-ABM to other bio-simulation ABM work. Notice that the 3D VF-ABM is capable of

processing 25K patches/ms, or about 900x, 63x, 2.3x, and 2.4x more patch processing power than NetLogo, MTb ABM (D’Souza et al., 2009), FLAME GPU immune

system ABM (de Paiva Oliveira and Richmond, 2016), and the earlier 2D VF-ABM work (Seekhao et al., 2016).

TABLE 5 | Performance and scale comparison with existing high-performance ABM work of similar nature.

# Patches # Agents # Chemical types # ECM protein types Time step Average execution time per Iteration

2D MTb ABM 16.4 K 3.2 K 1 0 10 min 0.042

2D NetLogo VF-ABM 1.0 M 114.0 K 8 3 30 min 36.6

2D FLAME GPU 320.0 K 160.1 K 1 0 0.2 s 0.03

2D VF-ABM 1.9 M 228.0 K 8 3 30 min 0.19

3D VF-ABM 153.8 M 16.9 M 8 3 30 min 6.2

hardware, MTb ABM simulation is arguably one of the most
suitable works for performance comparison with the 3D VF-
ABM. The 2D MTb ABM simulated a complex multi-scale
biological system of agents that communicate via chemical
signals, which aligned inmost respects with the 3DVF-ABM. The
human immune system ABM was built on a widely used HPC
ABM platform, FLAME GPU (de Paiva Oliveira and Richmond,
2016). Although this ABM executed the immune system at
a much smaller timescale, the cell communication method is
similar to other ABMs included in this performance comparison,
i.e., communication via chemical signals. The FLAME GPU
immune system ABM thus served as a good performance
reference.

The 3D VF-ABM was simulated at a scale physiologically
representative of a human vocal fold. Such scale was not feasible
to be implemented on ABM freeware NetLogo (Wilensky and
Evanston, 1999). Furthermore, to our best knowledge, no similar
scale had been reported in any other publication. For a common
throughput unit, the simulation performance was measured in
terms of environment space unit per millisecond. The space units
represent the smallest granularity of the ABM environment.
Depending on the model, the space units can be patches

(Wilensky, 2015), grid points (D’Souza et al., 2009), or immobile
tissue cells (de Paiva Oliveira and Richmond, 2016). These
quantities determine the ABM environment size. Therefore, the
number of space units are proportional to the amount of work
required to simulate the ABM environment in each iteration.
For this reason, space unit per millisecond serves a reasonable
throughput measure. The 3D VF-ABM is capable of processing
25K patches/ms, which is about 900x, 63x, 2.3x, and 2.4x the
throughputs of NetLogo, MTb, FLAME GPU immune system
ABM and the 2D VF-ABM, respectively. The comparison of the
model scale, complexity and performances are in Table 5. Of
note, FLAME GPU can process roughly 1.9x more mobile agents
than 3D VF-ABM per time unit. The primary reason was that the
time step used in FLAME GPU immune system ABM are smaller
than that of our model in orders of magnitudes. This time scale
difference caused their agent rules to be much less complex. For
example, FLAMEGPU immune systemABMwould take roughly
18 h to complete a 5-day simulation while the 3D VF-ABM only
takes less than half an hour. In addition, the 3D VF-ABM offered
a much more rigorous data visualization in real-time at a scale
of over 100 times more mobile agents than that of FLAME GPU
immune system ABM.
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3.2. Verification
The trends of the 3D VF-ABM output were qualitatively verified
using the pattern-oriented analytical approach (Railsback, 2001;
Grimm et al., 2005; Li et al., 2010b). The purpose of qualitative
verification was to ensure that the dynamics of the model reflect
what is expected in the wound healing literature and the available
experimental data (Railsback, 2001; Grimm et al., 2005; Lim et al.,
2006; Welham et al., 2008).

Cell population and ECM protein trends were compared
against known patterns reported in wound healing literature
as summarized in Table 6 (Martin, 1997; Witte and Barbul,
1997; Robson et al., 2001; Cockbill, 2002; Tateya et al., 2005;
Dechert et al., 2006; Stern et al., 2006; Tateya I. et al., 2006;
Tateya T. et al., 2006; Jiang et al., 2007). Figure 8 shows
cellular and molecular outputs of the VF-ABM from a 7-day
simulation. The model predicted a peak neutrophil population
at the end of day 1 and significant decreases in day 2.
The model also reproduced a peak of macrophage population
around day 2 and a downward trend from the beginning
of day 3 onward. Furthermore, the fibroblast proliferation
started around the end of day 1 in the simulation. Trends
of these specific cell populations agreed well with the known
patterns in wound healing literature (Table 6). For ECM outputs,
the VF-ABM reproduced the trends of collagen but not of
hyaluronan. In particular, both empirical and ABM results
showed the accumulation of collagen starting from Day 3. The
ABM predicted an earlier accumulation of hyaluronan (Day
1) compared to empirical data (Day 3). This early hyaluronan
accumulation might be related to high levels of TNF-α, TGF-β ,
FGF, and IL-1β that stimulated the secretion of hyaluronan by
fibroblasts in the model. More data and calibration are needed
for further investigation.

Due to the data availability, only a subset of chemicals was
compared against the empirical data (Lim et al., 2006; Welham
et al., 2008). This subset includes measured mRNA levels of
three inflammatory mediators (TNF-α, TGF-β , and IL-1β) out
of 8 that are simulated by the model. The comparison of the
model outputs and the empirical data are shown in Figure 9.
The ABM generated a peak of TNF-α after 13 h (26 ticks)
of injury, whereas this peak occurred at hour 8 (tick 16) in
the empirical data. For IL-1β , the model generated a peak at
hour 12 (tick 24), where the peak was observed at hour 8
in the empirical data. Overall, the ABM-predicted peaks for
TNF-α and IL-1β lagged behind the experimentally observed
peaks by 4–5 h. The discrepancy between the model outputs
and literature data may be explained as follows. First, since
TNF-α and IL-1β were down-regulated by TGF-β and IL-
10 via macrophages and fibroblasts, a possible reason for the
peak delay could be an insufficient strength of TGF-β or IL-
10. Second, since no empirical data were reported between
hour 8 and 16, a peak between this interval might have been
missed experimentally. More empirical data are needed for
further investigation. For TGF, the model missed predicting
the spike at hour 1. However, the sub-linear upward trend
from hour 4 till the end of the simulation predicted by the
model matched with that of the empirical data. In sum, the
VF-ABM trajectories of inflammatory mediators showed a few

TABLE 6 | Summary of patterns used for qualitatively verify 3D VF-ABM (Li et al.,

2010b).

