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Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy

characterized by its sudden manifestation, rapid progression, poor prognosis, and

limited therapeutic options. Genetic alterations in key signaling pathways found

in early pancreatic lesions are pivotal for the development and progression of

pancreatic intraepithelial neoplastic lesions into invasive carcinomas. More than 90%

of PDAC tumors harbor driver mutations in K-Ras that activate various downstream

effector-signaling pathways, including the phosphoinositide-3-kinase (PI3K) pathway.

The PI3K pathway also responds to stimuli from various growth factor receptors present

on the cancer cell surface that, in turn, modulate downstream signaling cascades. Thus,

the inositide signaling acts as a central node in the complex cellular signaling networks

to impact cancer cell growth, motility, metabolism, and survival. Also, recent publications

highlight the importance of PI3K signaling in stromal cells, whereby PI3K signaling

modifies the tumor microenvironment to dictate disease outcome. The high incidence of

mutations in the PI3K signaling cascade, accompanied by activation of parallel signaling

pathways, makes PI3K a promising candidate for drug therapy. In this review, we describe

the role of PI3K signaling in pancreatic cancer development and progression. We also

discuss the crosstalk between PI3K and other major cellular signaling cascades, and

potential therapeutic opportunities for targeting pancreatic ductal adenocarcinoma.

Keywords: PI3K, pancreatic cancer, mucins, MUC1, cancer metabolism, tumor microenvironment, cancer therapy

INTRODUCTION

Pancreatic cancer is the third-leading cause of cancer-related morbidity in the United States,
owing largely to the short-term survival rates observed for pancreatic cancer patients despite a low
incidence rate (Mazure et al., 1997; Siegel et al., 2016; Attri et al., 2017). Pancreatic adenocarcinoma
(PDAC), characterized by a strong desmoplastic stromal formation around the cancerous tissues,
accounts formore than 90% of pancreatic cancer cases (Mosdell andDoberneck, 1991). In advanced
stages of pancreatic cancer development, the primary tumor reaches the surrounding lymph nodes

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00335
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00335&domain=pdf&date_stamp=2018-04-04
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pankaj.singh@unmc.edu
https://doi.org/10.3389/fphys.2018.00335
https://www.frontiersin.org/articles/10.3389/fphys.2018.00335/full
http://loop.frontiersin.org/people/507332/overview
http://loop.frontiersin.org/people/543832/overview
http://loop.frontiersin.org/people/431172/overview


Murthy et al. PI3K Signaling in Pancreatic Cancer

and then disseminates into the distal metastatic organs like
liver, lung, and diaphragm (Pour et al., 1991; Attri et al.,
2017). The sudden onset of pancreatic cancer combined with
rapid progression of the disease accounts for the lack of
robust prognostic markers and early-stage diagnostic markers
(Kaur et al., 2012; Le et al., 2016). The short-term survival of
the pancreatic cancer patients limits the choice of therapeutic
interventions available. Gemcitabine remains the standard care
of therapy with success rate of 20–30% when used alone and
has a greater efficacy when used in a combination therapy
based on a multi-targeting approach. However, cancer tissues
evolve rapidly and develop resistance to gemcitabine and other
associated therapies (Chand et al., 2016). Specifically, cancer
cells reprogram their metabolic machinery to confer gemcitabine
resistance, making it extremely difficult to treat (Shukla et al.,
2017). The current scenario not only demands a search of novel
targets that can be utilized in co-therapeutic regimens but also
indicates a need for alternative targets in gemcitabine-resistant
and gemcitabine-unresponsive patients.

Pancreatic adenocarcinomas are genetically heterogeneous
tumors marked by several genetic mutations found in cancer
genomes. The oncogenic mutations can either be driver
mutations that cause the onset of disease or passenger mutations
that amplify the rate of tumor progression through different
stages (Makohon-Moore and Iacobuzio-Donahue, 2016). K-Ras
is the major driver mutation present in more than 90% of
the adenocarcinoma patients (Lennerz and Stenzinger, 2015).
The K-Ras mutations are found in early lesions and are
involved in the progression of cancer to invasive metastatic
PDAC (Eser et al., 2014). G12D and G12V are the most
common K-Ras point mutations found in pancreatic cancer
patients (Waddell et al., 2015). The genetically engineered
mouse models expressing these oncogenic mutations result in
constitutive activation of K-Ras, that regulates downstream
signaling pathways involved in proliferation, migration, and
metastasis of cancer cells (di Magliano and Logsdon, 2013). The
passenger mutations frequently observed in tumor-suppressor
genes CDKN2A, TP53, or SMAD4, and oncogenes ERBB2 and
EGFR, accelerate the formation and progression of invasive

Abbreviations: 4E-BP, eIF4E-binding proteins; ACLY, ATP citrate lyase; ADM,

acinar-to-ductal metaplasia; BTK, Bruton tyrosine kinase; CAT, Catalytic domain;

CTLA, Cytotoxic T-lymphocyte-associated protein; CXCL13, Chemokine ligand

13; eIF4E, eukaryotic translation initiation factor 4E; ERK, Extracellular signal-

regulated kinases; EXT, Extension domain; FoXO, Forkhead transcription factors;

GCPR, G-protein-coupled receptors; GSK3β), glycogen synthase kinase 3 beta;

GTPases, Guanosine-5′-triphosphatases; HIF-1α, Hypoxia-inducible factor 1- α;

HK, Hexokinase; HM, Hydrophobic motif; HNRNPA2B1, Heterogeneous nuclear

ribonucleoprotein A2/B1; IFNγ, Interferon gamma; MAPK, Mitogen-activated

protein kinase; MHC, Major histocompatibility complex; mTOR, Mechanistic

target of Rapamycin; MUC, Mucin; NF-κB, Nuclear factor kB; NK, Natural killer;

P70S6K, ribosomal protein S6 kinase beta-1; PanINs, Pancreatic intraepithelial

neoplastic lesions; PD-1, Programmed cell death-1; PD-L1, Programmed death-

ligand 1; PDAC, Pancreatic ductal adenocarcinoma; PDK1, Phosphoinositide-

dependent kinase 1; PH, Pleckstrin homology; PI3K, Phosphoinositide-3-kinase;

PKB, Protein kinase B; PtdIns, Phosphatidylinositols; PTEN, Phosphatase and

tensin homolog deleted on chromosome 10; Ras, Rat sarcoma virus; ROS, Reactive

oxygen species; RTKs, Receptor tyrosine kinases; SH2, Src Homology 2; TAM,

Tumor-associated macrophages; TGF-β, Transforming growth factor beta; Th, T

helper; Treg, Regulatory T cells; VEGF, Vascular endothelial growth factor.

pancreatic lesions (Waddell et al., 2015; Notta et al., 2016).
The other commonly observed mutations in signaling pathway
genes, metabolic genes, and other regulatory factors can also
act as passenger mutations to aid in the rapid progression
of the disease (Jones et al., 2008; Hardie et al., 2017). The
convergent target of these genetic alterations is aberrant signaling
observed in pancreatic cancer cells. Targeting these aberrant
signaling pathways can provide alternative foci and thus help
reduce the variability in the effects of pancreatic cancer treatment
modalities.

