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High-performance computing approaches that combine molecular-scale and

macroscale continuum mechanics have long been anticipated in various fields.

Such approaches may enrich our understanding of the links between microscale

molecular mechanisms and macroscopic properties in the continuum. However, there

have been few successful examples to date owing to various difficulties associated

with overcoming the large spatial (from 1nm to 10 cm) and temporal (from 1 ns to

1ms) gaps between the two scales. In this paper, we propose an efficient parallel

scheme to couple a microscopic model using Langevin dynamics for a protein motor

with a finite element continuum model of a beating heart. The proposed scheme

allows us to use a macroscale time step that is an order of magnitude longer than the

microscale time step of the Langevin model, without loss of stability or accuracy. This

reduces the overhead required by the imbalanced loads of the microscale computations

and the communication required when switching between scales. An example of the

Langevin dynamics model that demonstrates the usefulness of the coupling approach

is the molecular mechanism of the actomyosin system, in which the stretch-activation

phenomenon can be successfully reproduced. This microscopic Langevin model is

coupled with a macroscopic finite element ventricle model. In the numerical simulations,

the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous

oscillation (15Hz) accompanied by quick lengthening due to cooperative movements

of the myosin molecules pulling on the common Z-line. Also, the coupled simulations

using the ventricle model show that the stretch-activation mechanism contributes to the

synchronization of the quick lengthening of the sarcomeres at the end of the systolic

phase. By comparing the simulation results given by the molecular model with and

without the stretch-activation mechanism, we see that this synchronization contributes

to maintaining the systolic blood pressure by providing sufficient blood volume without

slowing the diastolic process.

Keywords: multiscale method, Langevin equation, continuum mechanics, actomyosin, heartbeat, stretch

activation
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INTRODUCTION

With the advances in computational science made possible by
improvements in hardware technology, it is now possible to
create multi-scale simulation models of the heart in which the
macroscopic behaviors of the beating heart can be reproduced
and analyzed based on molecular mechanisms of the excitation-
contraction coupling process (Kerckhoffs et al., 2007; Gurev et al.,
2011; Sugiura et al., 2012). These models are based on many
studies of cell models of cardiac electrophysiology (Luo and
Rudy, 1994; ten Tusscher et al., 2004; Grandi et al., 2010). We
also note that tissue modeling has provided deep insights into the
nature of coupling and other interactions among cells in the heart
wall (Clayton et al., 2011). Central to these in silico heart studies is
an accurate model of crossbridge kinetics, which not only forms
the basis of cardiac mechanics, but also has clinical relevance
in the light of the many reports showing the involvement of
sarcomeric proteins in the pathogenesis of cardiomyopathies
(Cahill et al., 2013).

Ideally, a molecular dynamics simulation of actomyosin
should be coupled with a macroscopic finite element model
of the heart because with such a model the impact of

FIGURE 1 | Coupling strategy for three scales. In the actomyosin system, x and ξ are variables representing the deformation of the bound myosin molecule. In

particular, ξ is the strain of the myosin rods, and Wrod (ξ) is its strain energy. These variables were updated by the time step 1t ∼ 0.25 ns, while the variables in the

half-sarcomere and the ventricle models were updated by the time step 1T = n1t ∼ 1 µs. The shortening of the half-sarcomere model is represented by the variable

z, which affected the Langevin dynamics of the bound myosin molecules through the constraint condition: 1ξ = 1x − 1z, while the sarcomeric contractile force
T,1TF on the time interval [T, T + 1T] was given by the sum of tensile forces T+k1tFi,j of the bound myosin rods averaged over the time interval (k = 1, · · · , n). The

half-sarcomere model of actomyosin complexes was imbedded into each tetrahedral element of the finite element ventricle model in the reference configuration along

the fiber direction f. The deformation at the time T of the ventricle is represented by the current position x = Tx (X) of the material point X, thus λ =

∥

∥

∥
∂Tx/∂X · f

∥

∥

∥
is

the stretch along the fiber orientation direction. This stretching was transferred to the shortening of the imbedded half-sarcomere model with the factor −SL0/2, while

the contractile tension T,1T T f was given along the fiber direction by scaling the sarcomeric contractile force T,1TF by taking the cross-sectional area per thin

filament (SA0), and the volume ratio of the sarcomere within the ventricle wall (RS) into account.

mutations in the myosin molecules on cardiac function can
be directly assessed. However, it is not possible to perform
such simulations even with the best available high-performance
computers, and current multi-scale heart simulators usually
adopt state-transition models of crossbridge cycling. In these
models, the rate constants for transitions between states are
governed by the energy of each state (Huxley and Simmons,
1971), but the minimum in the energy landscape corresponding
to each state ignores its width in the infinitely-sharp minimum
approximation, in which the angle of each lever arm is fixed in
the most stable configuration. Obviously, this is a simplification
of the behavior of real myosin molecules experiencing thermal
fluctuations, and we have recently reported that a model with
an energy landscape possessing wide minima can reproduce
experimental findings with higher accuracy (Marcucci et al.,
2016). However, in that paper, we only examined simple Langevin
dynamics with a single variable representing the free energy
potential during the power stroke, and solved it using a Monte
Carle (MC) simulation. In that case, the Kramers-Smoluchovski
approximation (Gardiner, 2004) was used to obtain the rate
constants of the transitions between the multiple states, which
were given by discretizing the one-dimensional range of the
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TABLE 1 | Parameters for the actomyosin dynamics.

Parameter Value Unit References

ATP HYDROLYSIS ENERGY

EATP 22kBT

kBT 4.278 pN · nm T = 310◦C

POWER STROKE FREE ENERGY ϕPS

s1 5.5 nm Equation 8

s2 5.5 nm Equation 8

EPre 0.8EATP Equation 8

EPS1 0.85EPre Equation 8

EPS2 0.0 Equation 8

kY 20 pN/nm Equation 8

FOR TRAP MODEL

Eb01 1.6EPre Equation 9

Eb02 1.2EPS1 Equation 10

Ctrap 200 pN/nm Equation 9

θtrap −0.25 nm Equation 9

1θ trap 5 nm Equation 9

FOR NO TRAP MODEL

Eb01 1.67EPre Equation 9

Ctrap 0 pN/nm Equation 9

Eb02 1.2EPS1 Equation 10

ATTACHMENT RATE CONSTANT

APre 3,000 1/s Figure 4

DETACHMENT RATE CONSTANT TO PXB

DPXB,Pre 3,000 1/s Equation 11

DETACHMENT RATE CONSTANT TO NXB

DNXB0 125 1/s Equation 12

amin 0.1 1/nm2 Equation 13

cmin 100 1/s Equation 13

dmin −16 nm Equation 13

amax 0.1 1/nm2 Equation 13

cmax 100 1/s Equation 13

dmax,Pre 5 nm Equation 14

dmax,PS1 9 nm Equation 14

dmax,PS2 9 nm Equation 14

DAMPING COEFFICIENT

γX 20 pN ns/nm Equation 1

γY 50 pN ns/nm Equation 1

γD 70 pN ns/nm Equation 2

angles of the lever arms. If we try to formulate amore realistic free
energy potential as a function of multiple variables, the number
of MC states increases explosively, and it is no longer possible
to find the rate constants between the MC states theoretically.
Therefore, it is desirable to establish a numerical scheme that
directly couples the Langevin dynamics of the molecules with the
macroscopic continuum dynamics.

