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Chronic Obstructive Pulmonary Disease (COPD) is a disabling respiratory pathology, with

a high prevalence and a significant economic and social cost. It is characterized by

different clinical phenotypes with different risk profiles. Detecting the correct phenotype,

especially for the emphysema subtype, and predicting the risk of major exacerbations

are key elements in order to deliver more effective treatments. However, emphysema

onset and progression are influenced by a complex interaction between the immune

system and the mechanical properties of biological tissue. The former causes chronic

inflammation and tissue remodeling. The latter influences the effective resistance or

appropriate mechanical response of the lung tissue to repeated breathing cycles. In

this work we present a multi-scale model of both aspects, coupling Finite Element (FE)

and Agent Based (AB) techniques that we would like to use to predict the onset and

progression of emphysema in patients. The AB part is based on existing biological models

of inflammation and immunological response as a set of coupled non-linear differential

equations. The FE part simulates the biomechanical effects of repeated strain on the

biological tissue. We devise a strategy to couple the discrete biological model at the

molecular /cellular level and the biomechanical finite element simulations at the tissue

level. We tested our implementation on a public emphysema image database and found

that it can indeed simulate the evolution of clinical image biomarkers during disease

progression.

Keywords: COPD, emphysema, chronic bronchitis, finite element methods, agent-based models, biophysical

modeling, multiscale modeling, supercomputing

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is estimated to affect more than 500million people
worldwide, causing significant disability, loss of quality of life and social burden, with costs in excess
of e 56 billion per year in the European Union (Decramer et al., 2012). The disease has a lifetime
prevalence of about 28% and cigarette smoking is commonly considered to be the principal risk
factor (Gershon et al., 2011). Recent projections suggest that COPD will be the third cause of global
mortality by the year 2030.

The pathogenesis of COPD is still not completely understood (Larsson, 2007; Yoshida
and Tuder, 2007) and involves a number of multi-scale cellular processes, including airways
inflammation, adaptation and innate immunity to cigarette smoking, sensitivity to self and not-self
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antigens, accelerated senescence, and deregulation of
mechanisms of cell repair (Repapi, 2010; Pavord et al., 2012).
Interactions between the environment and a selected group of
candidate genes is also considered very important (Akinbami
et al., 2012; Mizuno et al., 2017; Zhao et al., 2017).

Clinical management of COPD involves consistent use of
inhaled corticosteroids that help reducing COPD mortality.
However, their efficacy is limited (Faner and Agustí, 2016) and
many patients experience exacerbations and poor symptoms
control (Brightling et al., 2012).

As a matter of fact, the clinic presentation of COPD is
not homogeneous, but presents two main clinical phenotypes,
emphysema and chronic bronquitis, each with many sub-types,
different comorbidities and risk profiles (Martinez et al., 2012).
Even if there is no therapeutic target that can reverse the
decline of lung function over time (Vestbo et al., 2013), a
broader recognition of markers associated with adverse risk
(Partridge et al., 2006) and therapies that specifically target
different phenotypes specifically reduce exacerbations and
improve patient’s life (Castro et al., 2010; Holgate, 2012).

An additional problem is that it is extremely challenging to
do an early detection and staging of COPD. This is because
the gold standard for clinical diagnosis is Pulmonary Function
Tests (PFTs) which is not sensitive enough to detect any disease
progression before a large part of the lung has been compromised
(Cooper et al., 2017). It is also not sensitive enough to detect
different subtypes and elucidate different mechanisms of actions.

Specifically in emphysema, the continued inflammation of
lung parenchyma eventually leads to a loss of collagen and
elastin in the alveoli (Sharafkhaneh et al., 2008; Goldklang and
Stockley, 2016). As a result of this sustained damage the septa
become increasingly compliant and eventually fail mechanically
during normal breathing. This reduces the area available for gas
exchange causing dyspnea and shortness of breath. In addition,
the mechanical damage due to emphysema is likely to stimulate
tissue repair mechanisms at cellular level, that result in the
production of type I collagen (Crosby and Waters, 2010). As a
matter of fact, alveolar fibrosis is observed in emphysematous
spaces, in the form of thickened and stiffened alveoli, which most
likely contributes to shortness of breath (Yousem, 2006).

Faced by this complexity in the mechanisms and the lack
of a simple clinical tests, it is important to assess the patient
by integrating information from heterogeneous sources such
as molecular data and medical imaging, in order to adapt
the treatment options with the phenotype and risk profile. A
promising option is to include information from computational

models of biological systems that can account for causative
effects, otherwise difficult to apprehend in clinics. These models
have the potential to predict complex behaviors, elucidate
regulatory mechanisms, and inform experimental designs to
eventually point out specific factors to control or therapeutic
targets, in order to improve patient management (Di Ventura
et al., 2006).

Cancer research has already exploited computational models
over different spatial and temporal scales as a promising way

to describe complex diseases (Deisboeck et al., 2009, 2011;
Wang et al., 2015). There, multiscale models interact with clinical

data to generate and test different hypotheses, facilitating drug
development (Clancy et al., 2016) and optimizing delivery and
therapeutic effect (Cristini et al., 2017). We refer the interested
reader to the detailed review by Wang and Maini (2017).

Recent interdisciplinary advances contributed to unravel the
complex pathophysiological mechanisms that occur in COPD
on both the macroscopic and microscopic scale. In case of
macroscopic model of the respiratory system, for example
Bordas et al. (2015) describes how to obtain a specific mesh of the
patient for CFD simulations and Berger et al. (2016) discuss the
application of a poroelastic deformation model for pulmonary
ventilation. Chernyavsky et al. (2014) proposes a theoretical
model of the possible effect of inflammation on the restriction
of small airways. The reader can also refer to the review of COPD
multi-scale modeling by Burrowes et al. (2013).