Signaling pathways are critical for maintaining biological
functions of all cellular subtypes in both healthy and cancer
cells. Deregulation of these interconnected cellular networks
results in a myriad of disease conditions, including cancer
(Murthy et al., 2013; Creixell et al., 2015). Aberrant cellular
signaling also regulates the other molecular hallmarks of cancer
such as evasion of growth suppressors, resisting cell death,
replicative immortality, angiogenesis, invasion and metastasis,
tumor metabolism, and tumor-promoting immune modulation
(Hanahan and Weinberg, 2000; Fouad and Aanei, 2017). The
mutant K-Ras signaling in pancreatic cancer patients regulates
the downstream inositide signaling pathway (Pirhonen et al.,
1990; Jones et al., 2008). Phosphoinositide 3-kinase (PI3K)
activity is important for cellular proliferation, protein synthesis,
apoptosis, migration, metabolism, cytoskeletal rearrangement,
response to growth factors, and malignant transformation (Yuan
and Cantley, 2008). PI3K controls these functions by regulating
a multitude of downstream signaling cascades such as the
mechanistic target of rapamycin (mTOR), nuclear factor kB
(NF-κB), glycogen synthase kinase 3 beta (GSK3β), p27 and
Bad-Bax pathways (Arcaro and Guerreiro, 2007). In addition
to K-Ras, the PI3K can be activated by a variety of oncogenic
mutations and growth factor receptors present on the surface
of cancer cells. While PI3K inhibitors alone have shown limited
success in treating pancreatic cancer patients, the use of PI3K
inhibitors in combination with other drugs has shown promising
results and are currently in clinical trials.

Mutations present in PI3K pathway genes and other-
associated regulated pathway genes contribute to tumorigenesis.
The PI3KCA gene mutations present in 3–5% of pancreatic
cancer patients can act as activating mutations to initiate
pancreatic tumor formation and drive its progression and growth
(Payne et al., 2015). In addition to their role in cancer cells,
PI3K pathway also regulates key cellular functions of immune
cells and plays a pivotal role in the interaction of tumor cells
with immune cells. Thus, apart from their classical functions,
PI3K also regulates metabolic attributes of cancer cell and tumor
microenvironment-mediated regulation of tumor growth and
survival (Landis and Shaw, 2014; Okkenhaug et al., 2016).

This review summarizes recent advances in the understanding
of the regulation of the Class I PI3K signaling pathway (hereafter
referred to as PI3K unless otherwise mentioned) in pancreatic
cancer, with a particular emphasis on pancreatic cancer-specific
regulators and mutations that modify PI3K-mediated functions.
The recent literature also highlights an emergent role of the PI3K
signaling network in the regulation of tumor metabolism and
immune cell function. Further, this review discusses the scope
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and progress toward developing PI3K-targeted therapies for the
treatment of pancreatic cancer.

CROSSTALK BETWEEN INOSITIDE
PATHWAY AND OTHER KEY SIGNALING
CASCADES IN PANCREATIC CANCER

The PI3K Signaling Pathway
The PI3K/Akt survival pathway is a key downstream target of
the family of the rat sarcoma virus (Ras), which are proteins
primarily involved in cell proliferation. It is estimated that at
least 50% of all cancer patients and 60% of all PDAC patients
have deregulation of the PI3K/Akt signaling pathway (Bondar
et al., 2002; Schlieman et al., 2003; Yuan and Cantley, 2008;
Schild et al., 2009). PI3Ks belong to the lipid kinase family
that respond to signals from the Ras family, as well as the
receptor tyrosine kinases, and regulate diverse cellular functions
including cell transformation, proliferation, growth, motility, and
survival (Cantley, 2002; Vanhaesebroeck et al., 2010) (Figure 1).
Moreover, the PI3K pathway has been reported to inhibit cellular
apoptosis to stimulate cell proliferation in cancer cells (Mao et al.,
2016).

The PI3K functions are mediated by diverse phosphorylated
forms of phosphatidylinositols (PtdIns) that perform
regulatory functions by binding and recruitment of various
phosphoinositide binding domain-containing effector proteins.
PI3Ks have been classified into three groups that are expressed in
most pancreatic cancer cell lines (Edling et al., 2010). Two classes
of PI3K class I have been described in this review, namely class
IA and class IB. While class IA is composed of three isoforms
of the catalytic subunit known as p110α, p110β, and p110δ,
class IB encompasses only p110γ. In addition to differences

in composition, there are variations in the cues essential for
the activation of subclasses IA and IB. While subclass IA
(PI3K α, β, and δ) is activated by receptor tyrosine kinases
(RTKs), subclass IB (PI3Kγ) is activated by G-protein-coupled
receptors (GCPRs). The PI3K signaling cascade is activated
by stimulation of RTKs, which results in the recruitment
of PI3Ks to the auto-phosphorylated tyrosine residues on
RTKs. The interaction between the Src Homology 2 (SH2)
domain in the adaptor subunit with PI3K propels the allosteric
activation of the catalytic subunit. Activated Class I PI3Ks
catalyze the phosphorylation of PtdIns moieties PtdIns(4,5)P2
(hereafter referred to as PIP2) at their 3

′-OH position to generate
phosphatidylinositol-3,4,5-triphosphate (hereafter referred
to as PIP3). The resultant second messenger PIP3 further
recruits pleckstrin homology-(PH) domain-containing signaling
proteins to the cancer cell membrane. One such protein is the
serine/threonine kinase, phosphoinositide-dependent kinase 1
(PDK1), which is a known activator of Akt/protein kinase B
(PKB) (Falasca and Maffucci, 2007; Lien et al., 2017).

The Class II PI3K (PI3KC2) subfamily comprises of three
members (in vertebrates), namely, PI3KC2 α, β, and γ (Jean
and Kiger, 2014). While the N terminal domain of PI3KC2
has been demonstrated to interact with adapter proteins that
control distinct steps of vesicular trafficking processes such as
endocytosis and vesicle recycling, the C terminal region binds
to PIP2-containing membranes allowing membrane recruitment
of PI3KC2α (Stahelin et al., 2006; Posor et al., 2013). The
Class III PI3K, Vps34, catalyzes the synthesis of PtdIns(3)P
at distinct intracellular membranes and plays a critical role
in regulation of endosomal protein sorting, autophagosome
formation, endosome-lysosome maturation, and cytokinesis
(Sagona et al., 2010; Jaber et al., 2012; Ma et al., 2014). Among
the different classes of the PI3K family, the Class I PI3Ks have

FIGURE 1 | Schematic representation of the PI3K/Akt signaling cascade and targeted therapeutic interventions in pancreatic cancer.
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been widely studied and implicated in pancreatic cancer, and
henceforth, will be the focus of this review.

Akt Signaling
The serine-threonine kinase Akt belongs to the AGC kinase
family and is the central signaling molecule that regulates
diverse cellular processes critical for cell survival and cell cycle
progression (Yamamoto et al., 2004). The Akt kinase family
includes Akt1, Akt2, and Akt3, which display distinct features
despite extensive structural homology. Interestingly, Akt was
originally identified as a regulator of insulin receptor signaling.
Akt is composed of the following three domains: (1) an
N-terminal pleckstrin homology PH domain, (2) a C-terminal
extension (EXT) domain containing a regulatory hydrophobic
motif (HM), and (3) a central kinase catalytic subunit (CAT)
domain (Kumar and Madison, 2005). Upon PI3K activation, Akt
is recruited to the plasma membrane through the interaction of
the pleckstrin homology domain with membrane lipids (James
et al., 1996). The recruited Akt is phosphorylated by PDK1
at residues Thr308 and by mTORC2 at Ser473 present in the
activation loop (Alessi et al., 1997; Sarbassov et al., 2005). The
initiation of the Akt signaling cascade stimulates NF-kB, hypoxia-
inducible factor-1α (HIF-1α), and Forkhead transcription factors
(FoXO), in addition to regulation of the cell cycle and inhibition
of apoptosis (Cardone et al., 1998; Ayabe, 1999; Brunet et al.,
1999; Zhong et al., 2000). The Akt isoforms carry specific
genetic aberrations in diverse types of tumors, which positively
correlate to cancer aggressiveness and poor prognosis. Such
genetic alterations underline the discrete functional role of Akt
in pancreatic cancer development and progression.

