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In spite of the large body of evidence suggesting Heart Rate Variability (HRV) alone or

combined with blood pressure variability (providing an estimate of baroreflex gain) as a

useful technique to assess the autonomic regulation of the cardiovascular system, there is

still an ongoing debate about methodology, interpretation, and clinical applications. In the

present investigation, we hypothesize that non-parametric and multivariate exploratory

statistical manipulation of HRV data could provide a novel informational tool useful to

differentiate normal controls from clinical groups, such as athletes, or subjects affected

by obesity, hypertension, or stress. With a data-driven protocol in 1,352 ambulant

subjects, we compute HRV and baroreflex indices from short-term data series as proxies

of autonomic (ANS) regulation. We apply a three-step statistical procedure, by first

removing age and gender effects. Subsequently, by factor analysis, we extract four

ANS latent domains that detain the large majority of information (86.94%), subdivided

in oscillatory (40.84%), amplitude (18.04%), pressure (16.48%), and pulse domains

(11.58%). Finally, we test the overall capacity to differentiate clinical groups vs. control. To

give more practical value and improve readability, statistical results concerning individual

discriminant ANS proxies and ANS differentiation profiles are displayed through peculiar

graphical tools, i.e., significance diagram and ANS differentiation map, respectively.

This approach, which simultaneously uses all available information about the system,

shows what domains make up the difference in ANS discrimination. e.g., athletes differ

from controls in all domains, but with a graded strength: maximal in the (normalized)

oscillatory and in the pulse domains, slightly less in the pressure domain and minimal

in the amplitude domain. The application of multiple (non-parametric and exploratory)

statistical and graphical tools to ANS proxies defines differentiation profiles that could

provide a better understanding of autonomic differences between clinical groups and

controls. ANS differentiation map permits to rapidly and simply synthesize the possible

difference between clinical groups and controls, evidencing the ANS latent domains

that have at least a medium strength of discrimination, while the significance diagram

permits to identify the single ANS proxies inside each ANS latent domain that resulted in

significant comparisons according to statistical tests.
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INTRODUCTION

The burden of chronic conditions, such as obesity (Christakis
and Fowler, 2007) or hypertension (Forouzanfar et al., 2017), is
continuously growing worldwide and represents an important
barrier to modernization in developing countries. Lifestyle
optimization (Ding et al., 2015), focusing on better nutrition,
more active life, and management of stress, represents a
potentially useful intervention strategy. Advantages may be
obtained both organizationally and economically. The extent of
the problem and the emergence of new large-scale technologies
suggest that novel approaches and types of analysis might provide
a fresher point of view to seemingly established conditions, such
as obesity or physical activity (Althoff et al., 2017). Lifestyle
therapy aims at combating obesity, increasing physical activity,
and reducing stress, potentially improving autonomic cardiac
regulation. Notably, autonomic regulation can be assessed non-
invasively by computer analysis of beat by beat RR interval
(more frequently indicated as Heart Rate Variability, HRV) (Task
Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology, 1996) and
arterial pressure variability.

The success of clinical applications heavily depends on the
balance between complexity of technique and ease of use
(Abraham and Michie, 2008). Thus it should not surprise that
HRV (Task Force of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology, 1996)
alone gained a broad interest for clinical applications. However,
there are several methodological criticalities:

- with protocols (frequently based on laboratory conditions,
and relatively small samples), and

- with methods of analysis and interpretation (Billman et al.,
2015; Sassi et al., 2015).

Regarding this latter one, we should consider:

- the length of data series (long-term, typically 24 h, or short-
term, usually 5–10min),

- the techniques employed to extract autonomic indices (time
or frequency domain, deterministic, or pseudo-stochastic),

- the interpretative codes (Gerstner et al., 1997) of underlying
activity and syntax (Buzsáki and Watson, 2012) of autonomic
neurons (amplitude, oscillations, coherence, phase, etc.) and
of multiple indices that are provided by the analysis of HRV.

For instance, it is well-recognized that to interpret neural activity
we must consider a large set of coding modalities. Conversely,
the majority of studies on RR interval or its variability give less
relevance to the embedded codes of higher order (Pagani and
Malliani, 2000).

The usual focus is on the different value of raw and normalized
units in assessing the interaction between low- and high-
frequency components (LF and HF) of HRV as a proxy of the
neural balance between sympathetic and vagal modulation (taken
as indices of excitatory/inhibitory influences; Pagani et al., 1986).
This latter view is in line with historical models (Hess, 2014)
and with electrophysiological studies with single unit recordings
of efferent vagal fibers (Schwartz et al., 1973). Overall these

studies support a dual antagonistic sympathetic/parasympathetic
innervation of SA node. A definite improvement in the strength
of clinical prediction, particularly in cardiac conditions, is offered
by the addition of the cardiac baroreflex (La Rovere et al., 1998),
assessed either in time (baroreflex slope) (Bertinieri et al., 1985)
or frequency domain (index alpha) (Pagani et al., 1988).

