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Efficient cardiac repair and ultimate regeneration still represents one of the main

challenges of modern medicine. Indeed, cardiovascular disease can derive from

independent conditions upsetting heart structure and performance: myocardial ischemia

and infarction (MI), pharmacological cardiotoxicity, and congenital heart defects, just to

name a few. All these disorders have profound consequences on cardiac tissue, inducing

the onset of heart failure over time. Since the cure is currently represented by heart

transplantation, which is extremely difficult due to the shortage of donors, much effort

is being dedicated to developing innovative therapeutic strategies based on stem cell

exploitation. Among the broad scenario of stem/progenitor cell subpopulations, fetal

and perinatal sources, namely amniotic fluid and term placenta, have gained interest

due to their peculiar regenerative capacity, high self-renewal capability, and ease of

collection from clinical waste material. In this review, we will provide the state-of-the-art

on fetal perinatal stem cells for cardiac repair and regeneration. We will discuss different

pathological conditions and the main therapeutic strategies proposed, including cell

transplantation, putative paracrine therapy, reprogramming, and tissue engineering

approaches.

Keywords: amniotic fluid, placenta, umbilical cord, cardiac repair, cardiomyocyte, immunomodulation,

cardioprotection, paracrine effect

HEALING A BROKEN HEART: A MAIN CHALLENGE IN
REGENERATIVE MEDICINE

Cardiovascular disease and heart failure are themain killers in theWestern countries representing a
significant economic burden for the national health systems, asmore than 1million hospitalizations
are annually reported in the EU alone. Indeed, for the majority of people suffering from heart
failure, the mortality rates remains high, with 1 out of 4 patients dying within 1 year from
diagnosis (Jameel and Zhang, 2009). Despite significant efforts, current therapies for cardiovascular
disease have not yet fulfilled all expectations, being intrinsically non-curative and with limited
improvements in reducing mortality or delaying the onset of heart failure. Currently, the ultimate
therapy is still represented by organ transplantation, mainly confounded by limited supply of
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donor organs (Levy et al., 2002). Several different conditions
can affect the cardiac tissue, from ischemic disease to drug-
derived cardiotoxicity up to congenital heart defects, overall
resulting in pathological disruption of heart function with the
main challenge to overcome mostly represented by primary loss
of cardiomyocytes.

Nonetheless, a major breakthrough for cardiac regenerative
medicine has been provided by mounting evidence suggesting
that the heart retains an endogenous regeneration programme,
although very limited, based on cardiac progenitor cell (CPC)
activation and cardiomyocyte proliferation. Unfortunately, while
broadly active in the neonate, these mechanisms are quiescent
and malfunctioning in the adult heart (Porrello et al., 2011;
Jesty et al., 2012). Therefore, a working scheme to fully
unlock and rejuvenate this potential will open new frontiers in
cardiac medicine. Likewise, cardiomyocyte replacement and new
vasculature formation by pluripotent-derived cell therapy, tissues
engineering, and local cell reprogramming have also been widely
scrutinized to identify an innovative therapeutic approach.

In particular, the optimal regenerative strategy should
consider the specific patient clinical need and the pathological
setting to operate within, in order to induce efficient tissue
regeneration.

Myocardial infarction (MI) is the most common cause
of cardiac injury in Western countries. Modern clinical
interventions have substantially decreased acute mortality
of MI, but have only partially diminished the number of
patients who subsequently suffer from impairment of cardiac
function, up to overt heart failure. The milieu of the injured
heart is a battlefield for regeneration. In particular, after
ischemic injury vascular supply is limited. Matrix stiffening that
occurs after injury can further suppress the already limited
potential for cardiomyocyte proliferation (Tzahor and Poss,
2017). Hence, prompt intervention is required to: (i) provide
cardioprotection, modulate the inflammatory response, and
improve wound healing, while (ii) activating resident CPC
to differentiate and/or release trophic factors to support the
microenvironment, and (iii) sustain proliferation of surviving
cardiomyocytes, overall improving cardiac function. In such
scenario, timely intervention is required and enormous interest
has recently been driven toward stem/stromal cell biology for
the regeneration of damaged tissues. The current endeavor
of cell-based therapy in cardiac regenerative medicine is to
stimulate endogenous restoration mechanisms; hence, growing
interest has been directed toward speculative paracrine therapy
based on exploiting the stem cell secretome, i.e., the totality
of soluble paracrine factors and microRNA (miRNA)-enriched
extracellular vesicles secreted by stem cells with beneficial
effects on the injured myocardial tissue (Rani et al., 2015).
Indeed, the MI patient presented at the hospital emergency
room could be treated with the optimal drug formulation
of the ideal pro-regenerative stem cell secretome to be
delivered by intracoronary infusion during standard angioplasty
procedure.

Cardioprotection from chemotherapy-derived cardiotoxicity
represents another relevant clinical need that may be addressed
by exploiting stem cell modulatory paracrine potential.

Cardiotoxicity-induced cardiomyopathy leading to subclinical
ventricular dysfunction or symptomatic heart failure can
represent a critical complication as a side effect of oncological
therapy. Notably, oncological treatments can affect both
cardiomyocytes and endogenous CPC, leading to their
senescence and/or apoptosis (Huang et al., 2010; Su et al.,
2015). In this scenario, prompt modulation of the cardiac
microenvironment could represent a crucial step to counteract
chemotherapy-derived unspecific and noxious side effects
and avoid long-term cardiovascular complications in cancer
survivors (Hahn et al., 2014; Giza et al., 2017; Naaktgeboren
et al., 2017). Indeed, a suitable preventive and complementary
treatment during oncological therapy could be represented by the
administration of stem cell-based secretome drug formulation
via catheter-guided coronary infusion prior to chemotherapy, in
order to ensure cardiac-specific delivery without jeopardizing
oncological therapy.