mTOR Signaling
The kinase mTOR, another serine/threonine kinase, functions
downstream of PI3K signaling. Furthermore, mTOR regulates
a wide array of growth-related functions by increasing
cell proliferation and survival, protein degradation, and
reorganization of the actin cytoskeleton (Foster and Fingar,
2010). While enhanced phosphorylation of ribosomal protein
S6 kinase beta-1 (P70S6K) aids in protein synthesis, binding to
eukaryotic translation initiation factor 4E (eIF4E) is abolished
by phosphorylation of the eIF4E-binding proteins (4E-BPs) to
relieve translational block, which leads to protein translation
and cell growth (Gingras et al., 1998). Two distinct complexes
of mTOR exist within the cells. While mTORC1, which is
composed of mTOR, Gbl, and Raptor, transcends signals
following PI3K-Akt activation, mTORC2, which is composed of
mTOR, Gbl, and Rictor, is involved in full activation of Akt, thus
promoting cell proliferation (Hay and Sonenberg, 2004). The
activation of mTOR regulates translation of different proteins,
including cyclin D1, which regulates cell cycle progression,
and HIF-1α, which regulates expression of the pro-angiogenic
vascular endothelial growth factor (VEGF) (Grewe et al., 1999).
Because mTORC1 is highly sensitive to rapamycin, this family of
molecules epitomizes the first-generation of mTOR inhibitors.
Efforts are focused on inhibiting the mTORC1 complex, and
little attention has been paid to mTORC2, which is largely
insensitive to rapamycin. However, in a recent study by Driscoll

et al. deletion of the obligate mTORC2 subunit Rictor delayed
tumorigenesis. The study further demonstrated the utilization
of combined inhibition of mTORC1/2 and PI3K as a potential
therapeutic strategy to inhibit the progression of pancreatic
cancer (Driscoll et al., 2016).

PI3K Regulation Mediated by PTEN
Being one of the most frequently disrupted tumor suppressors
in cancer, a mutation in the phosphatase and tensin homolog
deleted on chromosome 10 (PTEN), the natural antagonist of
PI3K, relieves the repression of the PI3K/Akt signaling axis
in PDAC. Investigators have observed that the development
of pre-malignant PanIN in Pdx1-Cre; K-RasG12D/+ mice with
conditional deletion of Pten was accelerated and accentuated
the phenotype of acinar-to-ductal metaplasia (ADM) (Stanger
et al., 2005; Hill et al., 2010). In principle, the PTEN phosphatase
dephosphorylates PIP3 to PIP2 and reduces tumor cell growth
and survival (Maehama andDixon, 1998; Cantley andNeel, 1999;
Di Cristofano and Pandolfi, 2000; Asano et al., 2004). Additional
studies have shown that loss of PTEN expression in 25–70% of
cases is concurrent with the short-term overall survival (Asano
et al., 2004; Ying et al., 2011). Activation of the NF-κB pathway
and its downstream cytokine network had been identified as a
key altered pathway on combined oncogenic deletion of K-Ras
and Pten. Aberrations in the PTEN/PI3K pathway are thus
frequently observed in PDAC which results in activation of
tumor-promoting stromal and immune cell populations that
shape the PDAC tumor microenvironment (Ying et al., 2011).
VEGF, predominantly known to promote tumor angiogenesis, is
also inversely regulated by PTEN in pancreatic cancer cells (Ma
et al., 2009).

ROLE OF K-RAS SIGNALING IN THE
PROGRESSION OF PANCREATIC CANCER

K-Ras belongs to the Ras family of guanosine-5′-triphosphatases
(GTPases). Activating K-Ras mutations, mainly in codon 12,
are the first genetic changes detected during the progression
of pancreatic cancer and are present in 75–90% of all
pancreatic adenocarcinomas (Shibata et al., 1990; Dergham
et al., 1997; Wang et al., 2002). Oncogenic K-Ras activates
a plethora of signaling pathways associated with the survival
of cancer cells. Such a characteristic suggests that K-Ras
signaling is an ideal drug target to counteract the progression of
pancreatic cancer. Classically, growth factor-mediated exogenous
stimulation results in activation of Ras GTPases, which dimerize
and further regulate downstream effector molecules. Attempts
to identify critical Ras effectors in pancreatic duct epithelial
cell systems have revealed a dependency of K-Ras on the
PI3K/Akt signaling cascade. It is well-established that the
PI3K/Akt pathway is activated in human PDAC as well as
K-Ras-driven mouse models of pancreatic cancer (Jimeno
et al., 2008; Kennedy et al., 2011; Eser et al., 2013). The
various mouse models utilized for understanding the role of
PI3K have been discussed in Table 1. A recent study, which
utilized an in vivo genetic model, demonstrated a critical
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TABLE 1 | Mouse models of pancreatic cancer utilized to understand the role of phosphoinositide signaling pathway in pancreatic cancer.

Genotype Mutation in PI3K gene Effect of the mutation in pancreatic cancer References

Pdx-1-Cre; LSL-KrasG12D None ADM and PanIN lesions observed in all animals Baer et al., 2014

Pdx-1-Cre; LSL-KrasG12D,

p110α+/lox
Genetic inactivation of one allele of

the kinase domain of pancreatic

p110α

ADM and PanIN lesions observed in most animals Baer et al., 2014

Pdx-1-Cre; LSL-KrasG12D,

p110αlox/lox
Genetic inactivation of the kinase

domain of pancreatic p110α

All types of pancreatic lesions blocked Baer et al., 2014

Pdx2-Cre; LSL-KrasG12D;

LSL-Trp53R172H/+

None Developed primary PDAC Eser et al., 2013

Pdx1-Cre; LSL-KrasG12D; p53lox/+, None Developed primary PDAC Baer et al., 2014

Pdx1-Cre; LSL-KrasG12D;

p53Lox/+,p110α+/lox
Genetic inactivation of one allele of

the kinase domain of pancreatic

p110α

Blocked acinar to ductal plasticity.

Low-grade PanIN lesions formed, Stalled the progression

of low-grade PanINs toward high-grade PanINs

Baer et al., 2014

Pdx1-Cre; LSL-KrasG12D; p53lox/+,

p110αlox/lox
Genetic inactivation of the kinase

domain of pancreatic p110α

Blocked acinar to ductal plasticity.

Low-grade PanIN lesions observed, Stalled the

progression of low-grade PanINs toward high-grade

PanINs and adenocarcinoma

Baer et al., 2014

Ptf1aCre/+; LSL-KrasG12D/+ None Acini-derived tumors did not undergo ADM Baer et al., 2014

Ptf1aCre/+; LSL-PIK3CAH1047R/+ Activating mutation (H1047R) in the

catalytic domain of PIK3CA

Pancreatic size and weight increased, induced ADM and

premalignant PanINs

Eser et al., 2013

Pdx1-Cre, LSL-KrasG12D;

PTENlox/lox
Disruption of PTEN gene Accelerated pre-malignant PanINs and PDAC; No

expression of senescent markers; Accentuated ADM

Hill et al., 2010; Kennedy

et al., 2011

Pdx1-Cre; Ptenlox/lox Deletion of PTEN gene Increased proliferation and centro-acinar cell expansion Stanger et al., 2005

role of the K-Ras-PI3K-PDK1 axis in mediating ADM, PDAC
formation, and maintenance. The enhanced ducts formed from
the acinar cells further develop PanIN lesions (Baer et al., 2014).
Activation of K-Ras by interaction with the protein-coding gene
heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1)
is associated with upregulation of the mTOR signaling pathway
and results in PDAC cell survival and tumor formation in mice
(Barcelo et al., 2014). Other than directly activating the PI3K
signaling cascade, increased interaction between the K-Ras 4B
isoform with calmodulin via the hypervariable region indirectly
modulates PI3K signaling (Nussinov et al., 2015). Reactive
oxygen species (ROS) is an important determinant of pancreatic
cancer pathogenesis. Oncogenic K-Ras-driven metabolic and
signaling alterations regulate the production of ROS in pancreatic
cancer (Wang et al., 2015; Storz, 2017). Furthermore, the
membrane translocation and activation of ROS-producing family
of enzymes, namely NADPH oxidases (NOX), is mediated by the
PI3K signaling. NOX activation mediates the pro-survival effects
of ROS by sustained phosphorylation of JAK2 and by suppressing
apoptosis (Lee et al., 2007). Akt plays a direct role in the activation
of NOX proteins through NFkB-mediated upregulation of the
NOX subunit p22phox (Edderkaoui et al., 2013).