Among others, the “Protective Artificial Respiration” initiative
fundamentally contributed to the understanding of COPD. We
would like to cite Wiechert et al. (2011) for their multiscale
model of respiratory system that coupled large bronchi and small
alveoli, as well as Roth et al. (2017a,b) respectively for a study
of the essential interactions between flow and deformation in
the lungs and a simplified model of lung microstructures. Also
Verdugo et al. (2017) reported on efficient solvers for respiratory
mechanics. Among the works devoted to particle deposition we
recall the work of Freitas and Schröder (2008) for a numerical
study of 3D flows in a human lung model, and Lintermann and
Schröder (2017) for the simulation of aerosol particle deposition
and Calmet et al. (2016) for their model and simulations of
particle deposition based on High-Performance Computing.
Very recently, an experimental characterization of the nonlinear
compressible behavior of the parenchyma is reported in Birzle
et al. (2018).

For the microscopic modeling, literature contains numerous
works on the modeling of the immune system at the molecular
level. For instance, Folcik et al. (2007) developed an agent-based
model for the innate and adaptive immune system while (An,
2008) contributed an agent-based model of the epithelium. A
model of inflammation with interactions between macrophages
and fibroblasts capable of simulating scarring, tissue damage and
fibrosis is presented in Brown et al. (2011). Most of the studies
on AB modeling of COPD focus on emphysema, and mainly
study the resulting destruction of the tissue. The most common
method uses a 2D network of springs to represent alveolar tissue
(Mishima et al., 1999). These modeling studies have the merit
to highlight the redistribution of forces within the tissue during
the progression of emphysema. This simulated progression was
found to produce experimentally observed emphysema patterns
(Suki et al., 2003) and was extended to 3D by Parameswaran
et al. (2011) through the use of cuboidal cells to represent the
alveoli. The European AirProm project has initiated the study of
multi-scale models for the study of COPD (Burrowes et al., 2013).

In the INSPIRE project1, we would like to give a multi-scale,
multi-physics description of the phenomena that cause the onset
of emphysema and the possibility to predict the risk profile of

1INSPIRE - Personalized computational models of COPD progression for patient
phenotyping. FIS2017-89535-C2-2-R
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the patient. Accordingly, the main purpose of the presented

work is to propose a multi-scale model, able to integrate known
interactions among inflammation, remodeling and parenchyma
destruction, with particular attention to the role played by
the immune system. We extended our previous work Ceresa
et al. (2017) to couple the dynamics of the biological events
captured through agent cooperation in an agent-based (AB)
model with a biomechanical simulation of the tissue captured by
a coupled Finite Element (FE) Model that iteratively predicts the
evolution of the mechanical cues transmitted to the cells inside
the lungs. We hope that such model could, once properly refined
and validated, add to the interpretation of the specific disease
phenotype toward the prediction of personalized risk profiles.
We think our model builds nicely on the previous cited literature
for the microscopic models because we use a less simplified
model of the molecular interactions. In addition, we explicitly
take into account the mechanical forces the tissue is subjected to
using a well-vetted FE model, while others have worked more on
connection models with elastic spring.

In the following sections we will discuss the coupled AB
and FE model that we contribute (section Methods), and the
experimental setup designed to validate the model on a public
CT dataset of emphysema images (section Experimental Setup).
We then present the results of the experiments, their discussion
(section Results and Discussion) and the conclusions and future
works (section Conclusions and Future Works).

METHODS

As we commented before, research and clinical practice suggest
that emphysema development happens along two different time-
scales: a slow molecular one due to the inflammatory response
to solid particles (Cosio et al., 2009), and a rapid one, caused
by sudden rupture of the alveolar walls due to mechanical forces
which act on lung tissue during respiration (Suki et al., 2003).

In the following sections, first we present a dynamic model
of inflammatory response using ordinary differential equations
(ODE) taken from literature that does not account for spatial
and mechanical effects (section Well-Mixed Molecular Model of
Inflammation and Tissue Remodeling). This is followed by an
AB molecular model for inflammation and remodeling coupled
with a FE model of biomechanical tissue that supersedes those
limitations (section Agent Based Model of Inflammation and
Coupling to the Finite Element Model).

Well-Mixed Molecular Model of
Inflammation and Tissue Remodeling
In order to prepare the implementation of the AB model and
define the rules thereof, we performed a large bibliographical
study to obtain relevant information about:

• cytokines IL1, IL8, IL10, TNFα and TGFβ production,
• macrophage migration, activation and differentiation into M1

and M2 types,
• feedback loops in the production of pro- and anti-

inflammatory cytokines

• the role of MMPs on collagen cleavage and fibroblast
deposition which are important terms for elastin degradation
and remodeling.

This literature (Ignotz and Massagué, 1986; Onozaki et al.,
1988; Oliver et al., 1993; Bellingan et al., 1996; Tsutsumi et al.,
1996; Darby et al., 1997; Meng and Lowell, 1997; Hehenberger
et al., 1998; Horio et al., 1998; Cobbold and Sherratt, 2000;
Steinmüller et al., 2000; Eberhardt et al., 2002; Huang et al.,
2002; Maass et al., 2002; Zhang et al., 2003; Mantovani et al.,
2004; Porcheray et al., 2005; Tanaka et al., 2005; Edwards et al.,
2006; Lenga et al., 2008; Marino et al., 2008; Moro et al.,
2008; Jin and Lindsey, 2010; Wang et al., 2012) is reported in
Reference section and it is associated to the different biological
parameteres considered in Table 1. We focus mainly on the well-
vetted interactions between different types of macrophages, pro-
and anti-inflammatory cytokines, fibroblasts, collagen deposition
and degradation, neutrophils and elastase production. Those
interactions were already described by Brown et al. (2011), Jin
et al. (2011), and Wang et al. (2012) and our main contribution
was to integrate all the available information of the different
biological processes and adapt them for the specific case of
emphysema modeling. The final model we used is composed by
two algebraic equations and thirteen coupled non-linear ordinary
differential equations (ODE). This model belongs to the category
of well-mixed (WM) systems in the sense that no spatial effects
are considered.