Last, but not least, myocardial renewal for congenital heart
defects is another major challenge in cardiac regenerative
medicine. Congenital heart defects are common birth deficiencies
often resulting in pediatric heart failure. They range from life-
threatening conditions (i.e., hypo-plastic left heart syndrome) to
benign defects (i.e., septal defects). CHD represent a complicated
scenario with the explicit demand of reconstituting tissue that
might have gone missing during development or have not
properly formed (Woodward, 2011; Sun et al., 2015). Standard
therapy is elective surgery within the first weeks of life to provide
structural reconstruction using prosthetic implants (Ohye et al.,
2016) that do not grow with the patient, thus requiring additional
surgeries during life. Therefore, a suitable therapeutic approach
should provide new functional cardiovascular and cardiac cells
via stem cell-based therapy combined with tissue engineering
strategies. Indeed, cardiovascular cells obtained by pluripotent
stem cells could be loaded on biocompatible prosthetic material
implanted during surgical interventions and sustain post-natal
cardiac development.

In this review we will discuss the promising therapeutic
role of non-embryonic fetal stem cells, from the amniotic fluid
and placenta-derived progenitors in addressing relevant critical
clinical needs for future cardiac regenerative medicine.

FETAL PROGENITORS: AMNIOTIC FLUID
STEM CELLS FOR CARDIAC REPAIR AND
REGENERATION

The human amniotic fluid contains different cell subpopulations
with heterogenous phenotypes (epithelioid, “amniotic” and
fibroblastic type) deriving from the developing fetus, including
mesenchymal broadly multipotent progenitors endowed with
high self-renewal and clonogenic potential, as illustrated by
several studies (In ‘t Anker et al., 2003; Prusa et al., 2003; De
Coppi et al., 2007; Pozzobon et al., 2013). Immature amniotic
fluid-derived stem cells can be easily isolated from leftover back-
up sample for prenatal screening via amniocentesis or amnio-
reduction or at term, from discarded amniotic fluid obtained as
clinical waste during scheduled cesarean delivery (Schiavo et al.,

Frontiers in Physiology | www.frontiersin.org 2 April 2018 | Volume 9 | Article 385

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Bollini et al. Perinatal Stem Cells for Heart Regeneration

2015; Loukogeorgakis and De Coppi, 2017). Human amniotic
fluid stem cells can be mainly divided into two categories:
mesenchymal progenitors isolated by their intrinsic capacity
to adhere to the culture dish, namely amniotic fluid-derived
mesenchymal stem cells (AF-MSC) and a further subpopulation
which can be specifically identified by the expression of the stem
marker c-KIT via FACS- or immuno-magnetic sorting (hAFSC,
Ditadi et al., 2009; Pozzobon et al., 2013); moreover, amniotic
fluid-derived stem cells have shown to possess osteogenic,
myogenic, and adipogenic potentials similar to mesenchymal
stem cells (De Coppi et al., 2007).

In recent years several independent studies have scrutinized
the cardiovascular and cardiomyogenic potential of stem cells
from amniotic fluid as an appealing tool for therapeutic cellular
cardiomyoplasty for heart regeneration following ischemic injury
(Chiavegato et al., 2007; Iop et al., 2008; Walther et al., 2009;
Yeh et al., 2010; Bollini et al., 2011a). Being immature fetal
progenitors, AF-MSC and hAFSC were initially considered more
prone to commit to specific cardiac and cardiovascular lineages,
upon suitable stimulation. Nevertheless, while amniotic fluid
stem cells can easily adopt a smooth muscle and/or endothelial

fate both in vitro and in vivo (Sartore et al., 2005; Iop et al.,
2008; Bollini et al., 2011a; Ghionzoli et al., 2013; Schiavo et al.,
2015; Tancharoen et al., 2017), a general consensus on their
cardiomyogenic potential has not been reached yet. AF-MSC
and hAFSC have shown to acquire cardiomyocyte-like phenotype
following specific in vitro treatment (i.e., via direct co-culture

with rodent neonatal cardiomyocytes or chemical induction
by 5-aza-2′-deoxycytidine, with or without the addition of
transforming growth factor beta-1, or by a mixture of hyaluronic,

butyric and retinoic acids, up to modulation of Wnt signaling by

small molecules), with evidence including immature expression

of sarcomeric proteins, like cardiac troponins, along with up-
regulation of early cardiac transcription factors, such as Nkx-2.5,

Islet-1 and Gata-4 (Chiavegato et al., 2007; Bollini et al., 2011a;
Guan et al., 2011; Maioli et al., 2013; Gao et al., 2014; Connell
et al., 2015; Jiang and Zhang, 2017). However, in most cases,
no organized sarcomeres were detected in the differentiated cells
(Connell et al., 2015), with limited spontaneous contraction or

functional maturation of their phenotype (Bollini et al., 2011a).
Likewise, when transplanted into preclinical pig and rodent
models of myocardial infarction, AF-MSC and AFSCmaintained
their disposition toward the vascular lineages via angiogenic

differentiation, but almost completely failed to trans-differentiate

into functionally mature cardiomyocytes, providing questionable
results (Sartore et al., 2005; Chiavegato et al., 2007; Bollini et al.,
2011a; Lee et al., 2011). Therefore, despite the initial enthusiasm
and great expectations, it is now quite clear that amniotic fluid
stem cells may require extensive ex-vivo reprogramming to be

suitable for therapeutic cardiomyoplasty.
Yet, despite the low grade of in vivo engraftment and