A more-in-depth understanding of the hidden meaning of
various autonomic proxies could be achieved using specific
statistical tools. By Principal Component Analysis (Tarvainen
et al., 2014) or Factor Analysis (Fukusaki et al., 2000), one can
focus on the less explored hypothesis that information distributed
across HRV derived variables could be exploited simultaneously,
or again, by discriminant analysis (Jeong and Finkelstein, 2015),
used for a more efficient separation in clinical groups. In
particular, latent factor statistical methods may also help identify
homogeneous clusters of few variables capable of exploring the
pathophysiology underlying HRV characteristics. For instance, in
relatively large groups of participants, mathematical forecasting
showed that the major part of information (>80%) predicting
the stand induced sympathetic excitation in normal humans is
concentrated in only three variables (RR interval, LF and HF
in nu; Malliani et al., 1997). Moreover, a logistic regression
modeling approach showed that the autonomic information
predicting the hypertensive state is concentrated on RR variance,
the stand induced increase in LF nu, and the index alpha (Lucini
et al., 2014).

Following this rationale, we hypothesize that a data-driven,
pragmatic study protocol (Ford andNorrie, 2016), usingmultiple
statistical methods in an integrated way for detecting latent
domains (Thompson, 2004), could provide a novel approach
to assess which autonomic (ANS) clusters might define profiles
with the greatest discriminant capability across different clinical
conditions. Specifically, we start from the assumption that groups
such as athletes, normal subjects, obese subjects, people with
high stress and hypertensives, overall form a physiological-
pathological continuum of ANS regulation and dysregulation
that could be captured by statistical tools that are not model-
based. This is a crucial point. Setting up a statistical model
requires specifying a functional form plus a set of conjectures
about the data distribution through which a dependent variable,
e.g., the probability of membership to a group, is linked to a
set of good explicative variables, as, e.g., in the multinomial
logistic model. Statistical modeling could, however, carry with
it that data be severely forced within a too stringent statistical-
mathematical formulation, which could even lead to poor fitting.
We argued that this is particularly true in the context of
ANS variables (or proxies), where relationships among them
are still substantially under investigation (e.g., the difference
between the raw and normalized power of LF and HF
oscillations; Pagani et al., 1986). Moreover, most ANS proxies
are typically not normally distributed, so that application of
classical methods of statistical inference could lead to misleading
conclusions. Also, it would be useful to provide practical
indications about which ANS proxies could help distinguish
subjects outside a “normal” ANS condition. In this sense,
we treat subjects without pathologies (normal group) as the
reference condition and compare, with respect to this, the
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other states along the ANS continuum (Narkiewicz and Somers,
1998).

All these considerations influenced the choice of the statistical
approach where the primary concern was avoiding potential bias
in the analyses. We then preferred to rely on non-parametric and
multivariate exploratory statistical techniques and use them in an
integrated manner rather than refer to statistical modeling (e.g.,
multinomial logistic regression model) or discriminant analysis
(e.g., linear or quadratic discriminant analysis, which requires
multivariate normality of data; Jobson, 2012). More specifically,
we assess on a relatively large population of ambulant subjects
with an expected wide variation of autonomic performance
(from good to poor) whether clinical (or test) groups (athletes,
obese subjects, people with high stress, and hypertensives) can
be differentiated from controls (normal group) according to
differences in ANS latent domains. ANS latent domains that
prove to be capable of distinguishing clinical groups from
controls are the constitutive elements of what we regard as
ANS differentiation profiles of the clinical groups. We set up
such profiles in a three-step analysis, the first of which is the
preliminary handling of the ANS proxies. Since these latter ones
are affected by age and gender effects, we first compute adjusted
(Adj) ANS proxies, which are free from such effects, and use them
throughout the analyses to detect the ANS differentiation profiles
for each test group. We use non-parametric statistical procedures
(Bowman and Azzalini, 1997; Hollander et al., 2014) to disclose
individual Adj-ANS proxies that are capable of recognizing
differences between test and normal groups. Then, we employ
factor analysis to reduce the ANS proxies into few ANS latent
domains (Thompson, 2004) and assess their overall capacity to
recognize clinical groups vs. controls by exploiting the results
achieved for the individual discriminant ANS proxies. Lastly,
to give more practical value and improve readability, statistical
results concerning individual discriminant ANS proxies and ANS
differentiation profiles are displayed through peculiar graphical
tools, i.e., significance diagram and ANS differentiation map,
respectively. Implicitly this approach supports novel hypotheses
between statistical properties of data clusters and underlying
physiological organization (Pagani and Malliani, 2000).

Because of the complexity of the statistical approach and
richness of the results, a large part of them is omitted from the
text and presented in the Supplementary Material. We will not
however make specific reference to it throughout the text.