It is interesting to note that pharmacological inhibition of
the protein kinase cascade pathway known as the mitogen-
activated protein kinase/extracellular signal-regulated kinases
(MAPK/ERK), one of the other well-established mediators of
K-Ras-dependent cancer progression, remains ineffective in
reducing the tumor burden in K-Ras-mutant cancers (Hayes
et al., 2016). However, this recent study by Hayes et al. revealed
dynamic reprogramming of signaling networks that resulted in
ERK activation. Thus, ERK inhibition is a potential therapeutic

approach in K-Ras-dependent pancreatic cancer. Further, the
study by Hayes et al. also showed the regulatory roles of
PI3K/Akt/mTOR signaling in the sensitivity of the ERK inhibitor.
Therefore, co-targeting the ERK signaling pathway along with
the PI3K signaling may bestow a distinct and advantageous
therapeutic strategy for pancreatic cancer.

REGULATORY INTERACTION BETWEEN
MUCINS AND PHOSPHOINOSITIDE
SIGNALING

A characteristic feature that defines pancreatic cancer is
the aberrant overexpression of a high molecular weight
glycoproteins, mucins (MUC). Mucins, such as MUC4, have
been demonstrated to be the targets of K-RasG12D mutant,
which is regulated by a transcriptional or post-transcriptional
mechanisms (Vasseur et al., 2015). Furthermore, PI3K signaling
is regulated by MUC1, a type I transmembrane glycoprotein
that regulates aggressiveness in PDAC by inducing metabolic
and signaling alterations (Chaika et al., 2012a; Liu et al., 2014;
Mehla and Singh, 2014; Gebregiworgis et al., 2017; King et al.,
2017). MUC1 regulates the expression and signaling of multiple
receptor tyrosine kinases, including PDGFR, EGFR, and c-Met
that signals through the PI3K signaling cascade to drive cellular
processes such as proliferation, migration, and survival (Singh
and Hollingsworth, 2006; Singh et al., 2007, 2008; Engel et al.,
2016). Also, MUC1 mediates the nuclear localization of EGFR
to influence the interaction between EGFR and transcriptionally
active promoter regions (Bitler et al., 2010). Interestingly, an
intimate link between MUC1 cytoplasmic tail expression and the
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activation of the PI3K-Akt pathway has been observed previously
in fibroblasts and thyroid cancer cells (Raina et al., 2004). In
accordance with these previous findings, a recent study on non-
small cell lung cancer also showed that the interaction between
the cytoplasmic domain of MUC1 with the SH2 domain of PI3K
p85 subunit is critical for the activation of the PI3K-Akt-mTOR
pathway (Kato et al., 2007). Additionally, multidrug resistance is
a prominent phenomenon in pancreatic cancer that is modulated
by the upregulation of transporters of the ATP-binding cassette
(Nath et al., 2013). MUC1 has been further shown to regulate the
expression of the multidrug-resistance genes by Akt-dependent
and -independent pathways conferring the multidrug-resistance
phenotype in pancreatic cancer cells (Nath et al., 2013). It is also
pertinent that MUC1-mediated resistance to radiotherapy and
chemotherapy may be governed by PI3K signaling (Gunda et al.,
2017; Shukla et al., 2017). Therefore, targeting the regulatory
axis of MUC-PI3K signaling could be a promising therapeutic
strategy for pancreatic cancer.

GENETIC ALTERATIONS IN PI3K
SIGNALING PATHWAY IN PDAC
PROGRESSION

PI3K and its downstream effectors are constitutively activated
in K-Ras-driven pancreatic cancer. p110α, the PI3K class IA
subunit, is encoded by PIK3CA and encompasses hotspot
mutations in the helical (E542K and E545K) and catalytic
domains (H1047R). Such oncogenic mutations result in
constitutive activation of the PI3K signaling, as reported in
breast and lung cancers (Bader et al., 2005; Liu et al., 2009).
Despite the sparse occurrence of activating mutations in p110α
in PDAC, the enhanced expression of activated p110α mimics
mutated K-Ras-mediated oncogenesis (Schonleben et al., 2006;
Jones et al., 2008; Biankin et al., 2012; Eser et al., 2013). When
expressed specifically in the pancreas, p110αH1047R induces PI3K
activation, leading to enhanced ADM and PanIN formation.
Overexpression of p110αH1047R phenocopies mutant K-Ras
driven PDAC and is independent of cross-activation of K-Ras
(Engelman et al., 2008; Adams et al., 2011; Liu et al., 2011).
A subsequent study showed the activation of Akt and GSK3
in a KC mice model (Eser et al., 2013). Along these lines,
pancreas-specific expression of kinase-dead p110α isoform
inhibited initiation of pancreatic pre-neoplastic lesions. In
contrast, the PI3K activity of pancreatic p110β is dispensable for
oncogenic K-Ras-induced cancer formation (Baer et al., 2014).
In opposition to these findings, Collisson et al. reported the
inability of p110αH1047R to induce PanIN and PDAC formation
using a Pdx1-CreER mouse line, an alternate murine model
utilized to study pancreatic cancer formation and progression.
In addition to studies on p110α, a report by Edling et al.
highlighted the role of p110γ in oncogenic transformation of
pancreatic cells. This study shows increased expression of p110γ
in PDAC tissue compared with normal ducts. Further, depletion
of p110γ resulted in reduced cell proliferation, emphasizing the
participation of p110γ in pancreatic cancer progression (Edling
et al., 2010).

Constitutive activation of PI3K-effector Akt is an indicator
of the aggressiveness of pancreatic cancer (Edling et al., 2010;
Massihnia et al., 2017). In addition to activated Akt in general,
Akt2 amplification has been observed in 10–32% of pancreatic
adenocarcinomas and contributes to the malignant phenotype
in a subset of human PDAC patients (Cheng et al., 1996;
Altomare and Testa, 2005). Moreover, amplification of Akt2
has been identified in studies that apply comparative genomic
hybridization (array CGH; Liang et al., 2014). Likewise, Akt2
has long been implicated in signaling pathways downstream of
various mitogenic growth factors critical in the development
of pancreatic cancer (Ruggeri et al., 1998). Interestingly,
PDAC hetero-transplants that possess mutant K-Ras and Akt2
amplification are extremely responsive to co-treatment with
dactolisib (BEZ235) and panobinostat, resulting in the inhibition
of tumor growth (Venkannagari et al., 2012). Mutations and
amplification of Akt are thus instrumental in determining the
oncogenic landscape of pancreatic cancer.

In addition to amplified Akt, also observed in pancreatic
tumor cell lines is decreased PTEN expression accompanied
by an elevation in PI3K/Akt signaling. The poor expression
of PTEN is shown to be a result of promoter methylation
(Asano et al., 2004). Previous studies show the significantly low
frequency of deletion or loss-of-function mutations targeting
PTEN in human PDAC (Asano et al., 2004). However, recent
human PDAC genome analyses, along with mouse genetic
studies, have revealed frequent deletion of the PTEN gene
in pancreatic tumor specimens, leading to the activation
of NF-κB and its downstream cytokine pathway, which
is associated with shaping the tumor microenvironment
in PDAC (Ying et al., 2011). Further, a multiplatform-
based survey was performed to study alterations in the
PI3K/Akt/mTOR pathways in over 1,000 cancer cases. Analyses
revealed that around 1% of the patients harbored non-silent
somatic mutations in the components of the PI3K/Akt/mTOR
pathways, < 1% encompassed copy number loss, and 2–5%
contained amplification of Akt2, which is consistent with a
previous finding (Zhang et al., 2017). Taken together, it is
evident that the PI3K/Akt/PTEN signaling loop is a critical
signaling hub, which is altered during PDAC initiation and
progression.