differentiation of amniotic fluid stem cells transplanted into

preclinical animal models of myocardial infarction, different

studies reported improvement of cardiac function with

higher vascular density, increased cardiomyocyte survival and

attenuation of ventricular remodeling (Bollini et al., 2011b; Lee

et al., 2011). These data clearly suggest that stem cell-secreted
molecules can influence in situ cell-cell interactions, establishing
a regenerative milieu in the injured microenvironment by
paracrine effects. Indeed, there is strong evidence that crucial
cellular functions such as survival, proliferation, differentiation,
communication, and migration can be specifically orchestrated
by the secretome of stem cells injected into the injured cardiac
tissue (Gnecchi et al., 2006, 2008; Mirotsou et al., 2011). First
evidence of hAFSC paracrine cardio-protective potential came
from a study in 2011 from Bollini et al. (2011b), showing that
systemic injection of cells vs. their conditioned medium (hAFSC-
CM) into an acute rat model of myocardial ischemia/reperfusion
injury equally improved cell survival and significantly decreased
infarct size by about 14% in 2 h (Bollini et al., 2011b). As
well, independent studies confirmed that hAFSC can evoke a
strong angiogenic response in murine recipients and promote
neo-arteriogenesis in preclinical rodent models of hind-limb
ischemia and ischemic fascio-cutaneous flap, due to the
remarkable paracrine potential of their secretome supplemented
by MCP-1, IL-8, SDF-1, and VEGF (Mirabella et al., 2011, 2012).

More recently, a preconditioning cell culture protocol has
been optimized based on a short burst of hypoxia under serum-
free condition to enrich the hAFSC secretome with cardio-active
soluble factors. The paracrine cardio-protective potential of the
hypoxic hAFSC-CM has been tested in vitro in a doxorubicin-
derived cardiotoxicity model, showing to effectively antagonize
premature senescence and apoptosis of murine neonatal
cardiomyocytes and human cardiac progenitor cells. Such
paracrine modulation was demonstrated to act on responder
cells via prompt activation of the PI3K/Akt signaling cascade,
resulting in decreased DNA damage, nuclear translocation of
NF-kB, and upregulation of the NF-kB controlled genes, Il6
and Cxcl1, which support cardiomyocyte survival. The hypoxic
hAFSC-CM also showed to instruct cardiomyocytes to up-
regulate the efflux transporter, Abcb1b, thus triggering active
extrusion of the drug from cardiac cells (Lazzarini et al., 2016).

The first characterization of extracellular vesicles (EV)
released by hAFSC, namely hAFSC-EV, has also been recently
reported (Balbi et al., 2017; Mellows et al., 2017). EV, including
microvesicles and exosomes, are membrane-enclosed micro- and
nanovesicles constitutively shed by every cell; in particular stem
cell-derived EV have been proposed to act as biological carrier
of paracrine regenerative soluble factors, including microRNA
and mRNA, into target cells (Kishore and Khan, 2016; Marote
et al., 2016; Shafei et al., 2017). Thus, the stem cell-derived EV
being safer, immunologically inert and easier to manipulate than
cell-based products (O’Loughlin et al., 2012; Lai et al., 2013),
they are currently under detailed investigation as innovative
promising approach for future regenerative cell-free therapy.
Notably, hAFSC-EV demonstrated to be key mediators of
regenerative paracrine effects, including stimulation of cell
proliferation and survival, with remarkable modulatory potential
in decreasing skeletal muscle inflammation in vivo. In particular,
hypoxic hAFSC-EV mediated significant regenerative effects
on responding cells by targeting post-transcriptional regulating
mechanism by horizontal reprogramming via direct miRNA
transfer, including miR-210 and miR-199a-3p, which have
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been previously reported to provide significant cardioprotection
(Barile et al., 2014), sustain angiogenesis (Alaiti et al., 2012;
Zeng et al., 2014) and the reactivation of cardiomyocyte
proliferation (Eulalio et al., 2012). Therefore, human amniotic
fluid stem cells represent a valuable candidate for future
advanced medicinal/pharmacological product to treat both
chemotherapy-related cardiotoxicity and myocardial infarction,
due to their powerful paracrine potential. Yet, since optimal
cardiac regeneration should be achieved by obtaining myocardial
reconstitution on top of enhancing cardiac repair mechanisms,
further investigation is required to assess whether the hAFSC
secretome can also boost endogenous CPC reactivation and
trigger resident cardiomyocyte proliferation following injury.

Another significantly relevant scenario is also represented by
hAFSC as a potential therapeutic component in cardiac tissue
engineering applications for congenital defect repairs. With most
congenital heart defects being diagnosed by prenatal screening
in the second trimester (Yagel et al., 1997), amniotic fluid
may represent a convenient, exploitable, and autologous source
easily available for collection during pregnancy. Previous studies
from Hoerstrup and co-authors have suggested employing either
freshly isolated or cryopreserved human amniotic fluid stem cells
selected for CD133 expression to engineer heart valve leaflet
scaffolds based on biodegradable polymers, with encouraging
results in terms of endothelial tissue formation and functional
behavior (Schmidt et al., 2007, 2008); likewise, ovine amniotic
fluid stem cells have been used for in vitro fabrication of tri-leaflet
heart valves to be implanted prenatally and orthotopically sheep
fetuses, showing valvular integrity and absence of thrombus
formation a week after transplantation (Weber et al., 2012).
More recently, tissue engineered vascular grafts have been
obtained from tubular vessel-like shaped biocompatible scaffolds
seeded with ovine amniotic fluid progenitors under dynamic
conditions in a flow bioreactor system, demonstrating the
technical feasibility of such approach (Weber et al., 2016).