Validation patterns Source References

Neutrophils arrive at wound site in first few

hours

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002

Neutrophil number is at maximum by day

1 or 2

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002

Neutrophil number decreases rapidly

around day 3 or 4

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002

Macrophage number is at maximum by

days 2 to 4

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002

Fibroblasts start proliferation on day 1 Tateya I. et al., 2006

Fibroblast number decreases significantly

on day 7 and stays low until day 14

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002;

Tateya I. et al., 2006

Hyaluronan is first seen on day 3 and

peaks at day 5 and starts to drop

significantly at day 7, and then remains at

low level until day 14

Tateya et al., 2005; Dechert et al.,

2006; Tateya T. et al., 2006; Jiang

et al., 2007

Peak of accumulated hyaluronan content

occurs at the same time as peak of

inflammatory cells (neutrophils and

macrophages)

Stern et al., 2006; Jiang et al., 2007

Hyaluronan level is generally lower than for

uninjured vocal folds after injury

throughout healing period

Tateya et al., 2005; Tateya T. et al.,

2006

Collagen type I curve is sigmoid-shaped Witte and Barbul, 1997; Robson

et al., 2001

Collagen type I is first seen on day 3 and

peaks on day 5

Tateya et al., 2005; Tateya T. et al.,

2006

Collagen type I level is generally higher

than for uninjured vocal folds after injury

throughout healing period

Tateya et al., 2005; Tateya T. et al.,

2006

discrepancies when comparing with the empirical vocal fold
data in literature. Despite these few discrepancies, the overall
dynamics of the VF-ABM outputs are consistent with those seen
in the empirical data. Note that for this VF-ABM to be clinically
ready, more experimental data is needed to calibrate the model.
Future directions of this line of work will be discussed later in
section 4.

4. DISCUSSION

This work presents novel 3D ABM implementation techniques
to tackle the heterogeneity of time scales in large-scale and
multi-scale computational biology modeling. This 3D ABM
for complex biological systems harnessed high-performance
computing techniques to accommodate high-resolution models
in simulating the model geometry and cellular components in
the full physiological dimension without having to scale down
the problem size. Kernel volume reduction was used to speed
up convolution-based fine-grain chemical diffusion tasks on the
GPUs. OpenMP was used to parallelize the coarse-grain cellular
tasks the CPU cores. A task scheduling scheme was then used
to overlap and synchronize the coarse-grain, fine-grain diffusion
and in situ visualization components. This approach incurred
optimal concurrent utilization of both multi-core CPUs and
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FIGURE 8 | Simulation outputs. (A) Tissue damage and cell populations. (B) ECM subtances.

GPUs, resulting in minimal hardware resource idle time. The
3D VF-ABM prototype demonstrated tremendous performance
improvements to high-resolution cellular-level models achieved

with the proposed scheme. The high-performance simulation
suite is capable of large-scale computing and remote visualization
in under an average of 7 s per iteration. The computational
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FIGURE 9 | Empirical data vs. simulation output plot. Qualitative verification of the model output (left) against empirical data (Lim et al., 2006; Welham et al., 2008)

(right). The set of verified chemicals includes TNF-α, TGF-β, and IL-1β.

component tracks 17 million cells and process 1.7 billion
signaling chemical and structural protein data points. The
remote visualization component renders 17 million cells and
154 million signaling chemical data points on the server then
send result frame to the user. Compared to related work of
similar nature, the 3D VF-ABM showed roughly 900x, 63x, and
23x data processing power over the NetLogo version of vocal
fold ABM, MTb ABM (D’Souza et al., 2009), and FLAME GPU
immune system ABM (de Paiva Oliveira and Richmond, 2016),
respectively.

Model verification of the VF prototype was perform
qualitatively against known patterns (Martin, 1997; Witte and
Barbul, 1997; Robson et al., 2001; Cockbill, 2002; Tateya et al.,
2005; Dechert et al., 2006; Stern et al., 2006; Tateya I. et al.,
2006; Tateya T. et al., 2006; Jiang et al., 2007), and against
rat vocal fold surgical data (Lim et al., 2006; Welham et al.,

2008). The model reproduced the overall dynamics of cellular
and molecular trajectories seen in surgical vocal fold injuries.
However, in a few cases, such as the trends of hyaluronan and
collagen, the model missed predicting their peaks. This mismatch
between the model and empirical trends was possibly caused
by imbalances in the levels of regulating substances. More data
and further calibration process are required to investigate this
matter.

As discussed earlier, our ABM world currently only supports
regular grids and thus FDM applies well to the diffusion
computation. An arbitrary shape world is a possible direction
of future work that is yet to be explored. A technique such
as indirect addressing (Randles et al., 2015) and advanced
data structures such as octrees or meshes are examples of
possible approaches to an ABM world geometry solution.
These techniques clearly offer a more realistic representation
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of the real-world geometries but will also increase the model
complexity. Simple FDM for diffusionmay not apply well to these
complex geometries. Variations of FDM (Hunt, 1978; Liszka and
Orkisz, 1980) and other PDE approximation schemes such as
finite element method (FEM) should thus be considered in future
ABM developments.

Ongoing work on parallelizable calibration automation is
being developed to refine the parameter values of the VF-ABM
with additional vocal fold data collected in our laboratory (Li
et al., 2012; Heris et al., 2015; Latifi et al., 2016; Li-Jessen et al.,
2017) and others (King et al., 2015; Kishimoto et al., 2016). Those
works are necessary to improve the biological representation
of the VF-ABM for the ultimate clinical application. High-
performance techniques are being expanded to facilitate more
complex data explorations such as active area resolution
enhancement (Seekhao et al., 2017), 3D volume rendering of
ECM protein content, tissue fiber orientation and structure,
while still maintaining real-time performance. This work focuses
on the application of surgical vocal fold injury and repair because
the empirical data (Lim et al., 2006; Welham et al., 2008) are
available for model verification. However, the host-accelerators
(CPU-GPUs) coordination, diffusion kernel reduction, and
other techniques proposed here can be generalized and applied
to other complex multi-scale biological system applications
to enhance their performance on heterogeneous HPC
platforms.

AUTHOR CONTRIBUTIONS

NS and JJ: conceived of the presented ABM optimization ideas;
NL-J: designed the VF-ABM rules and the overall concept

of the project; CS: designed and implemented the sequential
version of the 3D VF-ABM; NS: designed, implemented,
and benchmarked the parallel version of the 3D VF-ABM;
NS: designed and developed the visualization component
of the 3D VF-ABM; NS: analyzed model-generate outputs
and performed the qualitative verification; JJ, NL-J, and LM:
supervised the project; NS: wrote the manuscript; JJ and NL-J:
revised the manuscript critically; JJ, NL-J, and LM: provided
funding and computing resources to support the project. All
authors provided critical feedback on the project and the
manuscript.

FUNDING

Research reported in this publication was supported by National
Institute of Deafness and other Communication Disorder of
the National Institutes of Health [R03DC012112 (NL-J) and
R01DC005788 (LM)]. The author gratefully acknowledge the
support provided by NSF, Contract Number CNS-1429404 MRI
project (JJ).