INOSITIDE SIGNALING
PATHWAY-MEDIATED METABOLIC
REGULATION

Pancreatic cancer is characterized by altered metabolic pathways
rewired predominantly by the mutant K-Ras. One of the
key metabolic changes driven by oncogenic K-Ras involves
elevated glucose uptake (Ying et al., 2012; Kerr et al.,
2016). In addition to enhanced glycolysis, mutant K-Ras
is responsible for the shuttling of glycolytic intermediates
to various anabolic pathways such as pentose phosphate
pathway and hexosamine biosynthetic pathway, which are
critical for the genesis, proliferation, and progression of
pancreatic cancer (Ying et al., 2012). The reprogramming of
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glutamine metabolism and the dependence of PDAC cells
on this non-canonical pathway for supporting pancreatic
cancer growth is also contingent on oncogenic K-Ras
(Son et al., 2013). In addition to its role in regulating
anabolic glucose metabolism, K-Ras drives transcriptional
reprogramming to elevate the expression of autophagic and
macropinocytosis-associated genes in order to meet the
metabolic requirements of the cell (Yang et al., 2011; Commisso
et al., 2013).

The engagement of K-Ras with various metabolic pathways
is primarily mediated by PI3K/Akt and MAPK (Deprez et al.,
1997; Barthel et al., 1999). Such regulatory alterations of key
metabolic factors are strongly associated with the Akt signaling
pathway. Oncogenic K-Ras can enhance the activity of the
metabolic enzyme ATP citrate lyase (ACLY) in an Akt-dependent
manner, resulting in increased histone acetylation (Lee et al.,
2014). Altered histone acetylation can impinge upon cellular
metabolism by altering the cellular acetyl-CoA pool, expression
patterns of genes, response to DNA damage in cancer cells,
and DNA replication (Unnikrishnan et al., 2010; Sulli et al.,
2012). The role of PI3K/Akt has been well established in lung
adenocarcinoma and hepatoma cells wherein PI3K-mediated
enhanced expression levels andmembrane localization of GLUT1
were observed (Barthel et al., 1999; Makinoshima et al., 2015).
In the case of pancreatic cancer, treatment with the PI3K
inhibitors LY294002 andwortmannin led to a significant decrease
in the expression of GLUT1 and subsequently, a reduction
in the glucose uptake by cells (Melstrom et al., 2008). While
stimulation of phosphofructokinase enzymatic activity by Akt
has been observed, Akt mediates regulation of the mitochondrial
localization of the glycolytic enzymes Hexokinase (HK)1 and
HK2 in Rat1a fibroblasts (Majewski et al., 2004).

The PI3K/Akt signaling pathway also regulates the HIF-1α,
one of the master regulators of PDAC metabolism (Chaika
et al., 2012a; Kang et al., 2014). Notably, it has been shown
that inhibition of PI3K/Akt pathway results in a significant
decrease in the expression and the DNA-binding ability of HIF-
1α (Kilic-Eren et al., 2013). The strong suppressive effects of
the downregulation of K-Ras and downstream signaling in the
glycolytic pathway via HIF-1α is evident in diverse tumor cells
(Mazure et al., 1997; Fukuda et al., 2002; Gao et al., 2002).

MUC16, known to facilitate PDAC progression, regulates
the activity of mTOR and consequently, its downstream target
c-myc, which is crucial for PDAC growth and metabolism.
Reduction in mTOR activity and c-myc expression in MUC16-
knockdown cells results in global metabolic alterations that
significantly reduce the cellular glycolytic and nucleotide
metabolite pools (Shukla et al., 2015). Apart from metabolic
regulation of c-myc, PI3K signaling also controls c-myc protein
abundance in a GSK3-dependent fashion in PDAC cells (Schild
et al., 2009). Although available studies do not adequately
demonstrate the direct role of PI3K signaling in commencing
metabolic reprogramming of PDAC cells, future studies directed
toward elucidating the interplay between this tumorigenic
metabolic pathway with PDAC metabolism will potentially
identify new test models and therapeutic options for pancreatic
cancer.

ROLE OF PI3K SIGNALING IN THE
PANCREATIC TUMOR
MICROENVIRONMENT

PDAC is a very unusual tumor where in the stromal cells
outnumber the tumor cells (Erkan et al., 2008). The thick
desmoplasia makes the tumor microenvironment hypoxic,
acidic, and impermeable to drugs, thus creating a barrier to
treatment options (Pandol et al., 2009). Studies performed
in this arena have shown that manipulating the tumor
microenvironment impacts tumor growth kinetics (Whatcott
et al., 2015; Abrego et al., 2017). The pancreatic tumor
microenvironment is a heterogeneous compartment, majorly
consisting of cancer-associated fibroblasts, different immune
cells, stellate cells, endothelial cells, and the extracellular matrix.
The dynamicity of the tumor microenvironment is mediated
through various signaling factors secreted during tumor and
accessory cell crosstalk (Feig et al., 2012). Such a heterocellular
process of oncogenic cross-signaling results in increased
pancreatic cancer proliferation, metastasis, and altered apoptosis.
For instance, the interaction between stromal cells and pancreatic
cancer cells has been shown to alter intracellular signaling and
metabolic pathways in pancreatic cancer cells (Bailey et al.,
2008; Hwang et al., 2008; Behrens et al., 2010; Chaika et al.,
2012b; Tape et al., 2016; Rucki et al., 2017). Interestingly, PI3K
signaling is also regulated by the cross-exchange of such signaling
stimuli (Yuan and Cantley, 2008). While the role of PI3K
signaling is well-known in the development and function of
different immune cells, the significance of PI3K signaling in the
pancreatic cancer tumor microenvironment is currently being
examined.

PI3K Signaling in Cancer-Associated
Fibroblasts
Cancer-associated fibroblasts are specialized fibroblasts that
constitute the majority of the cells present in the tumor
microenvironment (Apte et al., 2013). These fibroblasts
are mostly derived from stellate cells in pancreatic cancer
(Ohlund et al., 2017) and play a secretory role in the tumor
microenvironment by releasing a variety of factors like collagen,
proteoglycans, glycoproteins, and other components that
comprise the extracellular matrix (Shan et al., 2017). Cancer-
associated fibroblasts have been shown to protect cancer cells
from chemotherapeutic agents, and increase their proliferation
and migration in vitro and in vivo (Xing et al., 2010; Shiga et al.,
2015). Similarly, the platelet-derived growth factor secreted by
immune cells regulate migration and proliferation of cancer cells
by the activation of PI3K signaling pathway (Figure 2; Cho et al.,
2016). Another mitogen, cholecystokinin, binds to the receptors
present on stellate cells to activate PI3K pathway for regulation of
collagen production and fibrosis (Berna et al., 2010; Smith et al.,
2014). Pancreatic cancer cells and cancer-associated fibroblasts
show a reciprocal release of mitogens from both the cell types
that regulate activation of PI3K signaling. This positive loop
for PI3K activation is critical for pancreatic cancer progression
(Figure 2; Bussard et al., 2016).
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FIGURE 2 | Regulatory functions of PI3K signaling in diverse cellular

components constituting the tumor microenvironment.