Since the major scientific breakthrough of induced
pluripotent stem cells (iPS) technology in 2006 (Takahashi
and Yamanaka, 2006), growing interest has been dedicated
toward exploiting direct reprogramming of somatic cells into
pluripotent progenitors as functional source to derive contractile
autologous cardiomyocytes (Lian et al., 2012). This has been
recently endorsed as a working strategy to overcome the
incomplete and poor yield of somatic stem cell cardiomyogenic
trans-differentiation, which may jeopardize myocardial renewal
and reconstitution. Hence, the quest is now on defining the most
suitable cell to efficiently induce iPS from and since amniotic
fluid stem cells are immature fetal progenitors endowed with
some degree of instrinsic pluripotency and active expression
of embryonic genes including OCT4, NANOG, and SOX2
(Loukogeorgakis and De Coppi, 2017), they represent an ideal
candidate. Recent studies have reported that murine and human
AFSC can be reprogrammed into iPS more easily than adult
stem cells by applying either transgene-free approaches, like
chemical defined conditions via stimulation with the histone
deacetylase inhibitor valproic acid (Moschidou et al., 1953),
as well as non-integrating methods by episomal plasmid,
transposon system, sendai virus or mRNA delivery by lipofection

(Jiang et al., 2016; Slamecka et al., 2016; Bertin et al., 2017;
Velasquez-Mao et al., 2017); notably the obtained AFSC-iPS
have been proven capable of functional cardiac differentiation,
thus providing important impact for future cardiac regenerative
therapy and specific relevance for the treatment of neonatal
cardiac congenital disease (Jiang et al., 2016; Velasquez-Mao
et al., 2017). Indeed, hAFSC can be effortlessly harvested during
prenatal diagnosis, treated by gene therapy and iPS technology
to derived healthy myocardial and cardiovascular cells to be
then processed by tissue engineering approaches so to provide
cardiac grafts developed in parallel with gestation and promptly
implanted in utero or at birth.

Notably, while II trimester fetal hAFSC have been widely
investigated, little is known about the regenerative capacity of
III trimester perinatal hAFSC obtained at term from discarded
amniotic fluid samples from eligible cesarean delivery. Indeed, III
trimester amniotic fluid might represent a more abundant source
of hAFSC. While recent work has showed that III trimester
hAFSC are endowed with significant pro-angiogeneic action
(Schiavo et al., 2015), a detailed, comprehensive differential
characterization of their cardiac and cardiovascular potential has
not yet been provided.

PERINATAL PROGENITORS:
PLACENTA-DERIVED STEM CELLS FOR
CARDIAC REPAIR

The Human Placenta
Upon attachment and invasion into the uterine wall, the
embryonic trophoblast concomitant with the embryoblast
start differentiating, and together with maternal endometrial
transition forming the placental tissues. These tissues establish
implantation, support the fetus and maintain pregnancy by
orchestrating the maternal adaption. At full term, the placenta
is a large discoid organ, 15–20 cm in diameter and 2–3 cm
in thickness, weighing approximately 500–600 g. At this time,
the placenta comprises tissues of maternal and fetal origin
(Malina, 1993). At the maternal side, the basal plate, a thin
layer of maternal decidua basalis is covering the cotyledons
that are interspaced by grooves forming the decidua septa. The
maternal plate is closely intertwined with the fetal, the chorionic
plate that also comprises the vascular system of arteries and
veins that feed the umbilical cord (Sadler et al., 2012). The
innermost of these fetal membranes is the amnion, enclosing the
amniotic fluid. Main functions of the placenta are the selective
exchange of metabolic and gaseous products between maternal
and fetal bloodstreams and its endocrine activity secreting
more than 100 peptides and steroid hormones (Burton and
Fowden, 2015). The placenta is further unique in its immuno-
regulatory functions allowing maternal tolerance and support of
the growing embryo/fetus throughout pregnancy (Mori et al.,
2016; Vinketova et al., 2016).

This highly active organ has also been recognized as rich
source of human progenitor cells, extracellular matrix and
bioactive compounds. Human placenta is usually discarded
after birth, and hence ethically uncontroversial, it is large in
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size yielding high amounts of easily accessible human tissue
compounds. With the beginning of the twenty first century,
researchers started to realize that cells of placental tissues show
distinct stem cell qualities, such as expression of markers of
pluripotency (Miki et al., 2007) and the potential to differentiate
into lineages of all three germ layers (Kakishita et al., 2003;
Takashima et al., 2004; Miki et al., 2005; Portmann-Lanz et al.,
2006), as well as paracrine properties such as anti-inflammatory,
antibacterial and anti-fibrotic activities, which recommend these
cells for regenerative medicine and wound healing applications
(Cargnoni et al., 2009, 2014; Lopez-Espinosa et al., 2009; Hong
et al., 2010; De et al., 2011; Choi et al., 2013; Ricci et al., 2013;
SantAnna et al., 2016).

Cells Isolated From Different Placental
Tissues
Derivation and cultivation of several cell types with reported
stem/progenitor properties from human term placenta has been
described (Bailo et al., 2004; Miki et al., 2005; Soncini et al.,
2007). Cell populations can be derived from specific placental
tissues and the nomenclature used is based on the consensus
from the First International Workshop on Placenta-Derived Stem
Cells (Parolini et al., 2008): amnion to obtain human amniotic
epithelial cells (hAEC) and amniotic mesenchymal stromal
cells (hAMSC), and chorionic mesoderm to obtain chorionic
mesenchymal stromal cells (hCMSC), chorionic villi to obtain
MSC and endothelial progenitor cells (Zhang et al., 2006; Rapp
et al., 2012) or placental cotyledons (Sölder et al., 2012), but also
maternal cells from the decidua, to obtain decidual stromal cells
(Huang et al., 2009). In addition, MSC can be obtained from
umbilical cord (hUCMSC, including Wharton’s Jelly) (Troyer
and Weiss, 2008; La Rocca et al., 2009), from the chorionic
plate/trophoblast (hCpMSC), and from placenta tissue in toto
(i.e., no specific compartment selected; PDMSC). Herein other
placental MSC will be discussed as well, such Placenta-derived
Adherent cells (PDA-001, Celgene Therapeutics), and PLacental
eXpanded (PLX) mesenchymal-like adherent stromal cells (PLX-
PAD, Pluristem Therapeutics Inc.). Noteworthy, in a substantial
number of studies the purity or even identity of fetal or maternal
origin of cells isolated from the placenta chorionic plate and
decidua has not been investigated (Heazlewood et al., 2014).