Here, we report a novel numerical method to couple the
microscale simulation of crossbridge kinetics described by the
Langevin equation with the macroscopic mechanics simulations
using the finite element method, even though the time scales
differ considerably. In this method, the time step of the

FIGURE 2 | The half sarcomere model (A) and the attached myosin molecular

model composed of the myosin head (MH) and the lever arm (LA) and the rod

(B). In the half-sarcomere model, the Z-line was fixed and the shortening

distance of the left edge of the thick filaments is denoted by z. The

configuration of the attached myosin molecules is represented by two

variables x and y. The LA is decomposed into LA1 and LA2 to represent its

deflection around the point “P.” The degree of the deflection is given by

θ = y − x. The power stroke is given by the counter clockwise rotation of LA1

around the point “O.” The rod is a non-linear spring connecting the thick

filament and the point “Q” of LA2. The strain of the rod is denoted by ξ .

macroscopic model is set at a multiple of that from the
microscopic model to reduce computational overhead. The
validity of the method was confirmed with a comparison of
the simulation results with the recently reported experimental
findings on the spontaneous oscillation of cardiac sarcomeres
(Ishiwata et al., 2011), which can be reproduced only by correctly
handling the coupling of the motion of the sarcomeres with
the actomyosin dynamics. By applying this method, we also
show that a trapped crossbridge mechanism greatly facilitates
ventricular function through the stretch-activation of the cardiac
muscle (Stelzer et al., 2006). A notable feature of the stretch-
activation is a long-lasting increase in the contractile tension after
a small, rapid stretch is applied during activation. In the usual
stretch-activation experiments, the stretch is 1% of the muscle
length, which closely corresponds to the microscale size of lever
arm swing (10 nm). It is likely that the rapid stretching induces an
unusual persistent conformational change of the bound myosin
molecules. In this work, we introduce a free energy potential
for the power-stroke model in which some of the bound myosin
molecules become trapped in a deformed conformation when a
rapid stretch is applied. These trapped myosin molecules cannot
recover under normal thermal fluctuation unless their rods
become relaxed or extremely stretched by subsequent sarcomeric
movements. Through the beating-ventricle simulations, we show
how this mechanism contributes to improved blood circulation.

MATERIALS AND METHODS

Our strategy of coupling the different scales is summarized in
Figure 1. The stretch rates were transferred from the macro- to
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micro-scale while the contractile forces were transferred back
from the micro- to macro-scale. Finite element continuum
mechanics were applied to the ventricle model. The half-
sarcomere model of actomyosin complexes was imbedded into
each tetrahedral element of the finite element ventricle model
along the fiber direction. The molecular variables that represent
the deformation of bound myosin molecules were computed by
the Langevin dynamics. The shortening rate −λ̇ along the fiber
direction in the ventricle model was transferred to the sarcomeric
shortening velocity ż by scaling with the unloaded half-sarcomere
length SL0/2. The sarcomeric shortening velocity ż was applied
in the actomyosin model to slide the myosin thick filament.
The contractile force of the half-sarcomere model was given by
the sum of the tensile forces of the bound myosin rods. The
contractile force in the half-sarcomere model was transferred to
the macroscopic contractile tension along the fiber direction. In
our coupling approach, the computational time step size 1T of
the sarcomeric dynamics and the ventricle continuum dynamics
is given by an integer multiple of the time step size 1t of
the actomyosin Langevin dynamics (1T = n1t) to reduce
the computational and communication overheads. As will be
discussed in section Multiple Time Step (MTS) Method, such
a multiple time-step strategy can be applied without suffering
numerical instabilities by also transferring the stiffness given
by the bound myosin rods. Readers who are not interested in
the numerical schemes may skip sections Multiple Time Step











γX
t ẋi,j +

∂ϕ
∂x

(

txi,j,
tyi,j

)

+
dWrod
dξ

(

tξi,j
)

− tRX,i,j = 0

γY
t ẏi,j +

∂ϕ
∂y

(

txi,j,
t yi,j

)

− tRY ,i,j = 0
tξi,j −

tA,i,jξi,j −
(

txi,j −
tA,i,jxi,j

)

+ tz − tA,i,jz = 0

, tδA,i,j = 1
(

1 ≤ i ≤ nM , 1 ≤ j ≤ nF
)

(1)

γD
t ξ̇i,j +

dWrod

dξ

(

tξi,j
)

− tRD,i,j = 0, tδA,i,j = 0
(

1 ≤ i ≤ nM , 1 ≤ j ≤ nF
)

(2)

γZ
t ż + KZ

tz −
1

nF

nF
∑

j= 1

nM
∑

i= 1

tδA,i,j
dWrod

dξ

(

tξi,j
)

= 0 (3)

(MTS) Method and Coupling With the Finite Element Ventricle
Model.

Langevin Dynamics of a Single Sarcomere
The parameters adopted for the molecular dynamics are
summarized in Table 1. Here, the dynamic equations for a
half-sarcomere model composed of nF pairs of thick and thin
filaments (Figure 2A) are introduced. In this half-sarcomere
model, we assumed that the right ends of the thin filaments were
connected to the Z-line, which was fixed in microscopic space.
The shortening displacement of the left end of the thick filament
from the unloaded position was denoted by z. On each thick
filament, there were nM myosin molecules, which underwent
repeated attachment and detachment with the thin filament.
The value of nM = 38 was adopted from our previous work
(Washio et al., 2016). During the attached phase, the lever arm
(LA) of the myosin molecule rotated around the joint point “O”
of the myosin head (MH) under a given free energy potential
ϕ with additional random forces (Figure 2B). These rotations
were either the power stroke or the reversal stroke, depending
on the rotational direction. To represent the deflection of the

LA, it was decomposed into two rigid components, LA1 and
LA2, jointed at the point “P” (Figure 2B). As with the real
structure of a myosin molecule, LA1 may contain a series of
subdomains from the lower 50 kDa to the converter in the motor
domain because some conformational changes of these parts
were supposed to be accompanied by lever arm rotation. The
displacement of the point “P” of the filament direction given by
the rotation of LA1 from its pre-power stroke position around
the joint point “O” was represented by y. Here, the conformation
of the myosin molecule just after attachment was assumed to be
the same as the pre-power stroke conformation. Similarly, the
displacement about the joint point “Q” with the myosin rod was
represented by x. Thus, θ = y − x was the deflection of the
LA from the pre-power stroke conformation. The strain energy
of the myosin rod was given by a function Wrod (ξ), where ξ

was the strain (length change) in the filament direction from its
unloaded natural length ξ0. The rod strain energy was non-linear
with the generated force, as with our previous work (Washio
et al., 2016) for a rod with ξ < 0. For positive strain (ξ >

0), a constant stiffness with a spring constant 2.8 pN/nm was
used (Figure 3A). Under these assumptions, the dynamics of the
sarcomere was described by the following Langevin equations,
where the suffixes i and j represent the indexes of theMHs and the
thick filaments, respectively. Also, t is the time, and tδA,i,j is set to
one if theMHwas attached at time t to the thin filament, and zero
otherwise.

Here, the probabilistic rules for transitions between the attached
and detached states will be given below. At the time of
attachment, the myosin molecule was assumed to be in the
pre-power stroke state.

{

tA,i,jxi,j = xPre ≡ 0
tA,i,jyi,j = yPre ≡ 0

(4)

Here, tA,i,j is the time at which the attachment occurred.
The spring strain tξi,j was continuously updated at the
transitions.

In Equations (1–3), γX , γY , and γD were the damping
coefficients, and tRX,i,j,

tRY ,i,j, and
tRD,i,j were the random forces,

which fulfilled the condition:

{
〈

tRα,i,j

〉

= 0
〈

tRα,i,j,
t′ Rβ ,k,l

〉

= δαβδikδjl
√

2γαkBT
t−t′

δ
,

α,β = X,Y ,D, 1 ≤ i, k ≤ nM , 1 ≤ j, l ≤ nF (5)

where Boltzmann’s constant is kB and the temperature is T. In
this paper, the damping coefficient γD was set to 70 pN · ns/nm,
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following Howard (2001), while γX and γY were set to 20 and 50
pN · ns/nm, respectively. Since the rotation of LA1 may involve
structural changes in other parts in the MH, the drag coefficient
for LA1 was larger than that for LA2.

In Equation (3), γZ was the drag coefficient per length change
of a single thin filament of the sarcomere and KZ was the spring
constant for each thin filament of the sarcomere. Equation (3)
follows from the fact that the sarcomeric contractile tension is
just the sum of the tensile forces of the rods for all of the attached
myosin molecules. The third line in Equation (1) indicates the
constraint condition in the association state. This condition gives
the rod strain tξi,j in relation to the conformational change of the
myosin (txi,j) and the sarcomeric movement (tz).