PI3K Signaling in Innate Immune Cells
Macrophages
Macrophages are phagocytic immune cells involved primarily
in the defense against pathogens and in the wound-healing
process (Ginhoux et al., 2016). Macrophages can exist as
either classically activated—M1macrophages involved in defense
against pathogens or alternatively activated—M2 macrophages
involved in wound healing and tissue repair (Yoshikawa
et al., 2012; Barros et al., 2013). These two polarized
subtypes of macrophages play an antagonistic function in
the regulation of pancreatic tumor cell growth. While M1
macrophages are pro-tumorigenic, M2 macrophages are anti-
tumorigenic (Karnevi et al., 2014). Notably, the survival,
adhesion, metabolism, polarization, and motility of macrophages
have been shown to be regulated by PI3K signaling (Luyendyk
et al., 2008; Xie et al., 2014; Covarrubias et al., 2016). The PI3K
signaling pathway also activates Akt1 and Akt2 kinases, thereby
regulating the macrophage polarization switch. Furthermore,
Akt1-deficient macrophages were shown to produce M1
macrophages that secrete pro-inflammatory cytokines, and Akt2-
deficient macrophages were shown to produce M2 polarized
macrophages that express Arg1, Fizz1, and interleukin-10
(IL-10) (Chaudhuri, 2014). Another marker associated with
PDAC tumor-associated macrophages is PI3Kγ, a class I PI3K
lipid kinase isoform specifically expressed in myeloid cells.
Inhibition of PI3Kγ in PDAC-associatedmacrophages suppresses
the expression of M2 macrophage markers, while increasing
expression of M1 macrophage markers, thereby leading to the
suppression of CD8+ T-cell-mediated immunity. Additionally,
it has been shown that inhibition of PI3Kγ can suppress tumor
growth, invasion, metastasis, and desmoplasia in pancreatic

cancer (Figure 2; Kaneda et al., 2016a). In another study,
therapeutic targeting of PI3Kγ along with checkpoint inhibitor
treatment resulted in tumor suppression and increased survival
(Kaneda et al., 2016b). Macrophages also interact with pancreatic
stellate cells to regulate fibrosis. Lipopolysaccharide-activated
macrophages regulate stellate cell activity through the signaling
of transforming growth factor beta (TGF-β) to induce secretion
of Th2 cytokines, which in turn polarizes macrophages to the
M2 subtype (Schmid-Kotsas et al., 1999; Xue et al., 2015).
Moreover, the crosstalk between M1 macrophages and stellate
cells, through cytokine signaling, regulates the suppression of
pancreatic tumors (Shi C. et al., 2014).

Neutrophils
Neutrophils are primary cells recruited to the site of
inflammation caused by bacterial infections. These cells
migrate to the inflammation sites by sensing chemotactic signals,
where the neutrophils release cytokines, chemokines, and
proteinases that further recruit macrophages and dendritic cells
(Kolaczkowska and Kubes, 2013). Pancreatic cancer cells attract
neutrophils into the vicinity of tumor cells and the surrounding
stromal compartment (Reid et al., 2011; Chao et al., 2016). The
neutrophil influx in tumors correlates with tumor growth and
poor prognosis in PDAC patients (Reid et al., 2011; Ino et al.,
2013). Moreover, tumor-associated neutrophils promote cancer
progression by reactive oxygen species-mediated DNA damage
and modulate migration of tumor and other immune cells by
secretion of various pro-inflammatory cytokines and chemokines
(Scapini et al., 2000; Mangerich et al., 2012). The PI3K signaling
pathway in neutrophils is known to regulate survival, growth,
adhesion, phagocytosis, and chemotaxis (Figure 2; Engelman
et al., 2006; Pinho et al., 2007). However, the exact mechanism
and significance of PI3K signaling with respect to neutrophils in
PDAC remains elusive.

Mast Cells
Mast cells primarily associated with an inflammatory allergic
reaction, are also found in the pancreatic cancer tumor
microenvironment (Ma et al., 2013). Comparison of human
pancreatic cancer samples with the normal pancreas showed
an elevated number of mast cells, which were associated with
reduced patient survival (Strouch et al., 2010). In a study
conducted on spontaneous PDAC K-Ras (G12V) mice, the
deficiency of mast cells was shown to suppress pancreatic tumor
cell growth (Chang et al., 2011). Importantly, the PI3K pathway
is critical in regulating growth, differentiation, chemotaxis,
degranulation, and cytokine production in mast cells (Figure 2;
Kim et al., 2008).

Natural Killer Cells
Natural killer (NK) cells are effector lymphocytic cells of the
innate immune system that are known to migrate early to
the sites of inflammation during infection. The role of NK
cells in cancer is recently being realized, in addition to their
classical role in host defense during viral infection (Cerwenka
and Lanier, 2016). The cytotoxic activity of NK cells is not
only regulated by the extent of receptors present on the cell

Frontiers in Physiology | www.frontiersin.org 8 April 2018 | Volume 9 | Article 335

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Murthy et al. PI3K Signaling in Pancreatic Cancer

surface, but also by sensing the availability of ligands in the
modified microenvironment (Long et al., 2013). NK cells can
elicit their effector function without being educated on the
epitopes present in the altered cells or undergoing any clonal
selection (Cerwenka and Lanier, 2016). Activating killer receptors
NKp30 and NKG2D are two important receptors present on
the NK cell surface that are primarily involved in tumor cell
recognition and subsequent killing (Peng et al., 2013). Cancer-
associated fibroblasts, macrophages, T cells, and other accessory
cells present in the tumor microenvironment are also known
to modulate expression of the NKG2D receptor and production
of interferon gamma (IFNγ) in NK cells (Vitale et al., 2014).
Additionally, inhibition of the PI3K signaling pathway in NK
cells impairs their function in immune surveillance by preventing
their degranulation activity (Jiang et al., 2000). The activity of
NK cells is reduced in pancreatic cancers, and the decreased
expression of NKG2D, NKp30, and NKp46 correlates with tumor
progression in pancreatic cancer patients (Figure 2; Peng et al.,
2013, 2014). Furthermore, expression of the receptors CD226 and
CD96 in NK cells is associated with cell dysfunction-mediated
immune escape and the progression of pancreatic cancer (Peng
et al., 2016). In contrast to the tumoricidal function of the
receptor NKG2D in NK cells, its expression in cancer cells
regulates proliferation and metastasis by activation of PI3K
signaling (Benitez et al., 2011; El-Gazzar et al., 2014). Moreover,
treatment of pancreatic cancer cells by valproic acid, a histone
deacetylase inhibitor, has been shown to promote NK cell-
mediated lysis of tumors by activation of PI3K/Akt signaling
pathway (Figure 2; Shi P. et al., 2014). Taken together, these
studies suggest that PI3K signaling pathway in NK cells is also
critical for regulating the pancreatic tumor biology.

PI3K Signaling in Adaptive Immune Cells
T Cells
Adaptive immune cells are responsible for a range of functions,
from long-term memory and pathogenic infections to complex
diseases like cancer (Grivennikov et al., 2010). Adaptive immune
responses are mostly suppressed in pancreatic cancer due to the
evolution of immune escape mechanisms, immunoediting, and
the development of mechanisms of immune resistance (Gajewski
et al., 2013). CD3+ T cells are the key adaptive immune cells
known to invade the stroma of tumor cells (Emmrich et al.,
1998). CD3+ T lymphocytes mainly consist of CD4+ helper T
cells, CD8+ cytotoxic T cells, and the regulatory T cells (Tregs).
Interestingly, increased migration of Tregs in tumors and blood
circulation is associated with a decrease in tumor progression
(Hiraoka et al., 2006). The infiltration of Tregs in pancreatic
tumors is mediated by binding of tumor-secreted chemokines to
receptors on the Treg cell surfaces (Tan et al., 2009). In addition
to Tregs, T helper cells play key roles in tumor cell growth or
inhibition. While the response of type 2 T helper cells (Th2) is
critical for imparting tolerance to tumors, the immune response
of CD4+ T-cell-mediated type 1 T helper (Th1) is known to
promote the death of pancreatic cancer cells (Tassi et al., 2008).
Notably, in pancreatic cancer patients, an increased level of
tumor-infiltrating CD4+ T cells is associated with improved
survival (Ino et al., 2013). However, pancreatic cancer cells inhibit