General Features of Placental Cells
Phenotype
Several studies demonstrate that the adherent cellular fraction
derived from placenta express cell surface markers similar to
bone marrow-derived mesenchymal stem/stromal cells such
CD13, CD29, CD44, CD73, CD90, CD105, CD166, and MHC I,
and are mostly negative for CD14, CD34, CD45, and MHC II at
term (In ‘t Anker et al., 2003; Portmann-Lanz et al., 2006; Parolini
et al., 2008; Magatti et al., 2015). A sub-fraction of these cells have
further been shown to express heterogeneous degrees of markers
previously identified in pluripotent stem cells including SSEA-
4, Tra-160, Tra-181, octamer-binding protein 4 (Oct-4), Nanog
or Sox-2 (Miki and Strom, 2006; Portmann-Lanz et al., 2006;
Alviano et al., 2007; Kim et al., 2007; Miki et al., 2007), the level

of which however depends on factors such as the gestational age
of the placenta (Izumi et al., 2009; Barboni et al., 2014).

Differentiation Potential
It has been suggested that placenta-derived cells can be classified
as an intermediate state between pluripotent stem cells and
multipotent adult stem cells (reviewed by Kang et al., 2012).
However, in contrast to embryonic stem cells, placental cells such
as hAEC do not express substantial levels of telomerase, are not
tumorigenic, and do not become aneuploid (Miki et al., 2005),
thus being considered a promising source of stem cells. Indeed,
several research groups have focused on the human placenta
progenitor differentiation potential. Tamagawa et al. were the
first to demonstrate pluripotent characteristics of cells from
human amnion (Tamagawa et al., 2004). hAEC were shown to
differentiate into all three germ layers, including hepatic, neural
and pancreatic lineages (Miki et al., 2005; Miki and Strom, 2006).
Naïve, undifferentiated cells of both amnion and chorion showed
to express markers of glial and neuronal progenitor cells in vitro
(Sakuragawa et al., 1996). Furthermore, cultured hAEC were
found to produce acetylcholine, acetyltransferase and dopamine
(Sakuragawa et al., 1997; Kakishita et al., 2000). Further, neuronal
markers could be induced in vitro by exposure to retinoic acid
in hAEC, hAMSC and hCMSC (Portmann-Lanz et al., 2006).
Knezevic showed that ectopic in vitro transplantation of rat
amnion under the kidney capsule resulted in differentiation
into stratified squamous epithelium, a morphologically similar
structure to skin, and derivatives, such as hair follicles and
sebaceous glands (Knezevic, 1996). Mesodermal differential
potential of hAMSC and hCMSC has also been demonstrated
for both adipogenic and osteogenic lineages in vitro (In ‘t
Anker et al., 2003). Other independent studies also reported the
acquisition of chondrogenic, myogenic and cardiomyogenic fates
(Wei et al., 2003; Miki et al., 2005; Portmann-Lanz et al., 2006;
Ilancheran et al., 2007).

A capacity to commit to a functional phenotype has also
been suggested in vivo. For example, hAEC transplanted into
SCID/beige mice liver have been shown to integrate into the
hepatic plate and adopt a hepatic phenotype, including secretion
of albumin or α-1 antitrypsin, as well as metabolic features
of functional hepatocytes (Sakuragawa et al., 2000; Marongiu
et al., 2011). Differentiation of hAEC into lung epithelial cells
was suggested in a bleomycin-induced lung injury model in
immunodeficient mice, along with a distinct anti-fibrotic and
anti-inflammatory effect was demonstrated (Moodley et al.,
2010). Even pancreatic differentiation of hAEC was suggested
in vivo, when transplantation of hAEC into the spleen of
immunodeficient mice in a diabetic model restored normalized
blood glucose levels in these animals; although also hAMSC
were suggested to differentiate into the pancreatic lineage (Wei
et al., 2003), the insulin production of the alleged hAMSC might
actually be originating from a certain percentage of hAEC present
in the culture (reviewed by Miki et al., 2005).

Immunomodulation
Together with the differentiation capabilities, different
findings have demonstrated the reduced immunogenicity
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and multifaceted immunomodulatory capacity of placenta-
derived cells. Within placenta tissues, hAMSC and their
conditioned medium (hAMSC-CM) have been shown to
reduce in vitro T cell proliferation induced by alloantigens,
via T-cell receptor or mitogens (Magatti et al., 2008; Rossi
et al., 2012). hAMSC and hAMSC-CM significantly reduce the
expression of markers associated to Th1 and Th17 populations,
and significantly induce the regulatory T cells compartment
(Pianta et al., 2015, 2016). Amniotic cells are able to block the
differentiation of monocytes into both dendritic cells (DC)
and inflammatory M1-macrophages and to skew monocyte
differentiation toward anti-inflammatory M2 macrophages. The
macrophages generated in the presence of amniotic cells were
poor inducers of T-cell proliferation, increased production of
the anti-inflammatory cytokine IL-10, and reduced secretion of
different pro-inflammatory factors (Magatti et al., 2009, 2015).
Additionally, the macrophages generated in the presence of CM
enhance wound healing in diabetic mice (Magatti et al., 2017).
The therapeutic effects of amniotic cells and their secretome have
been reported in other preclinical models of diseases based on
inflammatory processes and with altered immune reactions, such
as lung (Cargnoni et al., 2009, 2012, 2014) and liver fibrosis (Ricci
et al., 2013; SantAnna et al., 2016; Cargnoni et al., 2017), sepsis,
inflammatory bowel disease, autoimmune encephalomyelitis
and rheumatoid arthritis (Parolini et al., 2014) cardiac ischemia
(Cargnoni et al., 2009), and traumatic brain injury (Pischiutta
et al., 2016). In these diseases, the modulation of inflammation
seems to be a key element underlying the restoration of
tissue integrity promoted by placental cells and their bioactive
factors (Silini et al., 2017). Taken together, differentiation and
immunomodulatory properties render placental cells, and their
secretome, very interesting candidates for a variety of therapeutic
applications, and in the following section their contribution to
cardiac regeneration will be discussed.