ACKNOWLEDGMENTS

The authors would like to thank Yun (Yvonna) Li and Alireza
Najafi Yazdi for their contributions to the development of
the initial and base sequential model. We would also like to
thank Sujal Bista for guidance in developing the visualization
component and UMIACS staff for assistance in VirtualGL
configuration. Lastly, we would like to thank Samson Yuen for
code migration and project deposition on GitHub for public
access.

REFERENCES

Abbott, K. V., Li, N. Y., Branski, R. C., Rosen, C. A., Grillo, E., Steinhauer, K., et al.

(2012). Vocal exercise may attenuate acute vocal fold inflammation. J. Voice 26,

814.e1–814.e13. doi: 10.1016/j.jvoice.2012.03.008

An, G., Mi, Q., Dutta-Moscato, J., and Vodovotz, Y. (2009). Agent-basedmodels in

translational systems biology. Wiley Interdisc. Rev. Syst. Biol. Med. 1, 159–171.

doi: 10.1002/wsbm.45

Ausloos, M., Dawid, H., and Merlone, U. (2015). “Spatial interactions in

agent-based modeling,” in Complexity and Geographical Economics, eds

P. Commendatore, S. Kayam, and I. Kubin (Cham: Springer), 353–377.

doi: 10.1007/978-3-319-12805-4_14

Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., et al.

(2015). “Paraview catalyst: enabling in situ data analysis and visualization,”

in Proceedings of the First Workshop on In Situ Infrastructures for Enabling

Extreme-Scale Analysis and Visualization (Austin, TX), 25–29.

Bainbridge, P. (2013). Wound healing and the role of fibroblasts. J. Wound Care

407–408, 410–412. doi: 10.12968/jowc.2013.22.8.407

Bauer, A. C., Geveci, B., and Schroeder, W. (2013). The ParaView Catalyst User’s

Guide. Clifton Park, NY: Kitware.

Bhattacharyya, N. (2014). The prevalence of Voice Problems among adults

in the United States. Laryngoscope 124, 2359–2362. doi: 10.1002/lary.

24740

Boyle, J. P., Thompson, T. J., Gregg, E. W., Barker, L. E., and Williamson,

D. F. (2010). Projection of the year 2050 burden of diabetes in the us

adult population: dynamic modeling of incidence, mortality, and prediabetes

prevalence. Popul. Health Metr. 8:29. doi: 10.1186/1478-7954-8-29

Caiani, A., Russo, A., Palestrini, A., and Gallegati, M. (2016). Economics with

Heterogeneous Interacting Agents: A Practical Guide to Agent-Based Modeling.

Cham: Springer.

Canadian Institutes of Health (2017). Canadian Institutes of Health Research

Personalized Medicine. Available online at: http://www.cihr-irsc.gc.ca/e/43627.

html (Accessed February 16, 2017).

Chang, M.-H., and Harrington, J. E. Jr. (2006). “Agent-based models of

organizations,” inHandbook of Computational Economics, eds L. Tesfatsion and

K. L. Judd (Amsterdam: Elsevier B.V), 1273–1337.

Chen, R., and Snyder, M. (2012). Systems biology: personalized medicine for the

future? Curr. Opin. Pharmacol. 12, 623–628. doi: 10.1016/j.coph.2012.07.011

Childs, H., Brugger, E., Bonnell, K., Meredith, J., Miller, M., Whitlock, B., et al.

(2005). “A contract based system for large data visualization,” in Visualization,

2005 (Minneapolis, MN), 191–198.

Chooramun, N., Lawrence, P. J., and Galea, E. R. (2012). An agent based

evacuation model utilising hybrid space discretisation. Saf. Sci. 50, 1685–1694.

doi: 10.1016/j.ssci.2011.12.022

Christley, S., Lee, B., Dai, X., andNie, Q. (2010). Integrative multicellular biological

modeling: a case study of 3D epidermal development using GPU algorithms.

BMC Syst. Biol. 4:107. doi: 10.1186/1752-0509-4-107

Cilfone, N. A., Kirschner, D. E., and Linderman, J. J. (2014). Strategies

for efficient numerical implementation of hybrid multi-scale agent-based

models to describe biological systems. Cell. Mol. Bioeng. 8, 119–136.

doi: 10.1007/s12195-014-0363-6

Clermont, G., Bartels, J., Kumar, R., Constantine, G., Vodovotz, Y., and Chow, C.

(2004). In silico design of clinical trials: a method coming of age.Crit. CareMed.

32, 2061–2070. doi: 10.1097/01.CCM.0000142394.28791.C3

Frontiers in Physiology | www.frontiersin.org 17 April 2018 | Volume 9 | Article 304

https://doi.org/10.1016/j.jvoice.2012.03.008
https://doi.org/10.1002/wsbm.45
https://doi.org/10.1007/978-3-319-12805-4_14
https://doi.org/10.12968/jowc.2013.22.8.407
https://doi.org/10.1002/lary.24740
https://doi.org/10.1186/1478-7954-8-29
http://www.cihr-irsc.gc.ca/e/43627.html
http://www.cihr-irsc.gc.ca/e/43627.html
https://doi.org/10.1016/j.coph.2012.07.011
https://doi.org/10.1016/j.ssci.2011.12.022
https://doi.org/10.1186/1752-0509-4-107
https://doi.org/10.1007/s12195-014-0363-6
https://doi.org/10.1097/01.CCM.0000142394.28791.C3
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Seekhao et al. High-Performance 3D Agent-Based Bio-Simulations

Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., and Greenough, C.

(2012). “Exploitation of high performance computing in the flame agent-based

simulation framework,” in 2012 IEEE 14th International Conference on High

Performance Computing and Communication & 2012 IEEE 9th International

Conference on Embedded Software and Systems (HPCC-ICESS) (Liverpool, UK),

538–545.

Cockbill, S. (2002). The healing process. Hosp. Pharm. Lond. 9, 255–260.

Collier, N. (2003). Repast: An Extensible Framework for Agent Simulation. The

University of Chicago’s Social Science Research, 36.

Collier, N., and North, M. (2013). Parallel agent-based simulation with

repast for high performance computing. Simulation 89, 1215–1235.

doi: 10.1177/0037549712462620

Crandall, D. J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., and Kleinberg,

J. (2010). Inferring social ties from geographic coincidences. Proc. Natl. Acad.

Sci. U.S.A. 107, 22436–22441. doi: 10.1073/pnas.1006155107

Cutiva, L. C. C., Vogel, I., and Burdorf, A. (2013). Voice disorders in teachers and

their associations with work-related factors: a systematic review. J. Commun.

Disord. 46, 143–155. doi: 10.1016/j.jcomdis.2013.01.001

Cytowski, M., and Szymanska, Z. (2014). Large-scale parallel simulations of 3D cell

colony dynamics. Comput. Sci. Eng. 16, 86–95. doi: 10.1109/mcse.2014.2

Dagum, L., and Enon, R. (1998). Openmp: an industry standard api for shared-

memory programming. Comput. Sci. Eng. IEEE 5, 46–55.