the proliferation and migration of CD4+ T cells (Fogar et al.,
2011). Similarly, targeting the plasticity in Th1/2 subtype switch
has shown promise as a candidate for cancer immunotherapy
(Tassi et al., 2009). On the other hand, CD8+T cells comprise
the most abundant population of T cells in pancreatic cancer,
and a reduction in this T cell population is observed during
the progression of pancreatic cancer (Ene-Obong et al., 2013;
Shibuya et al., 2014). Specifically, pancreatic cancer cells inhibit
the cytotoxic action of T cells by multiple mechanisms including
inhibition of perforin and granzyme secretion, lack of expression
of major histocompatibility complex (MHC) class I molecules,
and expression of the programmed death-ligand 1 (PD-L1) by
tumor cells that bind to the programmed cell death-1 (PD-1)
to suppress the function of CD8+T cells (Dong et al., 2002;
Ryschich et al., 2005; Thomas and Massague, 2005). Critical
for the development of T cells is the cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) receptor expressed on CD4+T and
CD8+ T cells. Activation of the CTLA-4 receptor is required for
suppression of the immune response by Treg cells, resulting in
a decrease in cytotoxic T cells. Blockage of CTLA-4 mounts an
effective immune response mediated by an increased cytotoxic
T cell population and a decreased Treg population to suppress
tumor progression (Johansson et al., 2016). Notably, the PI3K
pathway is critical for the development, proliferation, and
activation of T cells. For example, disruption of the PI3Kδ gene
by a D910A-inactivating point mutation in mice impaired T
and B cell receptor signaling, leading to a suppressed immune
response (Okkenhaug et al., 2002). Furthermore, PI3K inhibitor
treatment in a KPC mouse model of PDAC reduced disease
pathology and metastasis, and prolonged survival (Figure 2).
This immunoprotective effect in pancreatic lesions correlated
with a decrease in Treg cells concomitant with an increase in
CD44highCD8+ T lymphocyte population (Ali et al., 2014). PI3K-
mTOR pathway has also been implicated in regulating the release
of granzyme B by Treg cells. Deletion of PI3Kδ affected the
secretory perforin-granzyme pathway leading to degranulation of
cytotoxic T lymphocytes to impact tumor surveillance (Figure 2;
Putz et al., 2012). Thus, targeting pathways of the immune
response, with a particular focus on T cells, holds promise as a
potential treatment strategy.

B Cells
B cells are known to infiltrate tumor cells during PDAC
progression and support the growth of cancer cells by
suppressing CD8+ T cells and tumor-associated macrophages
(TAMs). Likewise, inhibition or genetic deletion of B cells leads
to the activation of CD8+ T cells that further inhibit tumor cell
growth (Roghanian et al., 2016). A study conducted in a mouse
model of PDAC showed that the stroma in PanIN lesions secretes
the chemokine ligand 13 (CXCL13), a chemokine that attracts
B cells to the tumor periphery. These recruited B cells promote
the proliferation of transformed epithelial cells via interleukin-
35 (IL-35)-mediated paracrine signaling (Pylayeva-Gupta et al.,
2016). Further, HIF-1α deletion in the KC mouse model resulted
in enhanced secretion of B cell chemoattractants that increased
the population of the B cell subclass B1b in early pancreatic
neoplasia. Notably, depletion of B cells has been shown to result
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in reduced progression of PanINs and tumorigenesis in the mice
(Lee et al., 2016). In a study on Bruton tyrosine kinase (BTK)
expressed in B cells and macrophages, this enzyme was shown
to play a critical role in suppressing PDAC growth. Specifically,
the B cell-macrophage crosstalk was demonstrated to reprogram
TAMs to Th2 type via the activation of BTK in a PI3Kγ-
dependent manner. Inhibition of either BTK or PI3Kγ was found
to reprogram macrophages to Th1 type leading to activation of
T cell-mediated immunity to control pancreatic cancer growth
(Figure 2; Gunderson et al., 2016). Thus, the interconnected
signaling pathways of B cell and TAMS are critical for regulating
tumor growth.

PI3K Signaling in Endothelial Cells
Endothelial cells present in the tumor microenvironment are
critical for regulating angiogenesis and maintaining vasculature
inside tumors. Remodeling of the local tumor vasculature is
critical for the exchange of nutrients and signaling molecules
between the hypoxic core and the peripheral regions (Folkman,
2007). Pancreatic tumor cells secrete high levels of VEGF that
in turn bind to VEGF receptors present on the endothelial cells
(Yamazaki et al., 2008). This interaction activates PI3K signaling
crucial for proliferation, survival, and maturation of endothelial
cells (Figure 2; Luo et al., 2001). Apart from VEGF receptor,
endothelial cells secrete various other receptors like TIE, PDGFR,
FGR, and ERBB receptor tyrosine kinases, whose activation
triggers PI3K signaling (Hofer and Schweighofer, 2007). Hence,
PI3K signaling acts as a key regulator of angiogenesis and
lymphatic vessel formation (Hamada et al., 2005).

TARGETING THE INOSITIDE SIGNALING
PATHWAY USING CHEMICAL INHIBITORS

Constitutively activated mutant K-Ras signals via the MAPK,
PI3K-Akt, NF-κB, WNT–β-catenin, Notch, and SMAD
pathways. The existence of complex cross-signaling and
feedback loops between these pathways remains one of the
major factors in determining the development of resistance to
therapeutic drug regimens. In addition to K-Ras-driven PI3K
activation, aberrant expression of the PTEN protein results in
constitutive activation of the PI3K and Akt signaling pathways
in pancreatic cancer. In light of such dysregulation of the PI3K
signaling cascade, intense research has been directed toward
the development of inhibitors that target this critical node.
Various classes of inhibitors have been developed that specifically
target PI3K, Akt, and mTOR signaling pathways (Figure 1).
Interestingly, many of these inhibitors are under clinical trials,
thereby paving a new path for improved therapeutic approaches
pertinent to the treatment of PDAC.

Targeting PI3K
Multiple generations of PI3K inhibitors have been developed,
many of which are under clinical trials (Table 2). Historically,
the poor pharmacokinetic properties of various Pan PI3K
inhibitors, such as Wortmannin and LY294002, has led to
the evolution of next-generation PI3K inhibitors that include
small molecule drugs, such as BKM120, GDC0941, GSK2126458,

and RNA interfering (RNAi) agent, ATU027 (Khan et al.,
2013). Despite the success of many of these drugs, one
of the major challenges that contribute to the suboptimal
response to monotherapies is the development of drug resistance.
Multiple mechanisms underlying such resistance phenotypes
have been reported which encompass activation of alternative
signaling pathways, mutations in the secondary target, and
amplification of downstream signaling moieties within the same
pathway (Zahreddine and Borden, 2013). Under such scenarios,
the identification of new targeted combination therapies is
indispensable for developing a superior response to therapies to
treat pancreatic cancer.

While LY294002 monotherapy has low efficacy against
tumors, the desired efficacy of this drug may be achieved by
combination with the NSAID sulindac or gemcitabine, which
improved the growth inhibitory effects of LY294002 by reducing
the apoptotic threshold in PDAC cells (Yip-Schneider et al.,
2003). A recent study has demonstrated that the suppression
of the PI3K/Akt /mTOR pathway results in a compensatory
activation of the MAPK/MEK pathway. The authors further
established a reduction in the viability of pancreatic cancer
cell lines by application of a dual-acting agent using the PI3K
inhibitor, ZSTK474, and the Raf/MEK inhibitor, RO5126766
(Van Dort et al., 2015). Interestingly, MEK inhibition by
AZD6244 alone remained cytostatic until it was combined with
the PI3K-inhibitor BKM120 or erlotinib, which delayed tumor
formation and improved overall survival compared with single-
agent therapy (Alagesan et al., 2015; NCT01222689). A phase I
study of BKM120 in combination with mFOLFOX6 in patients
with metastatic pancreatic cancer is ongoing (NCT01571024).
Gemcitabine has been the standard first-line treatment for
patients with advanced ormetastatic pancreatic cancer (VonHoff
et al., 2013). The therapeutic potential of gemcitabine can be
improved by evodiamine, which negatively regulates the NF-κB
signaling by targeting the PI3K/Akt pathway (Wei et al., 2012).
Thus, targeting PI3K pathways by a combination of agents may
be crucial for achieving the desired efficacy against tumors.