Placenta-Derived Cells in Cardiac
Regeneration: Mechanisms Relevant for
Cardiac Repair
The placental cells used in preclinical studies discussed in
this section are hAMSC, hAEC, hCMSC, and hUCMSC
(includingWharton’s Jelly). In addition, MSC from the chorionic
plate/trophoblast (hCpMSC), and MSC isolated from placenta
tissue in toto (i.e., no specific compartment described; PDMSC)
will be discussed.Wewill also consider studies in which Placenta-
derived Adherent cells (PDA-001, Celgene Therapeutics), and
PLacental eXpanded (PLX) mesenchymal-like adherent stromal
cells (PLX-PAD, Pluristem Therapeutics Inc.) are used.

Essentially, there are 4 mechanisms that could be held
accountable for the therapeutic effects mediated by placental cells
on the injured cardiac tissue, which can be mainly related to
their direct cell differentiation or to specific paracrine effects,
such as anti-apoptotic, pro-angiogenic, and immunomodulatory
properties as the result of the administration of their derivatives
(i.e., the cell secretome as represented by their cell-conditioned
medium and/or extracellular vesicles), respectively. These
features make placental cells worthy competitors in the field of

regenerative medicine. These will be discussed in the following
sections in order to provide insight onto how placental cells and
derivatives are able to support cardiac regeneration.

Cardiovascular and Cardiomyogenic Differentiation
Even if nowadays it does not seem to be the major mechanism
supporting the placental-cell therapeutic effects (Balbi and
Bollini, 2017) there is a modest amount of groups which
have provided evidence of placental-cell differentiation toward
cardiovascular and cardiomyocyte-like cells. Evidence of this
is shown by the expression of cardiomyocyte markers and/or
acquisition of spontaneous cell beating. In vitro placental cell
differentiation has been suggested for UCMSC after incubation
with 5-azacytdine (Pereira et al., 2008), and after co-culture
of neonatal murine cardiomyocytes with hAMSC (Tsuji et al.,
2010) and PDMSC (MSC isolated from placenta tissue in toto)
(Liu et al., 2015). Alviano et al. reported in vitro angiogenic
differentiation of hAMSC (Alviano et al., 2007), suggesting that
term placenta might also contain progenitors with endothelial
commitment potential, as reported by others (König et al., 2012,
2015; Meraviglia et al., 2012; González et al., 2015; Abumaree
et al., 2017).

In vivo, even if in the majority of studies presented herein
placental cells are few and rarely found in preclinical models at
time of sacrifice, cardiomyocyte differentiation has been reported
for hAEC following transplantation in immunocompromised
rats with myocardial infarction (Fang et al., 2012). Likewise,
PDMSC treated with a mixed cocktail of hyaluronan, butyric and
retinoic acid (HBR) as cardiogenic/vasculogenic inducer, showed
partial structural differentiation into cardiomyocyte-like cells,
following transplantation into infarcted rat hearts (Ventura et al.,
2007).

Cardioprotection and Inhibition of Apoptosis
Inhibition of cardiomyocyte apoptosis is pivotal in rescuing the
cardiac tissue. Placental cells and their derivatives have been
reported to be able to counteract cardiomyocyte apoptosis both
in vitro and in vivo via significant paracrine influence. For
example, conditioned media of UCMSC cultured in hypoxia
has been shown to reduce apoptosis of cardiomyocytes (Santos
Nascimento et al., 2014; Zhao et al., 2016), in vitro; as well,
cardiac cell death was further reduced when secretome of HGF-
transfected UCMSC (cultured in hypoxia) was used (Zhao et al.,
2016). In vivo, the same group showed that transplantation
of UCMSC was able to enhance cardiac function, decrease
cardiomyocyte apoptosis, increase cardiomyocyte proliferation,
and increase capillary density in immunodeficient mice with MI.
These parameters were further improved following treatment
with HGF-transfected UCMSC (Zhao et al., 2016). The anti-
apoptotic effects of UCMSC have also been described by others
following implantation in immune-competent mice with MI,
whereby the number of apoptotic cells in infarcted hearts
was reduced by 40% compared to vehicle-treated mice (Santos
Nascimento et al., 2014). In addition, extracellular vesicles and
exosomes isolated from UCMSC secretome have been shown to
reduce cardiac fibrosis and cell apoptosis, while increasing cell
proliferation in the hearts of rats with myocardial infarction,
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after intravenous injection (Zhao et al., 2015). Exosomes from
UCMSC have also been studied by another group who observed a
decrease of apoptotic cells in exosome-treated animals compared
to PBS-treated ones (Ma et al., 2016). Furthermore, in a minipig
model of MI, PDMSC-treated pigs showed lower TUNEL-
positive cardiomyocytes at the infarct border area, compared
to vehicle-treated pigs, 8 weeks after injury (Liu et al., 2015).
Cardiomyocyte proliferation has also been shown to be enhanced
after transplantation of placenta-derived adherent cells (PDA-
001) in amouse model of chronic heart failure (Chen et al., 2015).
To further confirm the relevance of placenta cell cardioprotective
paracrine potential, an innovative hydrogel formulation obtained
from placental matrix and growth factors has been recently
used to improve iPS-derived cardiomyocyte culture in vitro, also
showing paracrine enhancement of cardiac repair as a delivery
vehicle (Francis et al., 2017).