Dallon, J. C. (2010). Multiscale modeling of cellular systems in biology. Curr. Opin.

Colloid Interface Sci. 15, 24–31. doi: 10.1016/j.cocis.2009.05.007

Day, T. E., Ravi, N., Xian, H., and Brugh, A. (2013). An agent-based modeling

template for a cohort of veterans with diabetic retinopathy. PLoSONE 8:e66812.

doi: 10.1371/journal.pone.0066812

de Paiva Oliveira, A., and Richmond, P. (2016). “Feasibility study of multi-

agent simulation at the cellular level with flame GPU,” in FLAIRS Conference

(Key Largo, FL), 398–403.

Dechert, T. A., Ducale, A. E., Ward, S. I., and Yager, D. R. (2006). Hyaluronan in

human acute and chronic dermal wounds.Wound Repair Regener. 14, 252–258.

doi: 10.1111/j.1743-6109.2006.00119.x

Deisboeck, T. S. (2009). Personalizing medicine: a systems biology perspective.

Mol. Syst. Biol. 5:249. doi: 10.1038/msb.2009.8

Drasdo, D., Buttenschön, A., and Van Liedekerke, P. (2018). “Agent-based lattice

models of multicellular systems: numerical methods, implementation, and

applications,” in Numerical Methods and Advanced Simulation in Biomechanics

and Biological Processes (Elsevier), 223–238.

D’Souza, R. M., Lysenko, M., Marino, S., and Kirschner, D. (2009). “Data-parallel

algorithms for agent-based model simulation of tuberculosis on graphics

processing units,” in Proceedings of the 2009 Spring Simulation Multiconference

(San Diego, CA: Society for Computer Simulation International), 21.

D’Souza, R. M., Lysenko, M., and Rahmani, K. (2007). “Sugarscape on steroids:

simulating over a million agents at interactive rates,” in Proceedings of

Agent2007 Conference (Chicago, IL).

Eissing, T., Kuepfer, L., Becker, C., Block, M., Coboeken, K., Gaub, T., et al.

(2011). A computational systems biology software platform for multiscale

modeling and simulation: integrating whole-body physiology, disease biology,

and molecular reaction networks. Front. Physiol. 2:4. doi: 10.3389/fphys.2011.

00004

El-Sayed, A. M., Seemann, L., Scarborough, P., and Galea, S. (2013). Are network-

based interventions a useful antiobesity strategy? An application of simulation

models for causal inference in epidemiology. Am. J. Epidemiol. 178, 287–295.

doi: 10.1093/aje/kws455

Emonet, T., Macal, C. M., North, M. J., Wickersham, C. E., and Cluzel, P. (2005).

Agentcell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics 21,

2714–2721. doi: 10.1093/bioinformatics/bti391

Falk, M., Ott, M., Ertl, T., Klann, M., and Koeppl, H. (2011). “Parallelized agent-

based simulation on cpu and graphics hardware for spatial and stochastic

models in biology,” in Proceedings of the 9th International Conference on

Computational Methods in Systems Biology (Paris), 73–82.

Fellman, D., and Simberg, S. (2017). Prevalence and risk factors for

voice problems among soccer coaches. J. Voice 31, 121.e9–121.e15.

doi: 10.1016/j.jvoice.2016.02.003

Galea, S., Riddle, M., and Kaplan, G. A. (2009). Causal thinking and

complex system approaches in epidemiology. Int. J. Epidemiol. 39, 97–106.

doi: 10.1093/ije/dyp296

Godfrey, S. S., Bull, C. M., James, R., and Murray, K. (2009). Network structure

and parasite transmission in a group living lizard, the gidgee skink, Egernia

stokesii. Behav. Ecol. Sociobiol. 63, 1045–1056. doi: 10.1007/s00265-009-

0730-9

Gorochowski, T. E. (2016). Agent-based modelling in synthetic biology. Essays

Biochem. 60, 325–336. doi: 10.1042/EBC20160037

Gorochowski, T. E., and Richardson, T. O. (2017). “How behaviour and the

environment influence transmission in mobile groups,” in Temporal Network

Epidemiology, eds N. Masuda and P. Holme (Singapore: Springer), 17–42.

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al.

(2005). Pattern-oriented modeling of agent-based complex systems: lessons

from ecology. Science 310, 987–991. doi: 10.1126/science.1116681

Gunter, H. E. (2004). Modeling mechanical stresses as a factor in the

etiology of benign vocal fold lesions. J. Biomech. 37, 1119–1124.

doi: 10.1016/j.jbiomech.2003.11.007

Hammond, R. A., and Ornstein, J. T. (2014). A model of social influence on body

mass index. Ann. N.Y. Acad. Sci. 1331, 34–42. doi: 10.1111/nyas.12344

Hansen, J. K., and Thibeault, S. L. (2006). Current understanding and

review of the literature: vocal fold scarring. J. Voice 20, 110–120.

doi: 10.1016/j.jvoice.2004.12.005

Hellweger, F. L., Clegg, R. J., Clark, J. R., Plugge, C. M., and Kreft, J.-U.

(2016). Advancing microbial sciences by individual-based modelling. Nat. Rev.

Microbiol. 14, 461–471. doi: 10.1038/nrmicro.2016.62.

Henderson, A., Ahrens, J., and Law, C. (2004). The ParaView Guide. Vol. 366,

Clifton Park, NY: Kitware.

Heris, H. K., Miri, A. K., Ghattamaneni, N. R., Li, N. Y., Thibeault, S. L.,

Wiseman, P. W., et al. (2015). Microstructural and mechanical characterization

of scarred vocal folds. J. Biomech. 48, 708–711. doi: 10.1016/j.jbiomech.2015.

01.014

Hirano, S., Mizuta, M., Kaneko, M., Tateya, I., Kanemaru, S.-I., and Ito, J. (2013).

Regenerative phonosurgical treatments for vocal fold scar and sulcus with basic

fibroblast growth factor. Laryngoscope 123, 2749–2755. doi: 10.1002/lary.24092

Hirsch, G., Homer, J., Evans, E., and Zielinski, A. (2010). A system dynamics

model for planning cardiovascular disease interventions. Am. J. Publ. Health

100, 616–622. doi: 10.2105/AJPH.2009.159434

Hoehme, S., and Drasdo, D. (2010). A cell-based simulation

software for multi-cellular systems. Bioinformatics 26, 2641–2642.

doi: 10.1093/bioinformatics/btq437

Hunt, B. (1978). Finite difference approximation of boundary conditions

along irregular boundaries. Int. J. Numer. Methods Eng. 12, 229–235.

doi: 10.1002/nme.1620120205

Ingle, J. W., Helou, L. B., Li, N. Y., Hebda, P. A., Rosen, C. A.,

and Abbott, K. V. (2014). Role of steroids in acute phonotrauma: a

basic science investigation. Laryngoscope 124, 921–927. doi: 10.1002/lary.