METHODS

Data for this study, which is part of an ongoing series
of investigations, focused on the use of autonomic indices
in cardiovascular prevention. They refer to a population of
1,352 ambulant subjects, who visited our outpatient Exercise
Medicine Clinic for reasons varying from a health check-up
to cardiovascular prevention (Lucini and Pagani, 2012) for
obesity, stress, or hypertension, or the annual pre-participation
sport screening (see Table 1). Data were excluded from the
study if subjects were outside the range of 18–75 years, if
they were smokers (any quantity), or affected by acute diseases

TABLE 1 | Frequency and percentage distributions of participants within clinical

groups.

Groups Count Percentage Description

Athlete 149 11.0% Competitive sports, e.g., basket

players, football players, badminton

players, cyclists, rowers: Years of

intense training and participation to

competitions

Normal 547 40.5% Non-smoking subjects without

pathologies

Obese 102 7.5% Subjects with BMI ≥ 30 (kg/m2)

Stress 190 14.1% Psychological dimension of stress:

Presence/absence of stress

according to self-report of

participants who asked advice for

stress symptoms lasting more than

three months, or referral by their

physicians

Hypertensive (HT) 271 20.0% Subjects with Systolic BP ≥ 140

mmHg or Diastolic BP ≥ 90 mmHg,

or both

HT-Obese 55 4.1% Obese subjects with high BP

HT-Stress 38 2.8% Stressed subjects with high BP

Total 1352 100.0%

(within 3 months), or treated with drugs known to interfere
with autonomic cardiovascular regulation or performance. The
protocol of the study followed the principles of the Declaration
of Helsinki and Title 45, US Code of Federal Regulations,
Part 46, Protection of Human Subjects, Revised 13 November
2001, effective 13 December 2001 and was approved by the
Independent Ethics Committee of IRCCS Humanitas Clinical
Institute (Rozzano, IT). All subjects gave their informed consent
to participate.

Autonomic Evaluation
The day of recordings, all individuals arrived at the laboratory
at least 2 h after a light breakfast, avoiding caffeinated beverages
and heavy physical exercise in the previous 24 h. To account for
circadian variations, acquisition of ECG (single thoracic lead)
and respiration (piezoelectric belt) (Marazza, Monza, Italy), and
arterial pressure waveforms (Finapres, TNO, Netherlands), were
always performed between 10.00 and 12.00 h. Following our usual
procedure, continuous signal (ECG, respiration, and arterial
pressure waveform) acquisition was obtained for at least 5–7min
at rest and 5min upon standing up. As described previously
(Pagani et al., 1986), from the autoregressive spectral analysis
of RR interval and systolic arterial pressure (SAP) variability, a
series of indices indirectly reflecting cardiovascular autonomic
modulation was derived, with minimal operator involvement
thanks to a dedicated software (Badilini et al., 2005; see Table 2).

We use (Pagani et al., 1986) an autoregressive algorithm
to automatically compute power and frequency of spectral
components in the bandwidth of interest, discarding components
of <5% power that are treated as noise. The software tool
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TABLE 2 | Definition of the variables (ANS proxies) employed in the study.

Vars. Units Definition

HR beat/min Heart Rate

RR Mean msec Average of RR interval from tachogram

RR TP msec2 RR variance from tachogram

RR LFa msec2 Absolute power(a) of Low Frequency (LF)

component of RR variability (V)

RR HFa msec2 Absolute power(a) of High Frequency (HF)

component of RRV

RR LFnu nu Normalized power(nu) of Low Frequency (LF)

component of RRV

RR HFnu nu Normalized power(nu) of High Frequency (HF)

component of RRV

RR LF/HF – Ratio between absolute values of LF and HF

RR LFHz Hz Center frequency of LF

RR HFHz Hz Center frequency of HF, providing a measure of

respiratory rate

1RRLFnu nu Difference in LF power in nu between stand

and rest

α index msec/mmHg Frequency domain measure of baroreflex gain

SAP mmHg Systolic arterial pressure by

sphygmomanometer

DAP mmHg Diastolic arterial pressure by

sphygmomanometer

SAP Mean mmHg Average of systogram (i.e., systolic arterial

pressure variability by Finometer)

SAP LFa mmHg2 Absolute power of LF component of systogram

(Badilini et al., 2005) is set as to consider components with
a center frequency of 0.03–0.14Hz as Low Frequency, and
components within the range 0.15–0.35Hz as High Frequency,
recalling that “the HF component is synchronous with the
respiration” (Pagani et al., 1986), using a high coherence between
RR variability and respiration as a confirmation. Recordings of
subjects with low-frequency breathing are discarded to avoid
entrainment, and biased increased LF power (Lucini et al., 2017).