These equations are presented below (Equations 1–15) and
the biology they reflect can be schematically represented in an
integrated picture of the main molecular and cellular actors
that regulate the chronic immune response and the consequent
changes in tissue properties (Figure 1), after initial particle
deposition on the lung tissue.

The aforementioned particle deposition causes sustained
inflammation of the tissues with a fast secretion of Tumor
Necrosis Factor alpha (TFNα-Tα in the equations for brevity) and
a slow secretion of Transforming Growth Factor beta (TGFβ-Tβ

in the equations for brevity) respectively by monocytes (M) and
epithelial cells. These cytokines attract monocytes, according to
the model proposed by Wahl et al. (1987) (Equation 1):

M(Tα) = 0.335T3
α − 6.309T2

α + 32.281Tα + 57.302 (1)

and further govern the differentiation between inactivated
macrophages (Mun) and the specific sub-types M1 and M2,
according to Equations (2–4):

Ṁun = M(Tα)− k2Mun
IL1

IL1 + cIL1
− k3Mun

Tα

Tα + cTα

−k4Mun
IL10

IL10 + cIL10
− µMun (2)

Ṁ1 = k2Mun
IL1

IL1 + cIL1
+ k3Mun

Tα

Tα + cTα

+ km21M2

−km12M1 − µM1 (3)

Ṁ2 = k4Mun
IL10

IL10 + cIL10
− km21M2 + km12M1 − µM2 (4)
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TABLE 1 | Parameters of the AB model.

S References + biological meaning Value

km12 [est] Transition rate M1-M2 0.075 day−1

k2 (Porcheray et al., 2005) Activation rate of IL1 for M1 0.1 ml/pg/day

k3 (Porcheray et al., 2005) Activation rate of TNFα for M1 1 ml/pg/day

k4 (Porcheray et al., 2005) Activation rate of IL10 for M2 0.3 ml/pg/day

k5 (Edwards et al., 2006) Secretion rate of IL10 by M2 5e−4 pg/cell/day

k6 (Wang et al., 2012) Secretion rate of TNFa by M1 7e−4 pg/cell/day

k7 (Meng and Lowell, 1997; Mantovani et al., 2004)

Secretion rate of IL1 by M1

5e−4 pg/cell/day

k8 (Huang et al., 2002) Secretion rate of TGFβ by M2 0.07 pg/cell/day

k9 (Cobbold and Sherratt, 2000) Secretion rate of TGFβ

by F

0.04 pg/cell/day

k10 (Hehenberger et al., 1998) Fibroblast growth rate 0.924 cell/day

k11 (Ignotz and Massagué, 1986) Collagen deposition rate

by F

20 µg/cell/day

k12 [est] Secretion rate of MP9 by M1 3 pg/cell/day

k13 [est] Secretion rate of IL8 by M2 5e−4 pg/cell/day

k14 [est] Recruit. of neutrophils by IL8 8 pg/ml

k15 [est] Secretion rate of elastase by N 3 pg/cell/day

km21 (Steinmüller et al., 2000) Transition rate M2-M1 0.05 day−1

µ (Bellingan et al., 1996) Macrophage emigration rate 0.2 day−1

µN [est] Neutrophils emigration rate day−1

cIL1 (Onozaki et al., 1988) IL1 promotion on M1 10 pg/ml

cTα (Onozaki et al., 1988) TNFa promotion on M1 10 pg/ml

cIL10 (Onozaki et al., 1988) IL10 promotion on M2 5 pg/ml

c1 (Wang et al., 2012) IL10 inhibition on IL10 100 pg/ml

c (Marino et al., 2008) IL10 inhibition on IL1 TNFα 25 pg/ml

dIL10 (Jin and Lindsey, 2010) Decay rate of IL10 2.5 day−1

dTa (Oliver et al., 1993; Tsutsumi et al., 1996) Decay rate

of TNFa

55 day−1

dIL1 (Lenga et al., 2008) Decay rate of IL1 0.2 day−1

dTb (Zhang et al., 2003) TGFβ degradation rate 15 day−1

dFC (Darby et al., 1997) Fibroblast apoptosis rate 0.12 day−1

dM (Eberhardt et al., 2002; Moro et al., 2008) MMP

degradation rate

0.875 day−1

λ (Horio et al., 1998; Maass et al., 2002) Sec. rate TGFβ

by Mc

5e−6 pg/c/d

Apart from the indicated sources, also Jin et al. (2011) and Wang et al. (2012).

We see that all attracted monocytes will become inactivated
macrophages first, and then switch to one of the two sub-
types depending on constants k2−4 and the concentration of
pro-inflammatory cytokines IL1, TFNα and anti-inflammatory
cytokine IL10. The pro-inflammatory cytokines will promote
differentiation to M1 and the anti-inflammatory ones to M2. The
promotion effect of the cytokines is mediated by the Hill equation
for a cooperative binding type (Stefan and Le Novère, 2013) with
coefficients cIL1, cTα, and cIL10. In time, the transition from M1

toM2 can be reversed, with constants km12 and km21. Eventually,
the macrophages will be removed through the lymphatic system
with rate µ.