23691

Jiang, D., Liang, J., and Noble, P. W. (2007). Hyaluronan in tissue

injury and repair. Annu. Rev. Cell Dev. Biol. 23, 435–461.

doi: 10.1146/annurev.cellbio.23.090506.123337

Johns, M. M. (2003). Update on the etiology, diagnosis, and treatment of vocal

fold nodules, polyps, and cysts. Curr. Opin. Otolaryngol. Head Neck Surg. 11,

456–461. doi: 10.1097/00020840-200312000-00009

Jones, K., Sigmon, J., Hock, L., Nelson, E., Sullivan, M., and Ogren, F. (2002).

Prevalence and risk factors for voice problems among telemarketers. Arch.

Otolaryngol. Head Neck Surg. 128, 571–577. doi: 10.1001/archotol.128.5.571

King, S. N., Guille, J., and Thibeault, S. L. (2015). Characterization of the

leukocyte response in acute vocal fold injury. PLoS ONE 10:e0139260.

doi: 10.1371/journal.pone.0139260

Kiran, M., Richmond, P., Holcombe, M., Chin, L. S., Worth, D., and Greenough,

C. (2010). “Flame: simulating large populations of agents on parallel

hardware architectures,” in Proceedings of the 9th International Conference

on Autonomous Agents and Multiagent Systems: Vol. 1 (Toronto, ON:

International Foundation for Autonomous Agents and Multiagent Systems),

1633–1636.

Kishimoto, Y., Kishimoto, A. O., Ye, S., Kendziorski, C., andWelham, N. V. (2016).

Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds. Lab.

Invest. 96, 807–816. doi: 10.1038/labinvest.2016.43

Kojima, T., Van Deusen, M., Jerome, W. G., Garrett, C. G., Sivasankar, M. P.,

Novaleski, C. K., et al. (2014). Quantification of acute vocal fold epithelial

Frontiers in Physiology | www.frontiersin.org 18 April 2018 | Volume 9 | Article 304

https://doi.org/10.1177/0037549712462620
https://doi.org/10.1073/pnas.1006155107
https://doi.org/10.1016/j.jcomdis.2013.01.001
https://doi.org/10.1109/mcse.2014.2
https://doi.org/10.1016/j.cocis.2009.05.007
https://doi.org/10.1371/journal.pone.0066812
https://doi.org/10.1111/j.1743-6109.2006.00119.x
https://doi.org/10.1038/msb.2009.8
https://doi.org/10.3389/fphys.2011.00004
https://doi.org/10.1093/aje/kws455
https://doi.org/10.1093/bioinformatics/bti391
https://doi.org/10.1016/j.jvoice.2016.02.003
https://doi.org/10.1093/ije/dyp296
https://doi.org/10.1007/s00265-009-0730-9
https://doi.org/10.1042/EBC20160037
https://doi.org/10.1126/science.1116681
https://doi.org/10.1016/j.jbiomech.2003.11.007
https://doi.org/10.1111/nyas.12344
https://doi.org/10.1016/j.jvoice.2004.12.005
https://doi.org/10.1038/nrmicro.2016.62.
https://doi.org/10.1016/j.jbiomech.2015.01.014
https://doi.org/10.1002/lary.24092
https://doi.org/10.2105/AJPH.2009.159434
https://doi.org/10.1093/bioinformatics/btq437
https://doi.org/10.1002/nme.1620120205
https://doi.org/10.1002/lary.23691
https://doi.org/10.1146/annurev.cellbio.23.090506.123337
https://doi.org/10.1097/00020840-200312000-00009
https://doi.org/10.1001/archotol.128.5.571
https://doi.org/10.1371/journal.pone.0139260
https://doi.org/10.1038/labinvest.2016.43
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Seekhao et al. High-Performance 3D Agent-Based Bio-Simulations

surface damage with increasing time and magnitude doses of vibration

exposure. PLoS ONE 9:e91615. doi: 10.1371/journal.pone.0091615

Krekhov, A., Grüninger, J., Schlönvoigt, R., and Krüger, J. (2015). “Towards in

situ visualization of extreme-scale, agent-based, worldwide disease-spreading

simulations,” in SIGGRAPH Asia 2015 Visualization in High Performance

Computing (Kobe).

Kuhlen, T., Pajarola, R., and Zhou, K. (2011). “Parallel in situ coupling of

simulation with a fully featured visualization system,” in Proceedings of the

11th Eurographics Conference on Parallel Graphics and Visualization (EGPGV)

(Bangor).

Kumar, R., Clermont, G., Vodovotz, Y., and Chow, C. C. (2004). The dynamics of

acute inflammation. J. Theor. Biol. 230, 145–155. doi: 10.1016/j.jtbi.2004.04.044

Latifi, N., Heris, H. K., Thomson, S. L., Taher, R., Kazemirad, S., Sheibani,

S., et al. (2016). A flow perfusion bioreactor system for vocal fold

tissue engineering applications. Tissue Eng. Part C Methods 22, 823–838.

doi: 10.1089/ten.tec.2016.0053

Li, N., Verdolini, K., Clermont, G., Mi, Q., Rubinstein, E. N., Hebda, P. A., et al.

(2008). A patient-specific in silicomodel of inflammation and healing tested in

acute vocal fold injury. PLoS ONE 3:e2789. doi: 10.1371/journal.pone.0002789

Li, N. Y., Chen, F., Dikkers, F. G., and Thibeault, S. L. (2014). Dose-dependent

effect of mitomycin C on human vocal fold fibroblasts.Head Neck 36, 401–410.

doi: 10.1002/hed.23310

Li, N. Y., Heris, H. K., and Mongeau, L. (2013). Current understanding and

future directions for vocal fold mechanobiology. J. Cytol. Mol. Biol. 1:001.

doi: 10.13188/2325-4653.1000001

Li, N. Y., Lee, B.-J., and Thibeault, S. L. (2012). Temporal and spatial expression

of high-mobility group box 1 in surgically injured rat vocal folds. Laryngoscope

122, 364–369. doi: 10.1002/lary.22435

Li, N. Y., Verdolini Abbott, K., Rosen, C., An, G., Hebda, P. A., and Vodovotz,

Y. (2010a). Translational systems biology and voice pathophysiology.

Laryngoscope 120, 511–515. doi: 10.1002/lary.20755

Li, N. Y., Vodovotz, Y., Hebda, P. A., and Abbott, K. V. (2010b). Biosimulation of

inflammation and healing in surgically injured vocal folds. Ann. Otol. Rhinol.