Free Energy of a Myosin Molecule
We assume that the free energy of the myosin molecule ϕ in
the attached state can be decomposed into the power stroke free
energy ϕPS of LA1 and the deflection energy of the LA:

ϕ
(

x, y
)

= ϕPS

(

θ , y
)

+WLA (θ) , θ = y− x (6)

For the deflection energy of the LA, a simple quadratic potential
was assumed:

WLA (θ) =
1

2
Kθθ

2 (7)

Since there was no appropriate reference for setting the stiffness,
a comparable stiffness (Kθ = 4 pN/nm) to that of the rod strain
was adopted in our model. For the power-stroke free energy ϕPS,
the three local minima at y = 0, s1, and s1 + s2 for a fixed
deflection θ = y − x are given as shown in Figure 2B, which
is described by the following equations:

ϕPS

(

θ , y
)

=






















































EPre +
1
2 (Eb1 (θ) − EPre)

(

1− 2π
y + s1/4

s1

)

+ 1
2kY

(

y+ s1/4
)2
, y ≤ − s1

4

EPre +
1
2 (Eb1 (θ) − EPre)

(

1− cos 2π
y
s1

)

, − s1
4 < y ≤ s1

2

EPS1 +
1
2 (Eb1 (θ) − EPS1)

(

1− cos 2π
y − s1
s1

)

, s1
2 < y ≤ s1

EPS1 +
1
2 (Eb2 (θ) − EPS1)

(

1− cos2π
y − s1
s2

)

, s1 < y ≤ s1 +
s2
2

EPS2 +
1
2 (Eb2 (θ) − EPS2)

(

1− cos 2π
y − s1 − s2

s2

)

, s1 +
s2
2 < y ≤ s1 +

5s2
4

EPS2 +
1
2 (Eb2 (θ) − EPS2)

(

1+ 2π
y − s1 − 5s2/4

s2

)

+ 1
2kY

(

y− s1 −
5s2
4

)2
, y > 5s2

4

(8)

Here, EPre, EPS1and EPS2 were the three local minimum energy
values at y = 0, s1, ands1 + s2, respectively. These local minima
correspond to the configurations of the MH and LA1 in the
pre-power stroke state, and the states after the first two power
strokes. The power stroke step sizes, s1 and s2, and the energies
EPre − EPS1 and EPS1 − EPS2 consumed in the two strokes, are
given values (Table 1) similar to those used in the Monte Carlo
(MC) model in our previous work (Washio et al., 2016), in which
the ATP hydrolysis energy was set to EATP = 22KBT following
Saupe et al. (1999) at a body temperature of T = 310 K.

In Equation (8), Eb1 (θ) and Eb2 (θ) are the energy barriers
between the minima. The heights of the energy barriers were

adjusted so that enhanced beating performance was realized
in the coupled simulation for the ventricle model, which is
introduced below. In our model, the first barrier was assumed to
be a function of the LA deflection θ as:

Eb1 (θ) =











Eb01, θ ≤ θtrap

Eb01 + Ctrap
θ−θtrap
1θtrap

, θtrap < θ ≤ θtrap + 1θtrap

Eb01 + Ctrap, θ > θtrap + 1θtrap

(9)

This first energy barrier was introduced to reproduce the stretch-
activation of the cardiac muscle (Stelzer et al., 2006). In their
experiment, a small, rapid stretch of ∼1% of the sample length
was imposed to activated skinned myocardium. Then, a nearly
10% increase in the contractile tension persisted for a time on the
order of seconds compared with that of the steady state before the
stretch. This suggests the existence of a trapped conformation for
the MH and LA in an attached state that can be generated by the
rapid stretch. By experiencing a high barrier, as in Equation (9),
a myosin molecule that exhibits a large deflection θ and a large
strain ξ after the first power stroke can become trapped in that
state if the MH is strongly attached, since these myosin molecules
cannot make progress toward a larger forward stroke, which
would requires a large increment in either the deflection energy
of the LA [WLA (θ)], or the strain energy of the rod [Wrod (ξ)].
Such large LA deflections and rod strains can be generated when
the thick filament was pulled rapidly to the outside. In this
work, the values Ctrap = 200 pN/nm, θtrap = −0.25 nm, and
1θtrap = 5 nm were adopted (Figure 3B) so that the appropriate
response to the stretch-activation is reproduced, as shown in the
numerical simulation. The second energy barrier was assumed to
be a constant:

Eb2 (θ) ≡ Eb02. (10)

Control Model of Attachment and
Detachment
For the transition between the attached and detached states
(Figure 4), an MC model similar to the one in our previous
work (Washio et al., 2016) was used. In the half-sarcomere
model, the MHs were arranged on the thick filament at regular
intervals, and the thin filament was divided into segments called
troponin/tropomyosin (T/T) units. The transitions between the
states of a T/T unit were affected by the Ca2+ concentration,
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FIGURE 3 | Strain energy Wrod (ξ) of the myosin rod and the force given by its derivative (A). The details are described in Supplementary Material S1.2. The free

energy landscape of the myosin molecule ϕ in the attached state with respect to the molecular variables y and θ (B). This free energy consists of ϕPS (θ , y) and

WLA (θ). ϕPS (θ , y) is the energy source of the power stroke (rotation of LA1). WLA (θ) is the deformation energy of LA for its deflection. The pre-power stroke

configuration corresponds to the local minimum at y = 0. The other two local minima at y = s1 = 5.5 nm and at y = s1 + s2 = 11 nm correspond to the states after

the first and second power strokes, respectively. Between the pre-and the post first power stroke states, the high energy barrier is assumed for the positive deflection

(θ > 0) of LA.

[Ca], and by the states of the MHs below the T/T unit. In
this model, only the Ca-bound state increased the affinity of
the MHs for the thin filament. There are two detached state
of MHs - a nonbinding state NXB, and a weakly binding
state PXB. The affinity was adjusted by modifying the factor
Knp for the rate constant of the transition from NXB to PXB.
The relationship between the MHi,j location and the T/T
unit was determined from the offset position of the MHi,j

(tz + tξi,j −
txi,j) from its unloaded position (Figure 2A). A

cooperative mechanism with the nearest-neighbor MHs was
added by introducing the factors γ ng and γ−ng (γ = 40),
as in our previous work (Washio et al., 2016), in which
the integer ng (= 0, 1 or 2) was the number of neighboring
MHs in the weakly binding state PXB or the attached state
XB. The details of the transients of the T/T unit states
and between NXB and PXB are described in Supplementary
Material S1.1.

Attachment was possible only from state PXB with the rate
constant APre. Detachment from the attached state XB to the
weakly bound state PXB was allowed only from the pre-power
stroke state, as follows:

DPXB

(

y
)

=







DPXB,Pre, y ≤ s1/4

(1− ω)DPXB,Pre, y = (1/4+ ω/2) s1 : 0 < ω ≤ 1

0, y > 3s1/4

(11)

Here, the variable ω could take values between 0 and 1, and
was introduced to interpolate the rate constant between the
pre-power stroke state and the state after the first power stroke.

In this transition, no ATP molecules were consumed, whereas
detachment to NXB required one ATP molecule. This rate
constant is given as a function of both the rod strain ξ and the

power stroke displacement y:

DNXB

(

ξ , y
)

=














max
(

0,Dstrain

(

ξ , y
))

, y ≤ s1 + s2/4

max
(

ωDNXB0,Dstrain

(

ξ , y
))

, y = s1 + (1/4+ ω/2)

s2 : 0 < ω ≤ 1

max
(

DNXB0,Dstrain

(

ξ , y
))

, y > s1 + 3s2/4

(12)

Similar to before, the variable ω could take values between 0 and
1, and interpolated the rate constant between the states after the
first and second power strokes, while Dstrain indicates the forced
detachment due to the extreme strain of the myosin rod:

Dstrain

(

ξ , y
)

=














cmin

(

exp
(

amin

(

ξ − dmin

)2
)

− 1
)

, ξ ≤ dmin

0, dmin < ξ ≤ dmax

(

y
)

cmax

(

exp
(

amax

(

ξ − dmax

(

y
))2
)

− 1
)

, ξ > dmax

(

y
)

(13)

Here, the negative strain threshold dmin was a constant, and
the positive strain threshold dmax depended on the stroke
displacement y as

dmax

(

y
)

=







































dmax,Pre, y ≤ s1/4

(1− ω) dmax,Pre + ωdmax,PS1, y = (14+ ω/2)

s1 : 0 < ω ≤ 1

dmax,PS1, s31/4 < y ≤ s1 + s2/4

(1− ω) dmax,PS1 + ωdmax,PS2, y = s1 + (1/4+ ω/2)

s2 : 0 < ω ≤ 1

dmax,PS2, y > s1 + 3s2/4

(14)

In this study, the parameters dmax,Pre = 5 nm, dmax,PS1 =

9 nm, and dmax,PS2 = 9 nm were used. These values were
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FIGURE 4 | The state transition Monte Carlo model of the T/T unit and the

myosin molecule. The MHs in either the NXB or PXB states are assumed to be

detached. The rate constant factors Knp and Kpn between NXB and PXB are

affected by the state of T/T unit above it. The detachment rate constant DPXB
between PXB and XB are given as a function of y, so that the transition to PXB
is allowed only for the MHs in the pre-power stroke position. The detachment

rate constant DNXB to NXB is given as a function of y and ξ , so that the

detachment is allowed for the second post-power stroke state or the MHs

connected to the extremely stained myosin rods. The time-step strategy for

reducing the computational loads is shown by the arrows. The molecular

variables x, y, and ξ of the bound myosin molecules are updated by the finest

basic time step 1t (black arrow), while the rod strain ξ in the detached states

is updated by its multiples nD1t. The state transitions of the MHs and the T/T

units are calculated by the MC method with the time step nDA1t (red arrows).

adjusted so that the appropriate responses to stretch-activation
were reproduced. These choices did not conflict with the fact that
the binding affinity to the thin filament increased as the power
stroke proceeded (Llinas et al., 2015).