Targeting Akt
Akt signaling is pertinent to the activation of anti-apoptotic
pathways that support cancer cell survival. Akt inhibitors have
been classified as ATP-competitive, allosteric, and Akt-protein-
substrate-binding-site inhibitors. However, due to the extensive
similarity of the ATP binding pocket of the Akt kinases to
the AGC family of kinases, it has been particularly difficult
to develop ATP-competitive inhibitors that target Akt kinases
(Scheid and Woodgett, 2001). A recent report by Yap et al.
assessed the effect of MK-2206, an oral allosteric inhibitor of
all Akt isoforms, for anti-tumor activity in preclinical models.
Their study showed a reduction in tumor size and a decrease
in cancer antigen levels in a PDAC patient treated with 60mg
of the drug on alternate days (Yap et al., 2011). The drug has
further been demonstrated to function along with dinaciclib, a
cyclin-dependent kinase inhibitor, to abolish tumor growth in
pancreatic cancer models (Hu et al., 2015). In addition to small
molecule inhibitors, the emergence of antisense nucleotides that
target key signaling molecules is promising. RX-0201, an Akt
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TABLE 2 | Current ongoing clinical trials targeting the phosphoinositide signaling cascade for the treatment of pancreatic cancer.

Target molecule Drug Clinicaltrials.gov identifier Study phase Intervention

PI3K Metformin NCT01210911 Phase II Metformin+Gemcitabine+Erlotinib

PI3K BKM120 NCT01155453 Phase I BKM120+ GSK1120212

PI3K BKM120 NCT01363232 Phase I BKM120 + MEK162

PI3K BKM120 NCT01571024 Phase I BKM120 + mFOLFOX6

Akt MK2206 NCT01783171 Phase I MK-2206+ Dinaciclib

Akt MK2206 NCT01658943 Phase II MK2206+ Fluorouracil+ Oxaliplatin+ Selumetinib

Akt RX-0201 NCT01028495 Phase II RX-0201+Gemcitabine

mTOR Everolimus NCT01077986 Phase I, II Capecitabine + Cetuximab + Everolimus

mTOR Temsirolimus NCT00075647 Phase II Temsirolimus

mTOR Everolimus NCT02294006 Everolimus+ Octreotide LAR+ Metformin

PI3K+mTOR BEZ235 NCT01337765 Phase I BEZ235 + MEK162

CDK4/6 Palbociclib NCT03065062 Phase I Palbociclib+Gedatolisib

EGFR Nimotuzumab NCT00561990, NCT02395016 Phase II/III Gemcitabine ± nimotuzumab

Data taken from https://clinicaltrials.gov/.

antisense oligonucleotide, has been tested in combination with
gemcitabine in metastatic pancreatic cancer and is in phase II
trials (NCT01028495).

Targeting mTOR
The mTOR kinase, one of the key downstream effectors of
K-Ras and the PI3K pathway, coordinates distal metabolic
features, such as the presence of growth factors, to cell survival,
growth, and proliferation by regulating various transcriptional
and translational regulatory programs (Utomo et al., 2014).
Rapamycin (sirolimus), one of the most long-standing inhibitors
of mTOR, has shown broad anticancer activity (Douros and
Suffness, 1981; Garber, 2001; Utomo et al., 2014). In the
recent years, multiple rapamycin analogs have been developed,
including everolimus, temsirolimus, and deforolimus (Hudes
et al., 2007; Motzer et al., 2008). The oral mTOR-inhibitor
everolimus is in phase 2 trials to treat advanced pancreatic
neuroendocrine tumors and has shown antitumor activity by
prolonging progression-free survival in patients (Yao et al.,
2011).Meanwhile, researchers have developed inhibitors to target
EGFR, which is frequently overexpressed in PDAC patients. The
EGFR-inhibitor erlotinib tested in combination with rapamycin
significantly disrupted the PI3K-Akt-mTOR signaling cascade
producing a synergistic effect on cell growth inhibition (Buck
et al., 2006).

Taken together, previous in vitro screens reveal that PDAC
cell lines are relatively resistant to single-agent therapies and
thus, targeting multiple nodes of the PI3K-Akt-mTOR signaling
cascade using combination drug therapies might reinforce the
response to individual drug therapies. The PI3K pathway status
may serve as genetic determinants of therapeutic response in
clinical trials.

CONCLUSION AND FUTURE
PERSPECTIVE

Aberrant signaling pathways are an important hallmark of
cancer and essential for development and progression of tumors.

Signaling networks are activated in cancer cells upon sensing
the molecular cues from outside the cells to regulate cellular
functions (Jones et al., 2008). Cancer cells and surrounding cells
present in the tumor microenvironment continuously interact
by modifying the signaling cues during the different stages of
cancer evolution. These dynamic cues are perceived by cellular
signaling networks to impart adaptation to the tumor cells during
the disease progression (Liu et al., 2017). K-Ras and PI3K are
key regulated nodes in the complex, inter-connected signaling
networks altered during pancreatic cancer (Jones et al., 2008).
K-Ras is the key driver mutation in pancreatic adenocarcinomas
and is required for initiation, progression, and maintenance of
the disease (Bryant et al., 2014; Cancer Genome Atlas Research
Network Electronic Address and Cancer Genome Atlas Research,
2017). PI3K mutations, although rarely found in pancreatic
cancer compared to other forms of cancer, can contribute to
tumorigenesis in a small subset of pancreatic cancer patients
(Schonleben et al., 2006; Payne et al., 2015). Targeting PI3K
in this small cohort of patients can be of great significance
in this lethal malignancy. Because PI3K can be regulated by a
myriad of growth factor receptors and pathways including K-

Ras, it dispenses its effector functions by differentially regulating
a multitude of downstream signaling cascades. PI3K signaling is

directly activated by mutations in the K-Ras gene in pancreatic
cancer (Eser et al., 2013). Despite the lack of significant genomic
alterations in the PI3K pathway, it is still considered a key node
in the signaling network considering that it is interconnected
with other signaling pathways at multiple levels. Co-targeting
the PI3K pathway with multiple other signaling pathways
and known drugs has seen limited success, but it remains
a viable strategy given that multiple PI3K inhibitors are in
human clinical trials (Bowles and Jimeno, 2011). It would be
beneficial for future research to be targeted to understand PI3K-
inhibitor unresponsiveness and resistance, and eventually design
novel combinatorial drug strategies using resistance-pathway
inhibitors and other targets.

A second critical aspect of pancreatic cancer research is
the interaction of tumor cells with the surrounding cells
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present in the tumor microenvironment. Recent studies not
only highlight the importance of PI3K signaling in development
and maintenance of immune and stromal cell functions
but also in modifying signaling cues between tumor and
accessory cells during the progression of cancer (Koyasu,
2003; Polo et al., 2015; Gunderson et al., 2016). It is
now well-established that both tumor cells and the tumor
microenvironment continuously interact to modify the outcome
during tumor development and changing the properties of
one component modifies the other (Whatcott et al., 2015).
While the genome of a cancer cell continues to evolve, thus
making it hard to target, the stromal or immune cells, on the
other hand, harbor a robust and stable genome. Therefore,
targeting signaling pathways in these accessory cells can yield
notable results in cancer prevention and disease control.
PI3K has been examined in the tumor microenvironment
to a certain extent; a comprehensive understanding of all
the signaling pathways that include PI3K will need to be
elucidated in the future. Hence, understanding the oncogenic
mechanisms during tumor-stromal and tumor-immune crosstalk
will be of paramount importance to dissect the pathways

critical for pancreatic cancer pathogenesis. This will aid in

designing multi-drug, multi-target combination therapies and
will prove critical in systematically screening patient biopsies
for both driver mutations and other downstream-activated
signaling pathways, like PI3K, in order to design personalized
therapies.
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