Laryngol. 119, 412–423. doi: 10.1177/000348941011900609

Li, N. Y., Vodovotz, Y., Kim, K. H., Mi, Q., Hebda, P. A., and Abbott, K. V. (2011).

Biosimulation of acute phonotrauma: an extended model. Laryngoscope 121,

2418–2428. doi: 10.1002/lary.22226

Li, Y., Kong, N., Lawley, M., Weiss, L., and Pagán, J. A. (2015). Advancing

the use of evidence-based decision-making in local health departments

with systems science methodologies. Am. J. Publ. Health 105, S217–S222.

doi: 10.2105/AJPH.2014.302077

Li, Y., Kong, N., Lawley, M. A., and Pagán, J. A. (2014). Using systems science for

population health management in primary care. J. Primary Care Community

Health 5, 242–246. doi: 10.1177/2150131914536400

Li, Y., Lawley, M. A., Siscovick, D. S., Zhang, D., and Pagán, J. A.

(2016). Agent-based modeling of chronic diseases: a narrative review and

future research directions. Prev. Chronic Dis. 13:E69. doi: 10.5888/pcd13.

150561

Li-Jessen, N. Y., Powell, M., Choi, A.-J., Lee, B.-J., and Thibeault, S. L.

(2017). Cellular source and proinflammatory roles of high-mobility group

box 1 in surgically injured rat vocal folds. Laryngoscope 127, E193–E200.

doi: 10.1002/lary.26333

Lim, X., Tateya, I., Tateya, T., Muñoz-Del-Río, A., and Bless, D. M. (2006).

Immediate inflammatory response and scar formation in wounded vocal

folds. Ann. Otol. Rhinol. Laryngol. 115, 921–929. doi: 10.1177/000348940611

501212

Liszka, T., and Orkisz, J. (1980). The finite difference method at arbitrary irregular

grids and its application in applied mechanics. Comput. Struct. 11, 83–95.

Macal, C. M. (2016). Everything you need to know about agent-based modelling

and simulation. J. Simul. 10, 144–156. doi: 10.1057/jos.2016.7

Macal, C. M., and North, M. J. (2010). Tutorial on agent-based modelling and

simulation. J. Simul. 4, 151–162. doi: 10.1057/jos.2010.3

MacKenzie, K., Millar, A., Wilson, J. A., Sellars, C., and Deary, I. J. (2001). Is voice

therapy an effective treatment for dysphonia? A randomised controlled trial.

BMJ 323:658. doi: 10.1136/bmj.323.7314.658

Marshall, B. D., and Galea, S. (2014). Formalizing the role of agent-based

modeling in causal inference and epidemiology. Am. J. Epidemiol. 181, 92–99.

doi: 10.1093/aje/kwu274

Martin, P. (1997). Wound healing–aiming for perfect skin regeneration. Science

276, 75–81.

Martins, R. H. G., do Amaral, H. A., Tavares, E. L. M., Martins, M. G., Gonçalves,

T. M., and Dias, N. H. (2015). Voice disorders: etiology and diagnosis. J. Voice

30, 761.e1–761.e9. doi: 10.1016/j.jvoice.2015.09.017

Maus, C., Rybacki, S., and Uhrmacher, A. M. (2011). Rule-based multi-

level modeling of cell biological systems. BMC Syst. Biol. 5:166.

doi: 10.1186/1752-0509-5-166

McKee, S. A. (2004). “Reflections on the memory wall,” in Proceedings of the 1st

Conference on Computing Frontiers (Ischia), 162.

McLane, A. J., Semeniuk, C., McDermid, G. J., and Marceau, D. J. (2011). The role

of agent-based models in wildlife ecology and management. Ecol. Modell. 222,

1544–1556. doi: 10.1016/j.ecolmodel.2011.01.020

McLane, A. J., Semeniuk, C., McDermid, G. J., Tomback, D. F., Lorenz, T.,

and Marceau, D. (2017). Energetic behavioural-strategy prioritization of

clark’s nutcrackers in whitebark pine communities: an agent-based modeling

approach. Ecol. Modell. 354, 123–139. doi: 10.1016/j.ecolmodel.2017.03.019

Miri, A. K., Li, N. Y., Avazmohammadi, R., Thibeault, S. L., Mongrain,

R., and Mongeau, L. (2015). Study of extracellular matrix in vocal fold

biomechanics using a two-phase model. Biomech. Model. Mechanobiol. 14,

49–57. doi: 10.1007/s10237-014-0585-5

Misono, S., Marmor, S., Roy, N., Mau, T., and Cohen, S. M. (2016).

Multi-institutional study of voice disorders and voice therapy referral:

report from the cheer network. Otolaryngol. Head Neck Surg. 155, 33–41.

doi: 10.1177/0194599816639244

Moore, J. E., Rathouz, P. J., Havlena, J. A., Zhao, Q., Dailey, S. H., Smith, M. A.,

et al. (2016). Practice variations in voice treatment selection following vocal

fold mucosal resection. Laryngoscope 126, 2505–2512. doi: 10.1002/lary.25911

Murphy, J. T., Bayrak, E. S., Ozturk, M. C., and Cinar, A. (2016). “Simulating

3-D bone tissue growth using repast HPC: initial simulation design

and performance results,” in Winter Simulation Conference (WSC), 2016

(Washington, DC), 2087–2098.

North, M. J., Howe, T. R., Collier, N. T., and Vos, J. R. (2005). “The repast

simphony runtime system,” in Proceedings of the Agent 2005 Conference on

Generative Social Processes, Models, and Mechanisms, Vol. 10 (Argonne, IL:

Argonne National Laboratory; The University of Chicago), 13–15.

Nvidia, C. (2007). Compute Unified Device Architecture Programming Guide. Santa

Clara, CA.

Nvidia, C. (2014). Remote visualization on server-class tesla GPUs.

O’Donnell, E., Atkinson, J.-A., Freebairn, L., and Rychetnik, L. (2016).

Participatory simulation modelling to inform public health policy and practice:

rethinking the evidence hierarchies. J. Publ. Health Policy 38, 203–215.

doi: 10.1057/s41271-016-0061-9.

Project, T. V. (2015). VirtualGL Background. Technical report. The VirtualGL

Project.

Project, T. V. (2016). A Brief Introduction to Virtualgl. Technical report. The

VirtualGL Project.

Qu, Z., Garfinkel, A., Weiss, J. N., and Nivala, M. (2011). Multi-scale modeling in

biology: how to bridge the gaps between scales? Prog. Biophys. Mol. Biol. 107,

21–31. doi: 10.1016/j.pbiomolbio.2011.06.004

Railsback, S. F. (2001). Getting results: the pattern-oriented approach to analyzing

natural systems with individual-basedmodels.Nat. Resour. Model. 14, 465–475.

doi: 10.1111/j.1939-7445.2001.tb00069.x

Randles, A., Draeger, E. W., Oppelstrup, T., Krauss, L., and Gunnels, J. A. (2015).