Multiple Time Step (MTS) Method
First, we consider a multiple time step (MTS) approach for a
single half-sarcomere model (Figure 2) in which different time
step intervals1t and1T were adopted, respectively, for updating
the molecular variables xi,j, yi,j, ξi,j and the sarcomeric shortening
displacement z, when solving Equations (1, 2) coupled with
Equation (3). Below, this approach will be extended to coupling
with a macroscopic finite element continuum model, in which a
single sarcomere model was imbedded into each finite element.

The time step1T was assumed to be an integer multiple of the
time step interval for the molecular variables 1t:

1T = n · 1t (15)

Such approaches reduce the computational overhead of
the shared-memory synchronization, as well as the data
communication needed in distributed parallel systems, if a
sufficiently large integer n can be applied. For our Langevin
dynamics model, the microscale time step t was set at 0.25 ns.
This choice was constrained by the relationships between the
magnitudes of the drag coefficients γX , γY with the curvature of

the potential ϕ. For example, in the case of a simple Langevin
equation:

γ tu̇+
dϕ

du

(

tu
)

− tR = 0 (16)

with a given free energy potential ϕ, a variable u, and the random
force that satisfies

{

〈

tR
〉

= 0
〈

tR t′R
〉

=
√

2γ kBT
t−t′δ

(17)

The stability of the explicit numerical integration scheme
required that

1t ≤
γ

Kmax
(18)

where Kmax was the maximum magnitude of the curvature of
ϕ
(∣

∣

∣

∣d2ϕ/du2
∣

∣

∣

∣

)

over the range of u. Even if an implicit time
integration scheme was applied, Equation (18) must be satisfied
for the maximum magnitude value of the negative curvature
(d2ϕ/du2 < 0). In our case, as shown in Figure 3B, negative
curvatures were unavoidable on the ridge lines of the potential
landscape. For example, if 1t = 0.25 ns was used when γ =

50 pN · ns/nm, the allowable maximal curvature from Equation
(18) was Kmax = γ /1t = 200 pN/nm. This curvature value
implies an energy change of Kmax1u2 = 100 pN · nm for a
displacement 1u = 1 nm. Actually, values for the magnitude of
the curvature were observed near the high energy barrier between
the pre-power stroke state and the state after the first power
stroke in our model (Figure 3B).

Another limitation on practicable time step size comes from
considerations of fluctuations1u during each time interval1t. If
we ignore the potential ϕ in Equation (16), the standard deviation
of 1u given by a series of random forces in Equation (17) during
time 1t is

1tσ =

√

〈

1u2
〉

=
√

2kBT1t/γ (19)

At body temperature, we have kBT = 4.278 pN · nm. Thus, for
the case of γ = 50 pN · ms/nm and 1t = 0.25 ns, we have
1tσ ∼ 0.2 nm. These displacements are large enough to make a
noticeable difference in the landscape of the potential ϕ.

Compared with the dynamics of the molecules, the sarcomeric
movement in cardiac muscle is generally much slower, as shown
by the following argument. The shortening velocity of the
sarcomere model is related to the stretch rate λ̇ of the cardiac
muscle along the fiber direction by

ż = −
1

2
SL0λ̇ (20)

Here, SL0 = 2.1 µm is the unloaded sarcomere length. If we
assume the maximal shortening velocity of the cardiac muscle
(

−λ̇
)

max
= 5ML/s, where ML is the muscle length (Edman

et al., 1974), the maximal shortening velocity of a half-sarcomere
is żmax = 5.25µm/s = 5.25×10−6nm/ns. However, the previous
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consideration regarding the fluctuations during the time interval
1t = 0.25 ns gives the average magnitude of the molecular
velocity to be 1tσ/t ≈ 0.8 nm/ns. This comparison between
the sarcomeric and molecular velocities suggests the possibility
of applying a multi-valued time step approach, in which tens
of thousands of fine time steps of size 1t are calculated when
integrating the molecular variables xi,j, yi,j, ξi,j for each large one
step interval 1T used for integrating the sarcomeric variable z.

During the time integration process using the small time step
1t over the time interval [T :T + 1T], the LA conformation
variables xi,j, yi,j are updated explicitly, and then the rod strains
ξi,j are temporarily updated so that the constraint in Equation
(1) is fulfilled, using the most recently calculated shortening
velocity ż from time T. The temporarily updated variables are
denoted with bars over them, such as ξ i,j and z. When the process
switches to an implicit computation of the sarcomeric shortening
displacement z and its time derivative ż at time T + 1T for use
in Equation (3), the tensile forces exerted by the attached MHs
during the time interval [T :T + 1T] are computed by using the
corrected rod strain ξi,j, for which the shortening velocity ż over

the time interval [T :T + 1T] is replaced with T+1T ż. By doing
so, the stiffness due to the strained rods of the attached MHs is
involved in the implicit time integration of Equation (3). This
implicit strategy allows us to apply a time interval 1T which is
four orders of magnitude larger than 1t.

The molecular variable time integrations can be performed
using the temporal sarcomeric shortening displacement z on the
time interval [T :T + 1T] given by

T+1Tz = Tz + k1tT ż, k = 1, · · · , n (21)

The LA conformation variables for the attached MHs at time
t + 1t are explicitly updated from those at time t, so that the
following equations are satisfied:















γX
t+txi,j−

txi,j
1t +

∂ϕ
∂x

(

txi,j,
t yi,j

)

+
dWrod
dξ

(

tξ i,j

)

−tRX,i,j = 0,

γY
t+tyi,j−

tyi,j
1t +

∂ϕ
∂y

(

txi,j,
t yi,j

)

−tRY ,i,j = 0

tδA,i,j = 1

(22)

Then, the temporal rod strains
{

ξ i,j

}

at time t + 1 are updated

according to











γX
t + tξ i,j−

tξ i,j
t +

dWrod
dξ

(

tξ i,j

)

− tRD,i,j = 0, tδA,i,j = 0
t + tξ i,j −

tA,i,jξ i,j −
(

t+1txi,j −
tA,i,j xi,j

)

tδA,i,j = 1

+ t + 1tz − tA,i,jz = 0,

(23)

After performing the above time integrations for k = 1, · · · , n
over the interval [T :T + 1T], the true sarcomeric shortening
displacement z is implicitly computed by solving the following
equations:

{

γZ
T+1T ż + KZ

T+1Tz −T,1T F = 0
T+1Tz = Tz + 1T T+1T ż

(24)

In Equation (24), the mean total tensile force T,1TF over the time
interval [T :T + 1T] is found by applying the true rod strains
{

ξi,j
}

over the time interval [T :T + 1T] according to

T,1TF =T,1T F +
1

n · nF

n
∑

k=1

nF
∑

j=1

nM
∑

i=1

T+k1tδA,i,j
d2Wrod

dξ 2

(

T+k1tξ i,j

) (

T+k1tξi,j −
T+k1t ξ i,j

)

(25)

where the temporary total tensile force is evaluated using

T,1TF =
1

n · nF

n
∑

k=1

nF
∑

j=1

nM
∑

i=1

T+ktδA,i,j
dWrod

dξ

(

T+k1tξ i,j

)