Continuing our discussion of Figure 1, we see that each
macrophage type will now secrete cytokines with a dynamic

expressed by Equations (5–7):

İL10 = k5M2
c1

IL10 + c1
− dIL10IL10 (5)

Ṫα = k6M1
c1

IL10 + c1
− dTαTα (6)

İL1 = k7M1
c1

IL10 + c1
− dIL1IL1 (7)

Here we see in Equation (5) that IL10 is secreted by M2

proportionally to k5 and regulated by self-inhibition with
effectiveness c1. Eventually, it is degraded with half-time decay
rate dIL10.

In Equations (6, 7) we have an analogous process for the
secretion of TFNα and IL1 by theM1macrophages subtype.

Additional TGFβ is secreted from fibroblasts (F) and M2 to
increment deposition of collagen in the composition:

Ṫβ = k8M2 + k9F − dTβTβ (8)

Fg(Tβ ) = 0.05T3
β − 0.98T2

β + 6.54Tβ + 7.11 (9)

Ḟ = k10Fg(Tβ )F − dFF (10)

Ċ = k11F − dFCMMP C (11)

˙MMP = k12M1 − dFCMMP C − dMMMP (12)

whereK8 is the secretion rate byM2, k9 the one by fibroblasts and
dTb the decay rate in Equation (8). Fibroblasts proliferates from
the population of already existing cells proportionally to TGFβ in
Equations (9–10) and emigrate with rate df. Collagen deposition
is governed by Equation (11), where we have to consider the
deposition rate kFC, and the degradation effect of matrix-metallo-
proteinases (MMP). Those are enzymes produced by M1 that
degrade the collagen, as described in Equation (12).

Finally, macrophages attract neutrophils to the wound site by
secreting IL8, and those release the elastase enzyme that cleaves
the elastin bonds in the fibers:

İL8 = k13M2
c2

IL8 + c2
− dIL8IL8 (13)

Ṅ = k14(1−
N

Nmax
)

IL8

IL8 + cIL8
− µNN (14)

Ė = k15N − dEE (15)

IL8 secretion (Equation 13) is similar to Equation (5), with
constant k13, a self-inhibition term with efficacy c2 and
a degradation constant of dIL8. Equation (14) governs the
recruitment of neutrophils up until their maximum value Nmax

with a cooperative effect of IL8 and an emigration rate of µN .
Finally the density of elastase is dependent upon the number of
neutrophils and the inactivation rate, dE.

The final proportion of elastase and collagen density is directly
used in our biomechanical model to calculate the properties of
the lung tissue for the FEM simulation as discussed at the end of
the next section.

All the values for the discussed parameters are presented in
Table 1 and the related literature is listed in Reference section.
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FIGURE 1 | Agent based model of tissue destruction in emphysema progression. Particles coming from inhaled smoke cause secretion of cytokines such as TNFα

and TGFβ by the epithelial cells. Those act, at first, as chemotactic factors and attract undifferentiated alveolar macrophages and fibroblasts. and the alveolar

macrophages. Secondly, they induce the activation of the macrophages and their differentiation in the M1 and M2 subtypes. Those will create a delicate dynamical

balance between inflammatory and anti-inflammatory signals such as IL1, IL8, and IL10 that affect the activation of protease such as MMPs, the recruitment of

neutrophils and fibroblasts. MMPs directly cleavage the collagen from the tissue and are responsible for the deposition of abnormal collage that leads to fibrosis,

together with fibroblasts. Elastase destroys the elastin in the tissue. Both abnormal collagen deposition and reduction in elastin deteriorate the mechanical properties

of the tissue.

Agent Based Model of Inflammation and
Coupling to the Finite Element Model
In order to add spatial effects to the molecular model of
inflammation and tissue remodeling, an AB model is created,
using Equations (1–15) as a basis for the behavior of the agents.
The first important difference is that the simulation of the agents
happens on a grid. This gives the model an inherent spatial aspect
and allow us to consider additional details w.r.t. the WB model.
For instance, now the composition of the alveolar unit (AU) -
which includes among others epithelial cells, collagen, elastin and
basement membrane (Zemans et al., 2015)- becomes relevant. In
our case, every cell of the grid represents a small portion of the
AU with different variables accounting for the content of elastin,
collagen, the cytokines and the structural integrity of the cells
(called “tissue-life” in the following).

During the simulation a “smoking” signal determines whether
we introduce particles into the simulated AU or not. This signal
is a periodic square wave with frequency f s and intensity es. The
intensity quantifies the exposure, that is, the number of particles
inhaled in each cycle. The signal starts from zero and last for
a total smoking time of Ts. By varying frequency, intensity and
total time, we can study the effect of particles on the model as

detailed in experiment of section Experiment to Characterize
Parameter Sensitivity. After the end of the total smoking time, the
model is allowed to run for some additional time steps in order
to reach equilibrium again.

The initial, unperturbed, dynamic of the system includes a
small number of inactivated macrophages that move randomly,
“patrolling” the tissue and searching for solid particles, similarly
to the mononuclear cells behavior described by Auffray et al.
(2007). When the smoking signal is active, inhaled particles
deposit and cause an initial rapid rise of TFNα that attracts
inactive macrophages to the deposition site according to
Equation (2). From there, according to the dynamics described
in Equations (3–4), macrophages differentiate in M1 or M2
subtypes which respectively govern the production of pro-
inflammatory (Equations 6, 7, 12) and anti-inflammatory
cytokines (Equations 5, 8, 13).