“Massively parallel models of the human circulatory system,” in Proceedings

of the International Conference for High Performance Computing, Networking,

Storage and Analysis (Austin, TX), 1.

Richardson, T. O., and Gorochowski, T. E. (2015). Beyond contact-based

transmission networks: the role of spatial coincidence. J. R. Soc. Interface

12:20150705. doi: 10.1098/rsif.2015.0705

Richmond, P. M. and Chimeh, M. K. (2017). “Flame GPU: Complex system

simulation framework,” in 2017 International Conference on High Performance

Computing & Simulation (HPCS) (Genoa), 11–17.

Richmond, P., Coakley, S., and Romano, D. M. (2009). “A high performance

agent based modelling framework on graphics card hardware with CUDA,”

in Proceedings of The 8th International Conference on Autonomous Agents

and Multiagent Systems-Vol. 2 (Budapest: International Foundation for

Autonomous Agents and Multiagent Systems), 1125–1126.

Frontiers in Physiology | www.frontiersin.org 19 April 2018 | Volume 9 | Article 304

https://doi.org/10.1371/journal.pone.0091615
https://doi.org/10.1016/j.jtbi.2004.04.044
https://doi.org/10.1089/ten.tec.2016.0053
https://doi.org/10.1371/journal.pone.0002789
https://doi.org/10.1002/hed.23310
https://doi.org/10.13188/2325-4653.1000001
https://doi.org/10.1002/lary.22435
https://doi.org/10.1002/lary.20755
https://doi.org/10.1177/000348941011900609
https://doi.org/10.1002/lary.22226
https://doi.org/10.2105/AJPH.2014.302077
https://doi.org/10.1177/2150131914536400
https://doi.org/10.5888/pcd13.150561
https://doi.org/10.1002/lary.26333
https://doi.org/10.1177/000348940611501212
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1057/jos.2010.3
https://doi.org/10.1136/bmj.323.7314.658
https://doi.org/10.1093/aje/kwu274
https://doi.org/10.1016/j.jvoice.2015.09.017
https://doi.org/10.1186/1752-0509-5-166
https://doi.org/10.1016/j.ecolmodel.2011.01.020
https://doi.org/10.1016/j.ecolmodel.2017.03.019
https://doi.org/10.1007/s10237-014-0585-5
https://doi.org/10.1177/0194599816639244
https://doi.org/10.1002/lary.25911
https://doi.org/10.1057/s41271-016-0061-9.
https://doi.org/10.1016/j.pbiomolbio.2011.06.004
https://doi.org/10.1111/j.1939-7445.2001.tb00069.x
https://doi.org/10.1098/rsif.2015.0705
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Seekhao et al. High-Performance 3D Agent-Based Bio-Simulations

Richmond, P., Walker, D., Coakley, S., and Romano, D. (2010). High performance

cellular level agent-based simulation with flame for the GPU. Brief. Bioinform.

11, 334–347. doi: 10.1093/bib/bbp073

Rivi, M., Calori, L., Muscianisi, G., and Slavnic, V. (2012). In-situ visualization:

state-of-the-art and some use cases. PRACE White Paper. Available online at:

http://www.prace-ri.eu/visualisation/

Robson, M. C., Steed, D. L., and Franz, M. G. (2001). Wound healing: biologic

features and approaches to maximize healing trajectories. Curr. Prob. Surg. 38,

A1–A140. doi: 10.1067/msg.2001.111167

Roy, N. (2012). Optimal dose–response relationships in voice therapy. Int. J. Speech

Lang. Pathol. 14, 419–423. doi: 10.3109/17549507.2012.686119

Roy, N., Merrill, R. M., Thibeault, S., Gray, S. D., and Smith, E. M. (2004). Voice

disorders in teachers and the general population effects on work performance,

attendance, and future career choices. J. Speech Lang. Hear. Res. 47, 542–551.

doi: 10.1044/1092-4388(2004/042)

Schleicher, J., Conrad, T., Gustafsson, M., Cedersund, G., Guthke, R., and

Linde, J. (2017). Facing the challenges of multiscale modelling of bacterial

and fungal pathogen–host interactions. Brief. Funct. Genomics 16, 57–69.

doi: 10.1093/bfgp/elv064

Seekhao, N., JaJa, J., Mongeau, L., and Li-Jessen, N. Y. (2017). In situ

visualization for 3D agent-based vocal fold inflammation and repair simulation.

Supercomput. Front. Innov. 4, 68–79. doi: 10.14529/jsfi170304

Seekhao, N., Shung, C., JaJa, J., Mongeau, L., and Li-Jessen, N. Y. (2016).

Real-time agent-based modeling simulation with in-situ visualization of

complex biological systems a case study on vocal fold inflammation and

healing. IEEE Int. Parallel Distrib. Process. Symp. Workshops 2016, 463–472.

doi: 10.1109/IPDPSW.2016.20

Shi, Z., Chapes, S. K., Ben-Arieh, D., and Wu, C.-H. (2016). An agent-based

model of a hepatic inflammatory response to salmonella: a computational

study under a large set of experimental data. PLoS ONE 11:e0161131.

doi: 10.1371/journal.pone.0161131

Sneddon, M. W., Faeder, J. R., and Emonet, T. (2011). Efficient modeling,

simulation and coarse-graining of biological complexity with nfsim. Nat.

Methods 8, 177–183. doi: 10.1038/nmeth.1546

Spiros, A. (2000). Alzheimer’s In Silico Diffusion of Molecules. Available online at:

http://www.math.ubc.ca/~ais/website/status/diffuse.html

Starruß, J., de Back, W., Brusch, L., and Deutsch, A. (2014). Morpheus: a

user-friendly modeling environment for multiscale and multicellular systems

biology. Bioinformatics 30, 1331–1332. doi: 10.1093/bioinformatics/btt772

Stern, R., Asari, A. A., and Sugahara, K. N. (2006). Hyaluronan

fragments: an information-rich system. Eur. J. Cell Biol. 85, 699–715.

doi: 10.1016/j.ejcb.2006.05.009

Su, Y., Wang, Y., and Agrawal, G. (2015). “In-situ bitmaps generation and

efficient data analysis based on bitmaps,” in Proceedings of the 24th

International Symposium on High-Performance Parallel and Distributed

Computing (Portland, OR), 61–72.

Swat, M. H., Belmonte, J., Heiland, R. W., Zaitlen, B. L., Glazier, J. A.,

and Shirinifard, A. (2012a). Introduction to Compucell3D Version 3.7.4.

Bloomington, IN.

Swat, M. H., Thomas, G. L., Belmonte, J. M., Shirinifard, A., Hmeljak, D., and

Glazier, J. A. (2012b). Multi-scale modeling of tissues using compucell3D.