(26)

from the temporary rod strain values
{

T+k1tξ i,j

}

. Note that

Equation (25) is a linear approximation of the tensile force for
the true rod strains about the temporary rod strains, for which
the differences are given by

T+k1tξi,j −
T+k1tξ i,j = −

(

k− kA,i,j
)

1t
(

T+1T ż − T ż
)

, k = 1, · · · , n

(27)

where kA,i,j is the most recent microscale step index for k for
whichMHi,j is attached. This number is initialized to zero before
starting the small time steps with k = 1. By substituting Equation
(27) into Equation (25), the mean total tensile force can be
rewritten as

T,1TF =T,1T F̃ − 1T T,1TKF
T+1T ż (28)

with total mean stiffness

T,1TKF =
1

n2 · nF

n
∑

k=1

nF
∑

j=1

nM
∑

i=1

T+k1tδA,i,j
(

k− kA,i,j
)

×
d2Wrod

dξ 2

(

T+k1tξ i,j

)

(29)

and extrapolated mean total tensile force using T ż

T,1T F̃ = T,1TF + 1T T,1TKF
T ż (30)

By substituting Equations (28–30) into Equation (24), the
implicit scheme is established as follows:

(

γZ + KZ1T + 1T T,1TKF

)

T+1T ż = −
(

KZ
Tz −T,1T F̃

)

(31)

To see the necessity of the above implicit coupling scheme,
consider the instability of the usual explicit scheme here. If an
explicit scheme for the total mean tensile force is used

{

γZ
T+1T ż + KZ

T+1Tz −T,1T F = 0
T+1Tz =T z + 1T T+1T ż

(32)
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instead of Equation (24), the time step size 1T is limited by the
total mean stiffness by

1T <
γZ + 1TKZ

T,1TKF
(33)

As an illustration, in the case of γZ = 104 pN ·ns/nm, as assumed
in our previous work (Washio et al., 2017), T,1TKF = 28 pN/nm,
20 attached MHs, the stiffness of each rod set to 2.8 pN/nm, and
KZ ≈ 0, the constraint in Equation (33) would be 1T < 360 ns.
However, the proposed algorithm is stable for any time step size,
as far as the linear approximation in Equation (28) is concerned.

In coupling with the macroscopic finite element model, a half-
sarcomere model is assigned to each element, for which Equation
(20) is applied based on the relationship between the stretching
along the fiber orientation f and the deformation gradient tensor:

Tλ =

∥

∥

∥

∥

∥

∂Tx

∂X
f

∥

∥

∥

∥

∥

(34)

Here, Tx = Tx (X) is the current position at time T of the
material point X in the unloaded condition. Specifically, the
following equation, obtained from Equation (34), is substituted
into Equation (20).

T λ̇ =
1
Tλ

(

∂T ẋ

∂X
f

)

·

(

∂Tx

∂X
f

)

(35)

From Equations (20, 28), the mean total tensile force of each thin
filament is given by

T,1TF = T,1T F̃ − 1T
T,1TKF

2
SL0

T+1T λ̇ (36)

Here, T ż in Equation (30) is also replaced with −SL0
T λ̇/2 to

determine T,1T F̃. Thus, the total active tension per unit area in
the unloaded configuration, the nominal stress, is given by

T,1TTf = 2
RS

SA0

T,1TF = 2
RS

SA0

(

T,1T F̃ + 1T
T,1TKF

2
SL0

T+1T λ̇

)

(37)

Here, SA0 is the cross-sectional area of a single thin filament and
RS denotes the volume ratio of the sarcomere. The factor of two in
Equation (37) comes from the fact that T,1TF is the total tensile
force given by the MHs surrounding one of the double spirals
along the thin filament.

Although a small time step on the order of 1 ns must be used
for the time integration of the molecular variables, a larger time
step can be applied to the MC state-transition phase. Thus, it
is reasonable to apply a much larger time step size, as long as
it is an integer multiple of 1t, to the computation of the MC
state-transitions. Furthermore, even for the time integration of
the molecular variables, a coarser time step than the one used for
the attached MHs can be applied to the detached MHs, since the
magnitudes of the curvatures are different for the potentialsWrod

and ϕ (Figure 3).

Coupling With the Finite Element Ventricle
Model
In the beating-ventricle simulation, the Ca2+ transient is given
for each element of the ventricle model (Figure 5). By referencing
the Ca2+ transients, together with the stretching λ and the
stretching rate λ̇ along the fiber direction, the molecular
variables were integrated using the small time step 1t, while
the macroscopic displacements of the continuumwere computed
using the large time step 1T. As derived in the Supplementary
Material S3, the active stress on the continuum at time T+1T is
represented by the first Piola–Kirchhoff stress tensor:

Πact =

T,1TTf

T+1Tλ
f ⊗ f ·

(

∂T+1Tx

∂X

)T

(38)

In the definition of the tension T,1TTf in Equation (37), the
stiffness due to the attachedMHs is implicitly included by the use
of T+1T λ̇ for T+1T ż in Equation (28). See also the explanation
of the stiffness in the Supplementary Material S3. Thus, the
proposed scheme is stable for any size of time step.

The governing equation in the macroscale to be solved can be
represented by

∫

�

δu̇ · ρü d� +

∫

�

δŻ :

(

Π + 2pJF−1
)T

d�

= PL

∫

ŴL

δu̇ · n dŴL + PR

∫

ŴL

δu̇ · n dŴR (39)

∫

�

δp
(

2 (J − 1) −
p

κ

)

d� = 0 (40)

Here, u = Tu (X)=Tx (X)−X is the displacement of the material
at point X ∈ � at time T, ρ is the density of the heart muscle,
F = ∂x/∂X is the deformation gradient tensor, Z = ∂u/∂X is the
displacement gradient tensor, J = det F is the Jacobian, p is the
hydrostatic pressure, κ is the bulkmodulus, and PL and PR are the
blood pressures in the left and right ventricles, respectively. � is
the muscle domain in the reference configuration, while ŴL and
ŴR are the blood–muscle interfaces of the left and right ventricles,
respectively, in the current configuration at time T, and n is
the normal unit vector directed from the cavity to the muscle
at these surfaces (Figure 5). The Dirichlet boundary condition
Tu (X)=0 is imposed on the boundary nodes around the valve
rings. The first Piola–Kirchhoff stress tensor Π consists of the
active, passive, and viscous stresses:

Π = Πact + Πpas + Πvis (41)

where Πact is given by Equation (38), and the others are,
respectively, the passive and viscous stresses, as described in our
previous work (Washio et al., 2016). The details of these two
stress tensors are given in the Supplementary Material S4.

The ventricle blood pressures PL and PR were determined
through their interactions with the circulatory system of the
body. These were modeled as electrical analog circuits, using the
same parameters described in our previous work (Washio et al.,
2016). The details of the circuit model that includes the atrial

Frontiers in Physiology | www.frontiersin.org 9 April 2018 | Volume 9 | Article 333

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Washio et al. Coupling of Langevin and Continuum

FIGURE 5 | Electrical analog circuits connected to the valve interfaces. The systemic circulation model represents blood flow from the left to the right ventricle through

the aortic (AO) and the tricuspid (TR) valves, while the pulmonary circulation model represents blood flow from the right to the left ventricle through the pulmonary (PU)

and the mitral (MI) valves. The boxed inset shows the Ca2+ transient profile with the delay time TD.

model are given in the Supplementary Material S5. In particular,
the flow rates at the inlets and the outlets were associated with the
rates of volume change in the cavity according to:

{
∫

ŴL
u̇ · n dŴL = FMI − FAO

∫

ŴR
u̇ · n dŴR = FTR − FPA

(42)

Here, FMI , FAO, FTR, and FPA were the flow rates, respectively,
through the mitral, aortic, tricuspid, and pulmonary valves
(Figure 5). These flow rates were determined by Ohm’s law while
taking the rectification of the valve into account.

F = H
(

F
)

F (43)

Here, F was the flow rate in the case of no rectification, andH was
the relaxed Heaviside function:

H
(

F
)

=







0, F < 0
(

F/F0
)2 (

3− 2F/F0
)

, 0 ≤ F ≤ F0
1, F > F0

(44)

In our simulation, the value F0 = 5 mL/s was used.
The macroscopic variables, including the acceleration ü,

velocity u̇, and displacement u at time T + 1T were found
using Newton–Raphson iteration until the equilibrium condition
was satisfied with the Newmark-beta time integration scheme

(Supplementary Material S6). During the iterations, the active
stress in Equation (38) was redefined with Equation (37), in
which the microscopic computational results T,1T F̃ and T,1TKF

were reused. Thus, switching between computations at the two
scales only happened once for each macroscopic time step.