As previously indicated in Brown et al. (2011), at sites with
high levels of pro-inflammatory cytokines, tissue is damaged by
a complex network of interconnected factors called Damage-
associated Molecular Patterns (DAMPS) (Matzinger, 2002; Lotze
et al., 2007). This aspect was not included in the WM model
because of its specific spatial nature, but it is implemented

Frontiers in Physiology | www.frontiersin.org 5 April 2018 | Volume 9 | Article 388

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ceresa et al. Immunological and Biomechanical Model of Emphysema Progression

in the AB model where the tissue life of the AU is reduced
proportionally to the inflammation level. Damaged tissue (i.e.,
with reduced tissue-life) in turn, start secreting TFGβ to recruit
fibroblasts for wound healing as in Equations (9, 10).

The model tracks separately the amount of collagen and
elastin in the tissue and their equilibrium varies depending on
the concentration of fibroblasts, neutrophils, elastase and MMPs
as in Equations (11, 12, 14, 15).

The cellular death caused by DAMPS and the amount of
collagen and elastin, all affect the mechanical properties of the
tissue used in the FE simulations. In this first version we use an
elastic, isotropic material implemented in Elmer FEM software
(Råback, 2013). Now, on the one hand, when a cell dies, we
reduce its Young’s modulus (ETissue) to 1 Pa, to account for the
fact that it contributes no more to the elastic properties, but
without changing the topology of the mesh. On the other hand,
if the cell is not dead, its Young’s modulus is calculated as a
linear mixture of the corresponding concentration of elastin and
collagen as in Equation (16). The initial values are Eel =0.1 kPa
and Ecl =20 kPa, as described by Suki et al. (2011).

ETissue = δelcelEel + δclcclEcl (16)

δel = 0.7; δcl = 0.3, cel ∈ [0, 1]; ccl ∈ [0, 1];

The material properties are calculated and loaded in the solver as
continuous static field using a custom made Fortran code.

Apart from the molecular damages caused by DAMPS, the
tissue can also die because it was subjected to too much strain
during the mechanical simulations. While elastin withstands
deformation as high as 100%, the maximum tensile strain of pure
collagen fibrils with low cross-link density is considered to be
around 10% of the initial length (Depalle et al., 2015; Sherman
et al., 2015). Accordingly, the maximum tensile strain for each
cell is calculated weighting the previous values for the amount of
elastin and collagen contained.

We present in Figure 2 the indirect coupling strategy used
for the AB and FE models. At each step the former simulate
additional particle deposition that accounts for continued
smoking; release of inflammatory cytokines and degradation
of mechanical properties. Periodically the AB model is frozen
and the calculated tissue properties are imported in the AB-FE
coupler code which will reconstruct a topologically equivalent
geometry, recover the contours of the damaged zones and assign
new material properties taking into account the final amount
of collagen and elastin from the AB model. The resulting
information is passed to the FE solver that runs until convergence
and then export the strain results for further processing. After
the FE solver has run, the second coupler code, FE-AB is run to
import the strain field and calculate which fibers, if any, have been
destroyed in the simulation. It thus updates the AB status and
restarts it with the updated state.

EXPERIMENTAL SETUP

The next sections deal with the more experimental part of our
work. First, we explain the inner working of the coupling between
AB and FEM solvers (section Procedure to Couple AB and FEM).

Then, we present the meshing process (section Mesh Creation
and Sensitivity). In the central part of this section we detail
the two main experiments that validate our implementation:
the first is an initial exploration of the sensitivity of the
model to initial parameters (section Experiment to Characterize
Parameter Sensitivity), while the second is the validation on
a public CT image dataset of emphysematous lungs (section
Experiment to Study the Emphysema Progression in Clinical
Images). Finally, we briefly discuss the High Performance
Computing infrastructure we used to run the studies (section
High Performance Computing).

Procedure to Couple AB and FEM
In a typical execution cycle, the AB model is stopped at regular
intervals and control is transferred to the FE model for analysis
of the mechanical strains. After each interruption of the AB
simulation, the latest iteration of this simulation is saved to
disk and the AB-FE coupling code first calculates the percentage
of damaged tissue area, as predicted by the AB model, and
evaluates whether there is enough healthy tissue to proceed with
the mechanic simulation. If this is the case, the saved status of
the AB model is inspected to retrieve the last topology of the
computational grid and the amount of collagen and elastin is used
to calculate the new Young modules of the tissue according to
Equation (16). This information is used together with connected
component analysis, morphological operators and k-Nearest
Neighbors (kNN) classifiers, to extract the contours of the broken
tissue, define a 2Dmesh and assignmechanical properties to each
element. Materials, boundary conditions and solver parameters
are adjusted if necessary and a case directory is created for the
FE solver. The FE model runs asynchronously until convergence
of the steady state and deformation and displacement fields are
saved in a vtk compatible format (vtu). After that, the FE-AB
coupling code is executed again. It reads back the strain fields
from the solver status files and determines which, if any, nodes of
the mesh have exceeded their maximum strain. Those are added
to the damaged zone and the agent simulation is restarted. Cycle
by cycle the coupled simulations continue until tissue damage
is above 80% of the area or until the desired simulated time is
reached.

A detailed view of typical results for the inflammation,
meshing and mechanical process is shown in Figures 3, 4.

Mesh Creation and Sensitivity
We use 2D FE meshes with topologies equivalent to the AB
simulation grids. The exact size and topology of each mesh is
thus very dependent on the current state of the simulation.
In addition, an optimization step is run after the first mesh
creation using Gmsh2. The average mesh contains around 50,000
polygons with four nodes. We manually refined the parameters
of the mesh creation to ensure a quick convergence of the FE
simulations, while keeping a low computational cost, necessary
to ensure reasonably fast and smooth interactions between the
AB and the FE models.