Methods Cell Biol. 110, 325–366. doi: 10.1016/B978-0-12-388403-9.00013-8

Tateya, I., Tateya, T., Lim, X., Sohn, J. H., and Bless, D. M. (2006). Cell production

in injured vocal folds: a rat study. Ann. Otol. Rhinol. Laryngol. 115, 135–143.

doi: 10.1177/000348940611500210

Tateya, T., Sohn, J. H., Tateya, I., and Bless, D. M. (2005). Histologic

characterization of rat vocal fold scarring. Ann. Otol. Rhinol. Laryngol. 114,

183–191. doi: 10.1177/000348940511400303

Tateya, T., Tateya, I., Sohn, J. H., and Bless, D. M. (2006). Histological study of

acute vocal fold injury in a rat model.Ann. Otol. Rhinol. Laryngol. 115, 285–292.

doi: 10.1177/000348940611500406

Tesfatsion, L. (2006). “Agent-based computational economics: a constructive

approach to economic theory,” in Handbook of Computational Economics,

Vol. 2, eds L. Tesfatsion and K. L. Judd (Amsterdam: Elsevier B.V.), 831–880.

Van Liedekerke, P., Buttenschön, A., and Drasdo, D. (2018). “Off-lattice agent-

based models for cell and tumor growth: numerical methods, implementation,

and applications,” in Numerical Methods and Advanced Simulation in

Biomechanics and Biological Processes, eds M. Cerrolaza, S. Shefelbine, and D.

Garzón-Alvarado (London, UK; San Diego, CA; Cambridge, MA; Oxford, UK:

Elsevier Academic Press), 245–267.

Vasconcelos, D., Gomes, A. O., and de Araújo, C. M. T. (2015).

Effectiveness of speech therapy in the treatment of vocal fold

polyps. Rev. CEFAC 17, 2009–2017. doi: 10.1590/1982-02162015176

14215

Verdolini, K., and Ramig, L. O. (2001). Review: occupational risks for voice

problems. Logoped. Phoniatr. Vocol. 26, 37–46. doi: 10.1080/14015430119969

Vilkman, E. (2000). Voice problems at work: a challenge for occupational

safety and health arrangement. Folia Phoniatr. Logop. 52, 120–125.

doi: 10.1159/000021519

Vodovotz, Y., Chow, C. C., Bartels, J., Lagoa, C., Prince, J. M., Levy, R. M., et al.

(2006). In silico models of acute inflammation in animals. Shock 26, 235–244.

doi: 10.1097/01.shk.0000225413.13866.fo

Vodovotz, Y., Constantine, G., Faeder, J., Mi, Q., Rubin, J., Bartels,

J., et al. (2010). Translational systems approaches to the biology of

inflammation and healing. Immunopharmacol. Immunotoxicol. 32, 181–195.

doi: 10.3109/08923970903369867

Wang, C.-T., Liao, L.-J., Lai, M.-S., and Cheng, P.-W. (2014). Comparison

of benign lesion regression following vocal fold steroid injection and

vocal hygiene education. Laryngoscope 124, 510–515. doi: 10.1002/lary.

24328

Welham, N. V., Lim, X., Tateya, I., and Bless, D. M. (2008). Inflammatory factor

profiles one hour following vocal fold injury. Ann. Otol. Rhinol. Laryngol. 117,

145–152. doi: 10.1177/000348940811700213

Wilensky, U. (2015). Netlogo Dictionary. NetLogo User Manual, 3.

Wilensky, U. and Evanston, I. (1999). Netlogo: Center for Connected Learning and

Computer-Based Modeling. Evanston, IL: Northwestern University, 49–52.

Witte, M. B., and Barbul, A. (1997). General principles of wound healing. Surg.

Clin. North Am. 77, 509–528.

Wlodzimirow, K. A., Eslami, S., Chamuleau, R. A., Nieuwoudt, M., and Abu-

Hanna, A. (2012). Prediction of poor outcome in patients with acute

liver failure-systematic review of prediction models. PLoS ONE 7:e50952.

doi: 10.1371/journal.pone.0050952

Zeitels, S. M., Casiano, R. R., Gardner, G. M., Hogikyan, N. D., Koufman,

J. A., and Rosen, C. A. (2002). Management of common voice

problems: committee report. Otolaryngol. Head Neck Surg. 126, 333–348.

doi: 10.1067/mhn.2002.123546

Zhang, L., Jiang, B., Wu, Y., Strouthos, C., Sun, P. Z., Su, J., et al. (2011).

Developing a multiscale, multi-resolution agent-based brain tumor model by

graphics processing units. Theor. Biol. Med.Modell. 8:46. doi: 10.1186/1742-468

2-8-46

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Seekhao, Shung, JaJa, Mongeau and Li-Jessen. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physiology | www.frontiersin.org 20 April 2018 | Volume 9 | Article 304

https://doi.org/10.1093/bib/bbp073
http://www.prace-ri.eu/visualisation/
https://doi.org/10.1067/msg.2001.111167
https://doi.org/10.3109/17549507.2012.686119
https://doi.org/10.1044/1092-4388(2004/042)
https://doi.org/10.1093/bfgp/elv064
https://doi.org/10.14529/jsfi170304
https://doi.org/10.1109/IPDPSW.2016.20
https://doi.org/10.1371/journal.pone.0161131
https://doi.org/10.1038/nmeth.1546
http://www.math.ubc.ca/~ais/website/status/diffuse.html
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1016/j.ejcb.2006.05.009
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
https://doi.org/10.1177/000348940611500210
https://doi.org/10.1177/000348940511400303
https://doi.org/10.1177/000348940611500406
https://doi.org/10.1590/1982-0216201517614215
https://doi.org/10.1080/14015430119969
https://doi.org/10.1159/000021519
https://doi.org/10.1097/01.shk.0000225413.13866.fo
https://doi.org/10.3109/08923970903369867
https://doi.org/10.1002/lary.24328
https://doi.org/10.1177/000348940811700213
https://doi.org/10.1371/journal.pone.0050952
https://doi.org/10.1067/mhn.2002.123546
https://doi.org/10.1186/1742-4682-8-46
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair
	1. Introduction
	1.1. Agent-Based Modeling (ABM)
	1.2. Computational Challenges
	1.3. Case Study—Vocal Fold Inflammation and Repair
	1.3.1. Problem Background
	1.3.2. Modeling Vocal Fold Repair With ABM (VF-ABM)


	2. Materials and Methods
	2.1. Hardware and Software Environment
	2.2. Scheduling and Coordination of CPU-GPU Computation and Visualization
	2.3. Computational Optimization of Diffusion
	2.3.1. FFT-Convolution-Based Diffusion
	2.3.2. Kernel Reduction

	2.4. Visualization Optimization

	3. Results
	3.1. Performance Evaluation
	3.1.1. Computational Component
	3.1.2. Visualization Component
	3.1.3. Coupled Simulation and Visualization

	3.2. Verification

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