RESULTS

Computer System
To perform the simulations, a distributed parallel system was
used. Each node consisted of two Intel R© Xeon R© E5-2670 (20MB
Cache, 2.6 GHz) processors, and each processor was composed
of 8 cores. In the single sarcomere simulations, only one node
was used for shared memory OpenMP parallelization. In the
beating-ventricle simulations, the elements of the ventricle wall
were equally distributed to the nodes, while the macroscopic
computations were performed only at the master node. In
the microscopic computations, the time integrations of the
molecular variables were parallelized using OpenMP by dividing
the filaments equally among the 16 cores.

Validation of the MTS Scheme via Single
Sarcomere Oscillation
The accuracy and computational efficiency of the MTS scheme
were validated by numerical experiments with a single half-
sarcomere model, in which 48 thin filaments were connected to a
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common Z-line (Figure 2A). In our previous work (Washio et al.,
2017), we showed that the spontaneous oscillatory behavior of the
sarcomere (Ishiwata et al., 2011) can be explained by the power
stroke principle after applying a simple ordinary differential
equation model. In this case, the collective reversal power strokes
induced quick sarcomeric lengthening. Here, we show that this
could also be reproduced by the Langevin dynamics model,
regardless of the choice of macroscale time step size in the MTS
scheme. In this numerical experiment, the spring constant KZ

was set to 1 pN/nm per thin filament, and the viscosity coefficient
γZ was set to 104 pN · ns/nm per thin filament. During the
simulations, the Ca2+concentration was kept at the constant
value of 1 µM.

In Figure 6, the shortening displacements obtained by using
a conventional single-scale integration scheme (1t = 1T =

0.25 ns) and the MTS scheme (1t = 0.25 ns,1T = 5,000 ns)
are compared for both the no-trap and trap models. In the no-
trap model, the dependence of the first energy barrier height
Eb1 (θ) on the LA deflection θ in Equation (9) was eliminated,
and the baseline of the energy barrier Eb01 was higher when
compared with the one in the trap model (Table 1), so that a
similar maximal tensile force is obtained in both models. Next,
the state-transitions were computed with 1t = 0.25 ns. In these
numerical experiments, the simulations started from an initial
state in which all of the MHs were in NXB, and an identical
series of random forces and pseudorandom numbers for the MC
state-transitions were applied to all the simulations. In case of
the no-trap model (Figure 6A), similar amplitudes and periods
were obtained for the shortening displacements, although there
were deviations in the timing of the sharp declines. In case of
the trap model (Figure 6B), the large dips in the displacements
disappeared. Instead, rapid small vibrations appeared. In this
case, similar initial rises, periods, and amplitudes of vibrations
were obtained for the both time step sizes of 1T.

As depicted in Figure 4, the attached MHs in the XB state
were classified according to their power stroke displacement y,
as follows:











Pre =
{

MHi,j ∈ XB : yi,j < s1/2
}

PS1 =
{

MHi,j ∈ XB : s1/2 ≤ yi,j < s1 + s2/2
}

PS2 =
{

MHi,j ∈ XB : yi,j ≥ s1 + s2/2
}

(45)

These states can be regarded as the pre-power stroke, the state
after the first power stroke, and the state after the second power
stroke, respectively. As suggested by our previous work (Washio
et al., 2017), a large pulsed flux of the reversal power strokes
from PS2 to Pre over PS1 generated the sharp decline in z for
the no-trap model (Figure 7A). In the trap model, this reversal
flux was trapped at PS1, so that the decline in z was stopped
at small changes, leading to 1z > −10 nm (Figure 7B), which
corresponds to the stroke size of the LA.

To test the stability of the MTS scheme, simulations using
the explicit scheme given by Equation (32) were performed
with a much smaller time step of 1T = 500 ns (Figure 8).
Although the explicit scheme also yielded good results at first,
the computational results became totally invalidated when the
active stiffness T,1TKF exceeded the threshold indicated by

FIGURE 6 | The shortening displacements obtained by the standard scheme

(blue: 1t = 1T = 0.25 ns) and the MTS scheme (red: 1t = 0.25 ns,

1T = 5,000 ns) for the spontaneous oscillations of the single half-sarcomere

model with nM = 38 and nF = 48. (A) The comparison for the no-trap model.

(B) The comparison for the trap model.

FIGURE 7 | The temporary change of the state ratios classified to the three

power stroke stages (Pre, PS1, and PS2) obtained by the standard scheme

(1T = 0.25 ns) for the spontaneous oscillations of the single half-sarcomere

with the no-trap model (A) and the trap model (B). In case of the no-trap

model (A), a large pulsed flux of the reversal power strokes from PS2 to Pre

through PS1 generates the sharp decline of z around T = 370 ms. In case of

the trap model (B), the flux of the reversal power strokes is trapped at PS1, so

that the decline of z is stopped within small changes 1z > −10 nm.

Equation (33), as estimated previously. Furthermore, oscillatory
behavior could not be reproduced with the explicit scheme.
This result suggests the drawback of explicitly using the active
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FIGURE 8 | The shortening displacements obtained by the standard scheme

(blue: 1T = 0.25 ns) and the explicit scheme (red: 1T = 500 ns) for the

spontaneous oscillations of the single half-sarcomere model with nM = 38 and

nF = 48. (A) The comparison for the no-trap model. (B) The comparison for

the trap model.

tensions, which occurs when solving a system of ordinary
differential equations with a finer time step in coupled
simulations. As shown in Figure 8A, the calculated force using
the explicit scheme did not diverge, although the oscillatory
behavior was completely lost. Thus, it is difficult to judge the
accuracy of numerical results by examining only one case. As
shown here, we must compare the results of different macroscale
time step sizes 1T to confirm the accuracy of the coupling
scheme.

The above simulations were executed on one node consisting
of 16 cores using shared memory in OpenMP parallelization.
Thus, in the parallelization, three filaments were assigned to
each core. The averaged elapsed times for the 1-ms time
integration were 125 and 97 s, with the standard integration
scheme (1t = 1T = 0.25 ns) and the MTS scheme
(1t = 0.25 ns,1T = 5,000 ns), respectively. The difference
in the elapsed times came from the machine synchronization
overhead, and the differences in the computational loads for
the various filaments. With the MTS scheme that lumps
20,000 steps, the differences in computational loads between
the filaments during each small time step were tremendously
diminished. For a single-sarcomere simulation, using a much
smaller time step size for 1T was sufficient to attain good
parallel efficiency because the overhead associated with updating
z was negligible. However, a large step size was necessary
when the sarcomere model was coupled with the macroscopic
ventricle model because the communication overhead between
the large number of nodes became greatly increased, along
with the computation time for updating the macroscopic
variables.

Validation of Basic Sarcomere Properties
The basic properties of the actomyosin trap model, which
includes the SL and [Ca] dependences of the contractile
force, the isometric twitch, the responses for the isotonic
contraction, and the quick shortening of the half-sarcomere,
along with the details of these numerical experiments, are
presented in the Supplementary Material S2. The results of
these numerical experiments confirm the validity of our half-
sarcomere model. Here, the force-velocity curve obtained at
a constant Ca2+ concentration ([Ca]= 1 µM) is examined
in context with the behavior of the bound myosin molecules
during the isotonic contractions at the various shortening
velocities (Figure 9). As the shortening velocity increased, the
state ratio of PS2 increased (Figure 9B), because the joint point
P was pushed forward (y increased) more strongly by the
deflection potential WLA (θ) in Equation (7) with the larger
negative deflection θ = y − x (Figure 9D). Note that the
negative averaged rod strain ξ at PS2 for a shortening velocity
larger than 1 µm/s (Figure 9C) does not imply a negative
contractile force, because dWrod/dξ (ξ) ≫ −dWrod/dξ (−ξ)

for any positive strain ξ>0, except for ξ∼0 as shown in
Figure 3A.