2Open source: gmsh.info
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FIGURE 2 | Full coupled model. Original patches from a public emphysema database are segmented to separate the parenchyma from the vessels and airways and

seed deposition is simulated. For each seeded pixel and for all its neighbors we run a simulation job that represent the evolution of 130 alveoli. In each job there is a

cyclic sequence between the agent and finite element model. At each step the former simulate additional particle deposition that accounts for continued smoking;

release of inflammatory cytokines and degradation of mechanical properties. Periodically the AB model is frozen and the calculated tissue properties are imported in

the AB-FE coupler code which will reconstruct a topologically equivalent geometry, recover the contours of the damaged zones and assign new material properties

taking into account the final amount of collagen and elastin from the AB model. The resulting information is passed to the FE solver that runs until convergence and

then export the strain results for further processing. After the FE solver has run, the second coupler code, FE-AB is run to import the strain field and calculate which

fibers, if any, have been destroyed in the simulation. It thus updates the AB status and restarts it with the updated state.

FIGURE 3 | Progression of parenchyma destruction in Agent Based Model. From left to right we see the effect of increased inflammation, tissue damage and final

destruction. (A) Concentration of proteases in a small sample of the tissue during model execution. (B) Due to the continued effect of the high proteases levels the

tissue is damaged. (C) Snapshot of the damaged tissue as sent to the FEM model. Tissue in foreground (white) has greatly diminished mechanical properties.
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FIGURE 4 | Detail of the meshing process for a patch with initial emphysema formation. (A) The geometry is automatically generated and meshed by gmsh using our

code taking into account Agent Based Model. (B) The resulting mesh has an adaptive size to ensure fast convergence and is able to capture complex shape for the

destroyed tissue. (C) The generated mesh is then connected to our FEM solver and simulated until convergence is reached. In this image, the displacement field is

shown.

Experiment to Characterize Parameter
Sensitivity
We studied several possible parameters to characterize the
model’s behavior. First, we varied the quantity of particles and
the frequency with which they are added. We varied the number
of particles inhaled in each smoking step from 0 to 20 and the
smoking time from 10 to 90 simulation steps, for a total of 25
experiments. This will be referred to as the “exposure” experiment
in the results section.

In order to asses the sensitivity to the parameters, we selected
and varied six main parameters of the model as described in
Table 2. This resulted in a total of 26−2 = 16 experiments
following a fractional factorial analysis. We will refer to this as
the “parameters” experiment in the results section.

Experiment to Study the Emphysema
Progression in Clinical Images
One of the main objective of this model was to predict the
development of emphysema in time. We devised an initial way to
test our hypothesis using a public lung image dataset. We explain
our approach in the following sections.

Dataset

We test our system against the public CT Emphysema database
(Sorensen et al., 2010). We use 168 square patches manually
annotated in a subset of the 115 high-resolution CT (HRCT)
slices. As explained in the previous reference, CT scanning was
performed using General Electric (GE) equipment (LightSpeed
QX/i; GE Medical Systems, Milwaukee, WI, USA) with four
detector rows. The acquisition protocol was: in-plane resolution
0.78 × 0.78mm, slice thickness 1.25mm, tube voltage 140 kV,
and tube current 200 mAs. The slices were reconstructed by
using a high-spatial-resolution (bone) algorithm. The data comes
from a study group of 39 subjects, including 9 never-smokers, 10

smokers, and 20 smokers with COPD. Figure 2 shows a sample
of each of the three categories of images.

Pre-processing
All slices were automatically segmented and reviewed to create
a mask of only parenchyma tissue. In order to prepare the
computational model, we first segmented the pulmonary tissue
in the lung patches, using a fixed threshold of −750 HU.
Stereological analysis of the lung parenchyma revealed a mean
of 500 million alveoli per double lung in the normal population,
with a mean alveolar volume of around 4.2 × 106 µm3 and, on
average, 170 alveoli per cubic millimeter (Ochs et al., 2004). In
our case, with an anisotropic spacing of 0.78× 0.78× 1.25 mm3,
this corresponds to roughly 130 alveoli per voxel. For each voxel
of this binary mask we generate a planar grid of the 130 alveoli
that is used as a computational mesh.

Particle Deposition and Simulation

As detailed in Figure 2, once the patch has been segmented,
random pixels of the parenchyma and their neighbors aremarked
as “affected” and, for each one, a new simulation of the AB and
FE models is run. Final results are mapped back into the main
image patch and the updated mechanical properties calculated by
the coupled AB-FE model are linearly translated back into HU
values. In this way, we simulate the typical darkening of the CT
scan caused by emphysema progression.

High Performance Computing
Among many different frameworks available for AB modeling
(Abar et al., 2017), we chose to use Pandora (Rubio-Campillo,
2014), for its ease of programming and superb scalability.
The model is implemented in an in-house version, specifically
modified to allow biological model developments and available
online3.

3https://bitbucket.org/mrceresa/pandora
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TABLE 2 | Parameters experiments.