Pro-Angiogenic Effect
Regarding the pro-angiogeneic influence of perinatal
progenitors, cell secretomes from both PDMSC (Liu et al., 2015)
and PLX-PAD (Pluristem’s mesenchymal-like adherent cells
isolated from human term placenta) (Roy et al., 2013) have been
shown to stimulate HUVEC proliferation and tube formation
in vitro. In addition, exosomes from UCMSC were demonstrated
to stimulate proliferation (Ma et al., 2016), migration (Zhao et al.,
2015; Ma et al., 2016), and tube-forming ability (Zhao et al., 2015)
of EA.hy926 human endothelial cells in vitro. Similarly, different
types of placental cells have been shown to promote angiogenesis
within the infarcted myocardium in vivo. For example, PDMSC
significantly enhanced angiogenesis when injected into the MI
border area in immune-compromised mice (Liu et al., 2015),
resulting in increased vascularization compared to control
group (Liu et al., 2015); improved heart contractibility was
also detected in minipig hearts undergoing MI when PDMSC
were injected in the border zone (Liu et al., 2015). Although
functional cardiomyogenic differentiation of placental cells have
been generally shown to be controversial, PDMSC were retained
in the minipig hearts for up to 8 weeks post treatment while
co-expressing HLA-ABC and cardiac troponin T, a marker
for striated cardiomyocytes (Liu et al., 2015). In contrast, in a
mouse model of myocardial infarction, chorionic plate MSC
(CpMSC) did not successfully engraft and survive starting from
third day post-injection, and cells disappeared more rapidly
after the second and third injections (i.e., disappeared after
24 h), even if at 40 days after first treatment cardiac function
was improved (Passipieri et al., 2014). In line with these results,
transplantation of placenta-derived adherent cells (PDA-001)
in a mouse model of chronic heart failure has been shown to
increase endothelial cell proliferation and capillary density when
injected intramyocardially (Chen et al., 2015). Notably, capillary
density improvement was observed only when a low-dose (0.5
× 104 vs. high dose 0.5 × 106) of cells was used, suggesting
the latter to be more efficient in providing tissue repair (Chen
et al., 2015), despite no human cells were detected in the murine
heart 28 days after injection (Chen et al., 2015). PLX-PAD have
also been shown to stimulate arteriogenesis after injection in
the peri-infarct area, following left anterior descending artery

ligation in immune-competent mice (Roy et al., 2013), resulting
into more abundant and mature arterial blood vessels. In
addition, PLX-PAD-treated hearts showed higher microvessel
density compared to vehicle-treated hearts. The same group also
reported better cardiac regeneration capability of hAEC injected
in mice with MI after their specific in vitro preconditioning
in order to enhance epithelial-mesenchymal transition (EMT,
i.e., hAEC treated with TGF beta for 6 days in vitro prior to
injection), compared to non-induced hAEC (Roy et al., 2015).
Indeed, hAEC sustained local angiogenesis, with greater resident
cardiomyocyte pro-survival influence as exerted by EMT-hAEC
(Roy et al., 2015).

The human amniotic membrane (AM) has also been shown
to provide therapeutic effects when used as a patch implant
in rodent models of cardiac disease. Cargnoni et al. have
demonstrated that epicardial application of the AM patch on
infarcted rat hearts is able to significantly reduce post-ischemic
cardiac dimensional alterations, thus improving myocardial
function (Cargnoni et al., 2009). Beneficial effects were apparent
7 days after AM application and continued for up to 60 days
post treatment (Cargnoni et al., 2009). In line with this, Roy
et al. revealed that treatment of infarcted heart with patches
of either intact or decellularized amniotic membrane reduced
infarct size (Roy et al., 2016). Decellularized AM showed to be
immunologically inert, suggesting that ECM components in the
AMmight be crucial in exerting beneficial effects on the infarcted
heart (Roy et al., 2016).

The pro-angiogenic effects of UCMSC have also been
described following implantation in immune-competent mice
with myocardial infarction (Santos Nascimento et al., 2014).
In addition, exosomes from CM obtained from UCMSC have
also been shown to increase blood vessel numbers in chick
allantoic membrane assay (CAM), when compared to DMEM-
treated CAM (Ma et al., 2016). Interestingly, exosomes obtained
from Akt-induced UCMSC had a higher efficiency in promoting
angiogenesis, and this was suggested to be due to the fact
that Akt-induced exosomes shuttle PDGF (a growth factor
found to be enriched in this type of exosomes) to recipient
cardiac and endothelial cells, thus promoting their proliferation,
migration, and blood vessel formation (Ma et al., 2016). The
above-mentioned angiogenic properties along with the proposed
paracrinemode of action of placental cells has encouraged several
groups to investigate protein and soluble factor content in the
conditioned medium of cultured placental cells. Pro-angiogenic
proteins such as vascular endothelial growth factor (VEGF) and
angiopoietin-1 have been shown to be found in PLX-PAD cell
secretome, which were found increased when cell conditioned
medium was collected from cells cultured in hypoxia (Roy et al.,
2013).