Stretch-Activation by Trapped Myosins
To see the effectiveness of the trapping mechanism in the state
after the first power stroke PS1 created by the energy barrier in
Equation (9), together with the zero detachment rates for PS1 in
Equations (11, 12), a stretch-activation test was performed for
the single half-sarcomere model consisting of 48 filament pairs
(Figure 10). Here, a 1% stretch was applied over the 1-ms time
interval starting at T = 150 ms, at which time the contractile
force had sufficiently matured. In the simulation, the time step
sizes were set at 1t = 0.25 ns and 1T = 25 ns. The state-
transitions were also computed using 1t = 0.25 ns. During
the simulations, the Ca2+ concentration ([Ca]) was kept at the
constant value of 10 µM.

A roughly 15% increase in the contractile force lasted at
least 2 s after the quick stretch (Figure 10A). This long-lasting
increase in the force compared with the pre-stretch steady state
was apparently due to the lasting increase in the population of
PS1 (Figure 10B: orange line). The persistent increase of the
averaged LA deflection, θ = y − x, for MHs in PS1 (Figure 10C)
indicates that it was generated by the MHs trapped by the higher
free energy barrier Eb1 (θ) defined by Equation (9). Compared
with the experimental results given in Stelzer et al. (2006), our
numerical result misses “Phase 2,” in which the force drops one
time to the steady state level before the stretch. However, the
magnitude of the force incrementation after that agrees with the
experimental facts.

Beating-Ventricle Simulations
Beating-ventricle simulations were performed using a finite
element ventricle model consisting of 7,600 tetrahedral elements.
In each element, a sarcomere model consisting of 8 filament
pairs was imbedded along the appropriate fiber orientation
f. The distribution of the fiber orientations (Figure 1) was
found by an optimization algorithm (Washio et al., 2016)
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FIGURE 9 | The force-velocity relation for [Ca] = 1 µM with the shortening velocity of the half-sarcomere in the horizontal axis (A). The state ratios of the pre-power

stroke (Pre) and the post-second power stroke state (PS2) are plotted with respect to the shortening velocities (B). Similarly, the averaged rod strains ξ in the states

Pre and PS2 (C), the averaged molecular variables x and y of the molecular deformation (F) in the states Pre and PS2 are also plotted, respectively, in (D,E).

based on the impulses given by the active tension, which
was computed using the MC crossbridge model instead of
the Langevin model to reduce the heavy computational loads.
Portions of the helical fiber structure are depicted in Figure 1.
As confirmed in our previous work (Washio et al., 2016), this
algorithm constructed a fiber distribution that was quite similar
to the one obtained by diffusion tensor magnetic resonance
imaging (DTMRI) measurements. The heart rate was set to 60
beats per minute, and the Ca2+ transient (Figure 5) generated
by the mid-myocardial cell model proposed by ten Tusscher
and Panfilov (2006) was applied. The transmural delays of
the Ca2+ transient determined by the distances from the
endocardial surfaces of the left and right ventricles under a
transmural conduction velocity of 52 cm/s, as measured by
Taggart et al. (2000), was adopted. The deformation of each
element was linked to the sarcomeric shortening displacement
using Equations (34, 35). In the simulations, the optimized
time step algorithm represented in Figure 4 was applied.
Essentially, the values 1t = 0.25 ns and T = 5,000 ns
were used, so that n = 20,000. However, the state-transitions
were computed every 2.5 ns (nDA = 10), and the time
integration for the detached MHs were performed every 1.25 ns
(nD = 5).

In the crossbridge model, the trap and the no-trap models
using the various power-stroke free energy potential functions
ϕPS were used, as with the simulations of the single sarcomere
oscillation (Table 1). By comparing it with the no-trap model
in Figure 11A, the trap mechanism can be seen as contributing
to maintaining the high pressure in the last half of the systolic
phase. As a result, the blood volume ejected from the left ventricle
in the trap model increased to 77 from 68mL, while the ATP
energy consumption of the left ventricular wall decreased to 5.9
from 6.4 J (Figure 11E). This implies that the trap mechanism
serves to increase the blood ejection, while also decreasing the
energy consumption. Note that the ATP consumption rates were
computed by counting the detachments of MHs in PS2 to those
in NXB, which was controlled by the rate constant DNXB defined
in Equation (12).

As shown in Figures 11B–D, two increases in the population
of MHs in state PS1 can be seen; one at the beginning of
the systolic phase, and one at the final half. These increases
correspond to reversals in the left ventricular pressures of the
trap and the no-trap models, as shown in Figure 11A. In the
systolic phase, the cardiac myocytes supported their contractile
tension along the shared fiber bundle, in which the active stress
in Equation (38) provided the great majority of the total stress
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FIGURE 10 | Numerical results of the stretch-activation simulation. A shift of

1z = −9 nm was applied over the time span of 1ms at T = 150 ms. (A) The

time courses of the contraction force per one thin filament (black) and the

applied shortening displacement z (blue) are shown. The dot-dash line

indicates the baseline of the force before the stretch. (B) The state ratios for

the three power stroke stages of the attached MHs. (C) The averaged

molecular variables x and y for the MHs at PS1.

in Equation (41). Therefore, from the mechanical equilibrium
condition along a fiber bundle, the active tensions must be
almost equal. If there was a delay in the provision of the active
tension, or a relaxation during the intermediate systolic phase
at one point of the fiber bundle, this portion quickly became
lengthened, and the sarcomeres in the remaining parts shortened
until reaching a mechanical equilibrium. Since this transition
accompanied decreases in the active tension of the sarcomeres,
stopping the process as early as possible was desirable. The trap
mechanism could achieve this goal, as shown in Figure 12, in
which the distributions of the population of MHs in states PS1
and PS2 at the end of the systolic phase (T = 0.25 s) were
compared. As shown in Figure 12B for the trap model, the
higher populations in the PS1 state were seen in the regions
where the populations in state PS2 were lower than in the other
regions. This indicates that the decrease in the population of
MHs at PS2 was sufficiently compensated for by the trapped
MHs in state PS1. However, although the population in PS2
for the no-trap model was similar to one of the trap model,
the active tension was nearly half that of the trap model for
the entire region (Figure 12A). In particular, the active tensions
with the no-trap model were much smaller than those with the
trap model, even in the regions with large PS2 populations. This
indicates the importance of maintaining the active tension along
the fiber bundle. The distributions of the active tension values
and the state populations over the entire cycle are shown in
Supplementary Video 1.

The importance of the trap for synchronizing contraction
and relaxation over the entire ventricle is further confirmed
by Figure 13, in which the behaviors of the sarcomere model

FIGURE 11 | Numerical results of the beating-ventricle simulation using the

FEM ventricle model. In each element, the sarcomere model consisting of 8

filament pairs was imbedded. (A) The time courses of the left ventricular

pressure (solid lines) and volume (broken lines) with the no-trap MH model

(red) and the trap model (black). (B–D) The time courses of the population

ratio of attached MHs in the left ventricular wall classified to the pre-power

stroke state (B: Pre), the first post-power stroke state (C: PS1), and the

second post-power stroke state (D: PS2). (E) The time courses of the

cumulative ATP energy consumption in the left ventricular wall.

with the no-trap and the trap model imbedded with identical
elements at the apical septal segment are compared. With the
no-trap model (Figure 13A), there was a prominent decline
in the sarcomere shortening displacement z that accompanied
the large drops in the active tension around T = 0.18 s.
This drop in the active tension was caused by shifts in the
population of MHs from PS2 to the pre-power stroke state
Pre, as indicated in Figure 13C. As shown previously in the
simulations of sarcomere oscillation, each sarcomere had the
ability to undergo quick lengthening after a certain duration
of contraction. However, the slow decline of LVP in the no-
trap model (Figure 11A) at the end of the systolic phase
indicates that this characteristic was not necessarily exploited
for the quick relaxation of the whole ventricle before the
next diastolic phase because the timing of the relaxation
changed depending on the Ca2+ transients and the sarcomeric
movements. Furthermore, a relaxation prior to a sufficient
drop in the Ca2+-concentration was followed by the next

Frontiers in Physiology | www.frontiersin.org 14 April 2018 | Volume 9 | Article 333

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Washio et al. Coupling of Langevin and Continuum

FIGURE 12 | The active tension (left), and the population of MHs in the first post-stroke state PS1 (center) and the second post-stroke state PS2 (right) at 0.25 s for

the no-trap model (A) and the trap model (B) in the three cross sections perpendicular to the longitudinal axis.

contraction, as shown in Figure 13C, around T = 0.2 s. This
contraction of the sarcomere did not efficiently contribute to
increasing the ejected blood volume, as indicated by LVV in
Figure 11A. However, the blood ejection lasted until T =

0.3 s in the trap model. Thus, maintaining the active tension
with the trapped MHs in PS1, which corresponded to a rise
in the population of PS1 during the time interval [0.23, 0.3]
(Figure 13D), substantially contributed to the ejected blood
volume.