Experiment K8 (pg/cell/day) dIL10 (2.5 day−1) K12 (pg/cell/day) K13 (10−3) (pg/cell/day) dFC (day−1) dM (day−1)

1 0.7 2.5 3 0.5 0.12 0.875

2 0.14 2.5 3 0.5 0.24 0.875

3 0.7 5 3 0.5 0.24 1.75

4 0.14 5 3 0.5 0.12 1.75

5 0.7 2.5 6 0.5 0.24 1.75

6 0.14 2.5 6 0.5 0.12 1.75

7 0.7 5 6 0.5 0.12 0.875

8 0.14 5 6 0.5 0.24 0.875

9 0.7 2.5 3 1 0.12 1.75

10 0.14 2.5 3 1 0.24 1.75

11 0.7 5 3 1 0.24 0.875

12 0.14 5 3 1 0.12 0.875

13 0.7 2.5 6 1 0.24 0.875

14 0.14 2.5 6 1 0.12 0.875

15 0.7 5 6 1 0.12 1.75

16 0.14 5 6 1 0.24 1.75

Values of the parameters used in the 26−2 = 16 experiments.

In order to satisfy the high demand in computational
resources, we run the simulations on our institution’s
supercomputing SNOW Linux cluster. The cluster is currently
composed by 20 computing nodes and a total of 840 cores with
a theoretical calculation capacity of 8.49 Tflops. Highly relevant
for agents simulations were six GeForce GTX TITAN X GPU
with 12 Gb of memory.

RESULTS AND DISCUSSION

In this section we present the results of the twomain experiments
that we have used to validate our implementation. Those
experiments were previously discussed in detail respectively in
sections Experiment to Characterize Parameter Sensitivity and
Experiment to Study the Emphysema Progression in Clinical
Images.

Parameter Sensitivity and Model Analysis
The results of the Exposure experiment are shown in
Figures 5A,B. Figure 5A illustrates the effect of changing
the number of particles inhaled for each simulated smoking
exposure and the total time spent smoking. When exposure is
zero, the model is able to capture that the tissue should remain
healthy no matter how long the simulation runs. However, as
both the exposure and total time spent smoking increase, the
tissue starts getting damaged, independently on the values of
the rate constants. For lower to medium exposures, the implicit
stochasticity of the AB model and the variability of the rate
constants lead to some the fluctuations of the results in function
of the smoking time, but tissue life is always reduced by at least
50%. For higher exposure, tissue damage is irreversible and
continues even after smoking cessation is simulated, as shown

in Figure 5B. These outcomes nicely reflect the fact that smoke
frequency and exposure are considered as one of the main risk
factors for the development of COPD and emphysema (Yoshida
and Tuder, 2007; Liu et al., 2008).

In the model, the mechanical damage largely depends on
the regulation of the collagen content, because the stiffness of
this macromolecule is two orders of magnitude the stiffness
of elastin. The degradation of collagen is heavily affected by
TNFα through the recruitment of monocytes (Equation 1)
and the activation of macrophages into M1 type (Equation 3)
with positive feedback loops generated through IL1 (Equations
3, 7) and TNFα (Equation 6). In contrast, the activation of
macrophages into M2 type is promoted by the anti-inflammatory
cytokine IL10 (Equation 4), the production rate of which is
positively retro-alimented by M2 macrophages (Equation 5).
While IL10 inhibits TNF-alpha and IL1 (Equations 6, 7), it is
also self-inhibited (Equation 5). Hence, the anti-inflammatory
effect of IL10 is limited compared to the strong inflammatory
effects of TNFα and IL1, because less positive feedback in favor
of the promotion of type M2 activated macrophages. In the
Parameters experiment, the exposure and total smoking time
parameters were set to respectively 10 particles and 50 time
steps to ensure that the system would be in a medium damage
situation. Results were all very similar and the tissue life in each
time step only varied with an average standard deviation of 0.166
units, revealing that the above interpretation of the model holds
true regardless the variation of the rate constants within the
considered ranges of values.

According to the analysis of the model equations, the
promotion of the anabolic TGFβ (Equation 8) should be limited
compared to the promotion of the catabolic MMP (Equation
12), and the persistent inflammation induced by particles should
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FIGURE 5 | (A) Effect of changing the number of particles inhaled for each simulated smoking (exposure) and the total time of the simulation spent smoking (Smoking

time). The value of each cell is the residual tissue life in % after the simulation stopped. (B) Emphysema progression in time. The parameters of the experiments are in

figure (A): starting from experiment 0 in the lowest left corner to experiment 24 in the upper right.

promote the unequivocate destruction of collagen (Equation 11).
Nevertheless, we sometimes saw an increase in the mean amount
of collagen. This outcome can be due to the mechanical feedback
and mechanical tissue damage that promotes the secretion of
TGF-beta and provides additional weight to collagen anabolism
(Equations 9, 10). In our model emphysema progression, was
indeed related to sustained inflammation that continued after
smoking cessation (Willemse et al., 2005), but required the
additional effect of DAMPS to relate inflammation, altered
tissue turnover and tissue mechanics to cell endothelial death.
This phenomenon needs to be further explored in a more
mechanistic way, but our approximation of DAMPS effects
allows qualitative validation of the simulated mechanisms for
emphysema progression against clinical data (see below).

Emphysema Progression in Clinical Images
To test whether our model is able to produce images similar to
those seen by clinicians, we use the public emphysema database
described in section Experiment to Study the Emphysema
Progression in Clinical Images. Images of some of the patches
representative of the data we used in the experiment are
presented in Figure 6. Parenchyma destruction in emphysema
is strongly associated with decreased HU absorption value
in CT images, and many image descriptors are commonly
used to (semi-)automatically detect emphysema progression in
CT images (Stern and Frank, 1994; Gevenois and Yernault,
1995; Madani et al., 2006). In the present study, emphysema
progression is quantified through the well-known Mean Lung
Density (MLD) (Heremans et al., 1992).