In addition, hypoxia was able to decrease tissue inhibitor
of matrix metalloproteinase-1, an inhibitor of endothelial cells
(Reed et al., 2003) and promoter of myocardial fibrosis (Takawale
et al., 2017). Others have also demonstrated that PDMSC
can secrete hepatocyte growth factor (HGF), interleukin (IL)-
8, and growth related oncogene (GRO)-alpha (Liu et al.,
2015). MSC from fetal membranes can also secrete VEGF
and HGF, which is enhanced when cells are treated with
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FIGURE 1 | Schematic representation of exploitation of fetal perinatal stem cell biology for cardiac regeneration. Mesenchymal stromal progenitors can be isolated by

amniotic fluid samples harvested during prenatal screening procedure (II trimester gestation) or at term, during scheduled cesarean delivery (III trimester); similarly,

several population of stem cells can be isolated from term placenta at birth. Fetal perinatal stem cells can be easily isolated and cultured in vitro. Their peculiar

regenerative features can be exploited to enhance cardiac repair and sustain cardiac regeneration by different approaches, including tissue engineering and cell

therapy (possibly via perinatal stem cell reprogramming into more immature pluripotent cells to obtain mature cardiomyocyte and cardiovascular cells from) and

paracrine therapy, via the formulation of the stem cell secretome, into a putative future advanced therapy medicinal product (ATMP). hAFSC, human c-KIT+ Amniotic

Fluid Stem Cells; hAFS-MSC, human Amniotic Fluid Mesenchymal Stem Cells; EV, Extracellular Vesicles; hCMSC, human Chorionic Mesenchymal Stromal Cells;

hAEC, human Amniotic Epithelial Cells; hAMSC, human Amniotic Mesenchymal Stromal Cells; hPDMSC, human Placenta-Derived Mesenchymal Stromal Cells;

hCpMSC, human Chorionic plate/trophoblast Mesenchymal Stromal Cells; hUCMSC, human Umbilical Cord Mesenchymal Stromal Cells; iPS, induced Pluripotent

Stem Cell.

hyaluronan with butyric and retinoic acid (HBR) (Ventura
et al., 2007). On another note, the same group showed that
HBR also enhances in vitro differentiation of MSC toward
cardiomyocyte-like cells, thus suggesting that HBF encompasses
both differentiating features for MSC and potential to afford

growth factor-mediated paracrine regeneration (Ventura et al.,
2007). Likewise, conditioned medium from UCMSC cultured
in hypoxia contains angiogenic factors such as VEGF, HGF,
epidermal growth factor (EGF), and basic fibroblast growth
factor (bFGF), and the presence of these factors is enhanced
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with CM is collected from HGF-transfected UCMSC cultured in
hypoxia (Zhao et al., 2016).

Immunomodulatory Potential
The inflammatory response to an injury is a critical regulator
of the regenerative process. Immunomodulatory properties of
placental cells have been widely demonstrated in vitro (Magatti
et al., 2016) and transplantation of placental cells and their
derivatives has been shown to exert in vivo therapeutic effects in a
variety of diseases with altered immune responses (Magatti et al.,
2016), thus supporting the notion that targeting inflammation is
beneficial to the regenerative process (Silini et al., 2017).

When considering cardiac injury, placental cell
immunomodulatory properties are a fertile ground for
investigation and could potentially contribute to regeneration
of the diseased heart. As in other immune-regulated diseases
such as in lung (Cargnoni et al., 2009, 2012, 2014; Moodley
et al., 2009, 2010; Murphy et al., 2011, 2012; Vosdoganes et al.,
2011; Hodges et al., 2012; Chambers et al., 2014; Tan et al.,
2014) and liver fibrosis (Tsai et al., 2009; Manuelpillai et al.,
2010, 2012; Sant’Anna et al., 2011; SantAnna et al., 2016; Zhang
et al., 2011; Ricci et al., 2013; Cargnoni et al., 2017), placental
cells and their soluble derivatives have been shown to decrease
fibrosis in the hearts of animals MI. Indeed, the inflammatory
response after injury is critical in regulating tissue regeneration,
and the inflammatory response occurs even after cardiac injury,
thus what we learn from how placental cells modulate the
inflammatory response to favor tissue regeneration in models of
chronic fibrosis could shed light onto how placental cells could
be beneficial to the regenerative process after cardiac injury.
For example, transplantation of placenta-derived adherent cells
(PDA-001) in a mouse model of chronic heart failure has been
shown to improve cardiac performance and decrease fibrosis
when injected intra-myocardially (Chen et al., 2015). Moreover,
exosomes isolated from the CM of UCMSC have been shown to
reduce cardiac fibrosis of rats with myocardial infarction after
intravenous injection (Zhao et al., 2015). These studies instigate
future ones in order to understand how the immunomodulatory
properties placental cells and derivatives contribute to cardiac
regeneration.

FUTURE PERSPECTIVES IN THE ADULT
AND IN THE PEDIATRIC PATIENT

Cardiovascular disease patients need prompt therapeutic
intervention, especially pediatric ones affected by congenital
heart disease.

In such scenario, the ideal stem cell source should be
selected upon consideration their potential, feasibility of their
isolation together, with their in vitro self-renewal properties.
Thus, fetal and perinatal stem cells isolated either during
pregnancy from left-over samples obtained for prenatal
screening, or at term from clinical waste material, can
offer added value compared to somatic adult sources, given
their immature and developmentally “younger” potential,
ease of availability, expansion and cryopreservation for
long-term use while maintaining stable karyotype and low
immunogenic profile. Furthermore these cells can also offer
exclusive therapeutic advantages, as illustrated in the schematic
Figure 1; indeed, on top their paracrine and differentiation
potential, they can be reprogrammed more efficiently into
pluripotent cells for putative drug-screening, cell therapy
and cardiac tissue engineering approaches, and could be
also envisioned for prenatal management and treatment of
cardiac congenital diseases in utero, as already suggested by
preliminary testing in preclinical animal models of different
disease such as gastroschisis and spina bifida (Tam et al., 1989;
Ramachandra et al., 2014; Dionigi et al., 2015; Shaw et al.,
2016).

Nevertheless, further efforts should be made to address
the standardization of cell isolation protocols and cell culture
conditions, and also preparation of the cell secretome, since
a definitive consensus has not been obtained yet; for sure,
this represents a crucial aspect in order to avoid result
diversification in preclinical studies and to support opportune
clinical translation for future therapeutic strategies.
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