Figure 14 compares the distributions of the attached MHs,
which are imbedded in 33 elements at the apical septal segment,
in the

(

y, θ
)

coordinate at T = 0.1, 0.2, and 0.3 s of the no-trap
and trap models. Although the distributions at the beginning of
the systolic phase (T = 0.1 s) were nearly the same for both
models, differences were found in regions of higher deflection
θ in the Pre and PS1 states at the peak of the systolic phase
(T = 0.2 s), and in PS1 and PS2 at the end of the systolic phase
(T = 0.3 s). Note that the large deflection (θ > 0) of the LA
created high strain (ξ > 0) in the rod due to the equilibrium
condition for the variable x in Equation (1). However, these MHs
in the Pre state of the no-trap model disappeared quickly due to
their large rate of detachment into state PXB in Equation (11) and
Table 1 (DPXB,Pre = 3,000 s−1), so that they did not contribute
to maintaining the active tension. However, the MHs in state PS1
were trapped there so long as these myocytes were strongly pulled
by the surrounding activated myocytes.

Finally, the computational load and the parallel efficiency were
examined. For the microscale computations, the elements of the
finite element model were equally distributed to the available
cores. But, for the macroscale finite element computations,
only one node consisting of 16 cores was used, and the
remaining nodes were in the waiting state, since the finite

element model was relatively small (7,700 elements). Thus, the
parallel efficiency came from the proportion of the macroscale
computational time, compared with the total computation
time. With the original setup (n = 20,000, nDA = 10,
nD = 5, 1t = 0.25 ns), the parallel computation with
1,920 cores required 105 h per heartbeat. Within this total
elapsed time, 16% was occupied by the macroscale computations.
Thus, good parallel efficiency was achieved. Further evaluations
of the parallel efficiency are given in the Supplementary
Material S7.

DISCUSSION

Accuracy, Stability, and Efficiency of the
MTS Scheme
The MTS scheme coupled the integration of the molecular
variables that use the small time step 1t with the integration
of the sarcomere shortening variable z that used the coarse time
step 1T, which is a large integer multiple of 1t. Since sarcomere
shortening is linked to the shortening of the continuum along
the fiber orientation by Equation (35), the same coupling
scheme can be applied to the coupling with the finite element
model. The key point of the proposed MTS scheme is that
the active tension at time T + 1T is implicitly determined
by combining the stretch rate of the continuum along the
fiber orientation at T + 1T, as given in Equation (37), in
which the stiffness of the attached myosin rods during the
time interval [T :T + 1T] given by Equation (29) is used.
By applying this implicit scheme, an appropriate time step
interval 1T can be chosen for the macroscale computation
to diminish the synchronization and communication overhead
in the distributed memory parallel system. The accuracy of
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FIGURE 13 | The behavior of the sarcomere in the systolic phase for the no-trap and the trap models imbedded in an identical element at the apical septal segment.

(A,B) The active tension (red) and the sarcomeric shortening Z (blue). (C,D) The population ratio of attached MHs.

FIGURE 14 | The distribution of the attached MHs at the initial time (T = 0.1 s), the peak (T = 0.2 s), and the end (T = 0.3 s) of the systolic phase for the trap model

(A) and the no-trap model (B) for the (y, θ) coordinate. The contours represent the landscape of the free energy ϕPS (θ , y) +WLA (θ). The plots are for the attached

MHs of the sarcomere models imbedded into the 33 elements in the apical septal segment.

the MTS scheme, in which the time step ratio was set
to 0.25 ns: 5 µs, was validated using a simulation of the
spontaneous oscillation of a single sarcomere, and by comparing
the numerical results with those computed using equal time
intervals.

Required Computational Power for the
Coupled Simulation
For the beating-ventricle simulation of ventriclemodel consisting
of 7,600 elements, 105 h were required for each beat using
1,920 cores and a 0.25-ns time step integration in the
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molecular computations, and a 5-µs time step integration
for the macroscopic finite element computation. Within this
computation, 84% of the total time was consumed by the
microscopic molecular computation. In this simulation, 4
elements were assigned to each core, in which the sarcomere
model consisted of 8 filament pairs imbedded in each element.
Therefore, the CPU time per filament pair was∼2.8 h. This is the
fastest case, not counting the macroscale computational case in
which one core was assigned to each filament. Even for the rather
coarse mesh model consisting of 7,600 elements, this fastest
computation required 60,800 (= 7, 600 × 8) cores. This shows
that our application still required huge computational power.

Potential of the Coupled Approach
In this paper, an effective utilization of the coupled approach
to explore the macroscopic effects of a molecular mechanism
was shown. Regarding the molecular mechanism, the power-
stroke free energy potential was constructed so as to reproduce
the stretch-activation for the single-sarcomere model. In this
model, the energy barrier between the pre-power stroke state
and the state after the first power stroke was made higher for
large positive lever arm deflections, which meant that large
loads were imposed on the myosin rods and heads. If the pre-
power stroke state and the state after the first power stroke
correspond to, respectively, the so-called “Pi-release state” and
“ADP state,” the forward and reversal power stroke transitions
accompany the release and the rebinding of inorganic phosphate
(Pi), respectively (Llinas et al., 2015). Thus, if the larger load
on the MH closes the channel in which Pi travels during the
transitions, the height of the free energy barrier could increase. In
the proposed numerical model, this hypothesis was reflected by
the landscape of the free energy ϕPS

(

θ , y
)

, as mentioned above.
The coupled approach revealed that the proposed mechanism for
the myosin molecule contributed to maintain the high systolic
blood pressure for the appropriate period by synchronizing
relaxations along the fiber bundles. Stelzer et al. (2006) discussed
the possibility of stretch-activation reinforcing regions where
stronger contractile tensions were required during the entire
systolic phase, while our numerical results suggest that its
function is to reinforce the regions that start relaxation earlier
than other regions. Of course, this is still just a hypothesis linking
the stretch-activation to the performance of the beating heart.
However, this function of stretch-activation function at the end
of the systolic phase has gone unnoticed until now.

Limitations
In the coupling approach, a single half-sarcomere model
was directly imbedded into each element of the macroscopic
ventricular mesh. This means that the periodically repeated
pattern of single sarcomere movement was imposed along
the filament direction within each element. Thus, the
synchronization of the sarcomeres within each element can
be assumed. In reality, relaxations of sarcomeres within the same
myofibril are not necessarily synchronized. Thus, even though
each of the sarcomeres was stretched quickly during relaxation,

as shown in the spontaneous oscillation simulation, the stretch
speed of the entire cardiac cell may be slowed due to time lags.
One way to account for such an effect in the simulation model
is to imbed a myofibril model, in which an adequate number of
sarcomeres are connected in series, into each element. Obviously,
such an approach requires even greater computational resources.

New Insights of Cardiac Muscle Relaxation
in a Beating Heart
Using the numerical experiments on the single-sarcomere model,
spontaneous oscillatory behavior was recovered via the Langevin
dynamics model with a simple power-stroke free energy, as in
Equation (8) with a constant energy barrier [Eb1 (θ) ≡ Eb01].
The prominent characteristic of this oscillation is the quick
lengthening induced by collective reversal strokes (Figure 7A).
At first glance, it appears that this mechanism operated by
quickly relaxing the muscle against the slow decline of the Ca2+

concentration (Inset in Figure 5). However the timing of the
lengthening events differ from those in the ventricle wall due to
the various feedback signals from the local muscle movements,
resulting in the slow decline of the LVP (Figure 11A). Using
the numerical experiments on the ventricular model, we see
that the trap mechanism contributes to the synchronization of
muscle relaxation by halting sarcomeric lengthening if it occurs
earlier than in the neighboring muscle. We also see that the same
trap mechanism causes the stretch-activation phenomenon at the
tissue level.
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