We quantify all the patches from the database and group by
the different degrees of emphysema severity. As it can be seen
from Figure 7, images with increasing emphysema severity have
also a lower MLD score. Differences of more than 40–60 HU

between groups (1) and (2), (3) are significant with p-value of less
than 0.01.

Once the association between emphysema progression and
MLD score is determined, we take all the 69 patches annotated
with low or no emphysema affectation and use them as input
for our model. Images are quantified with MLD before and
after model execution and the results are tested with t-test for
statistical significance of the differences.

As we can see in Figure 8, there is a statistically significant
difference of about 30 HU between the baseline and progression
groups with a p-value of less than 0.001. We thus conclude that
our implemented model is able to simulate changes that are in
agreement with the progression of emphysema in clinical images
quantified by MLD.

Scaling
The parallelization strategy for the AB part consists in assigning
a job for each patch, as they were completely independent from
each other, then recursively create a new job per voxel, which is
the smaller unit we can parallelize for now. With 69 patches to
process and 200 seeds per patch plus their four closest neighbors,
this resulted in 69,000 jobs. The AB code uses OpenMP to
parallelize the execution of the agents. For the FE part, we use
the MPI capability of Elmer solver to partition the mesh and
distribute the computation on 5 MPI processes per job. Finally,
the coupling between AB and FE is executed in a sequential
way with a python script. Most of the code executions for the
coupling use libraries for which C code bindings were available
(numpy, scipy, and skimage) and, thus, simulations run at almost
native speed. During a single job execution, the computational
time is taken mostly by the AB model (54%), then by the FE
solver (37%) and finally by the coupling part (9%). Each job took
about 40min on the cluster and 1 h on a workstation computer
(Intel i7 with 32 GB of RAM). A significant amount of time
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FIGURE 6 | Database patches samples for the three categories of low (up), medium (middle) and severe (down) emphysema affectation. We see how the

affectation is related to the appearance of bigger cluster of low attenuation areas from top to bottom.

of the coupled simulations was spent on writing the files to
disk to share data between the solvers. This could be reduced
in future works by using faster SSD disk or in-memory access.
All jobs would have taken months to be processed sequentially
on the abovementioned workstation, but required 8 days on our
cluster, by using a maximum of 256 simultaneous jobs. The use
of the HPC resulted, therefore, in several orders of magnitude of
computational time reduction, making the present study actually
feasible. All jobs in the cluster use Sun Grid engine.

CONCLUSIONS AND FUTURE WORKS

In this paper we conceived, developed and tested a high
performance multi-scale agent-based model of lung parenchyma
evolution after repeated exposure to solid irritants such as the
particles that arrive to the lung while smoking. We modeled
the simplified behavior of immune system cells such as alveolar

macrophages and neutrophils, and also cells in charge of wound
healing mechanisms such as fibroblasts. Finally, the tissue
behavior under the forces present in the lung during respiration
was modeled using a FE elastic model. An initial analysis of
sensitivity of the model to parameter variations confirmed (i)
the ability of the model to point out particle inhalations as a
major risk factor in emphysema pathogenesis, and (ii) the strong
inertia of the catabolic shift of cell activity due to sustained
inflammation that resulted in sustained damage to most of the
tissue. A preliminary validation of the capacity of the model
to cause a significant change was performed against clinical
images on 69 cases of a public database of CT images affected
by emphysema progression.

To the best of our knowledge, this model advances the state of
the art because: (1) it includes a more detailed molecular model
of inflammation and tissue remodeling (2) uses a FE solver to
calculate the response to mechanical solicitations thus allowing
for future extensions where arbitrary complex tissue constitutive
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FIGURE 7 | Relation between Mean Lung Density and emphysema progression. We used Mean Lung Density (MLD) to quantify patches belonging to the three

emphysema classification levels. The figure shows that emphysema progression is associated with a mean lowering of the MLD values, due to the destruction of

parenchyma and the diminishing of the CT attenuation value.

equations could be used. (3) has a bi-directional coupling
between AB and FE models (4) exploits HPC technologies so
that enough tissue can be simulated to start validating against
imaging data (5) uses clinical CT images to perform an initial
validation of the capacity of the model. The implementation
of a system of coupled ODEs into AB has the great advantage
over a well-mixed model to take into account the spatial aspect,
and the formation of self-sustaining spatial patterns that affect
substantially the equilibrium points of the system (Brown et al.,
2011).

The present model has, of course, several limitations.
Simplifications were still made in the immune response and
the mechanical model. In particular, the relative importance of
DAMPS in the validated model suggest that more mechanistic
development of this biological phenomenon are necessary.
Additionally, while in this implementation of the model we used
a 2D mapping between the alveolar exchange surface and the
computational grid, in following works we will explore the effect
of extending the connectivity of the tissue to 3D. On top of that,
we do not account for heterogeneous tissue structures such as
airways or blood vessels. However, we plan to do so in a following
extension as the relevant information is already present in the CT
images used to initialize the model. Effect of the mesh size and
topology should be further explored. In a follow-up study we plan
to automatically find the best parameters and better characterize
the impact of the mesh on the stability of the solution with a
convergence study.

Also, the validation is still somehow limited, as no histological
comparison with ex-vivo animal models could be performed

and the one on CT clinical images is limited to one clinical
descriptor, namely the MLD score. As a future work, we are
planning a retrospective study with COPD patients with 1-
year follow-up. Of course, the real ground truth should be
histology, which is unfortunately very difficult to obtain in
human subjects. A promising alternative is to use mice models of
emphysema.

We suggest that such a model, once properly extended and
calibrated with histological and clinical data, could be useful to
improve patient classification and prediction of exacerbations
and thus contribute to the selection of a personalized
therapy.
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