The sensitivity of arterial baroreflex control of RR interval
was also assessed by a frequency domain method (α index =

average of the square root of the ratio between RR interval and
SA Pressure Spectral powers of the low-frequency and high-
frequency components; Pagani et al., 1988). In all individuals
included in the study, respiratory rate coincided with the high-
frequency component of RR variability.

Statistics
Individuals were divided into 7 clinical groups, from athletes
to hypertensive-stressed subjects (see Table 1). The majority of
individuals (40.5% out of 1,352) fell into the normal group,
which was regarded as the reference group. The other groups
were treated as test groups to be compared with the normal one.
Groups were chosen according to the likelihood of presenting
a condition of putative higher vagal drive, as expected in elite
athletes at midseason (Iellamo et al., 2002), or of excessive
sympathetic drive, as expected in patients (Mancia and Grassi,
2014) with obesity, hypertension or stress (Lucini and Pagani,

2012). That is in line with the study hypothesis that various
conditionsmight show different (possibly specific) differentiation
profiles of autonomic (ANS) proxies (Table 1). To account for
intertwined clinical conditions and carry out statistical analyses
ceteris paribus, subjects who presented a concurrence of obesity
and hypertension, or stress and hypertension, were aggregated
into two groups: HT-Obese (4.1%, Table 1) and HT-Stress (2.8%,
Table 1). On the other hand, subjects having either stress, and
obesity together, or stress, obesity, and hypertension together,
were discarded from the study because of their too exiguous
number (5 and 2 subjects only, respectively). Apart from these
situations, no other form of concurrence of different status was
observed.

The main aim of the study was the detection of ANS profiles
capable of distinguishing each test group from the normal one
in a “real life” ambulant population (Ford and Norrie, 2016).
We refer to these profiles as ANS differentiation profiles. Figure 1
sums up statistical analysis steps carried out for their detection.
A crucial issue affected the choice of the statistical approach.
Clinical groups were not directly comparable because of their
different composition in terms of age and gender. For instance,
71.1% of athletes were male, and 75.6% of obese individuals
were female; 98% of athletes were under 34 years of age, while
48% of hypertensive subjects were over 50 years. Setting up
ANS differentiation profiles by working within “age-by-gender”
classes did not prove to be a convenient solution in this case.
This choice would have meant dealing with empty subgroups
or subgroups too small in size (e.g., there was no female athlete
over 50 years of age). Comparability among the groups was thus
attained statistically by removing age and gender effects from the
considered ANS proxies. A 2-way full ANOVA model including
age and gender main effects plus their interaction was fitted to
eachANS proxy, andANOVA residuals, being free of such effects,
were used as so-called adjusted ANS proxies (Adj-ANS proxies;
Figure 1, preliminary step).

ANS differentiation profiles were thus built using the Adj-
ANS proxies, instead of the original ANS proxies, through the
further two-step analysis outlined in Figure 1 (steps 1 and 2).
The aim was first to detect single ANS proxies capable of
distinguishing the test groups from the normal one (step 1),
and subsequently, from this knowledge, set up discriminant ANS
domains in order to reduce the overlapping information of the
ANS proxies to a small number of latent dimensions (step 2).
Specifically, in the first step, each within-test-group distribution
of the Adj-ANS proxies was compared to the corresponding
within-normal-group distribution through the non-parametric
testing procedures by (a) Bowman and Azzalini’s permutation
(BA) test (Bowman and Azzalini, 1997), and (b) Jonckheere-
Terpstra’s (JT) permutation test (Hollander et al., 2014; Seshan,
2017). The nominal significance level was set at 0.05. Regarding
the BA test, rejection of the null hypothesis for a specific ANS
proxy in a “test-vs.-reference” comparison indicates, controlling
for age and gender effects, that the ANS proxy distribution for
that test group in the population has a shape generically different
to the normal population. By the permutation JT test, the nature
of these shape differences was investigated further. For every
“test-vs.-reference” comparison involving each Adj-ANS proxy,
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FIGURE 1 | Statistical analysis steps for the detection of ANS differentiation profiles.

the null hypothesis of equality between distributions was tested
using two separate one-sided JT tests: the first against the so-
called increasing alternative, the second against the decreasing
alternative (Figure 1, step 1). Rejection of the null hypothesis in
favor of an increasing (decreasing) alternative would evidence,
net of age and gender effects, that the ANS proxy distribution is
more highly concentrated around smaller (higher) values in the
test rather than the normal population.

In the second step (Figure 1), ANS differentiation profiles
were set up for each test group in the light of the results
achieved separately for the Adj-ANS proxies in step 1. This was
accomplished by:

i. detecting latent domains underlying the observed ANS
proxies (i.e., ANS latent domains), to obtain a limited set of
unobserved, uncorrelated dimensions of the ANS system that
are practically measured by the plurality of the ANS proxies.
This was carried out through factor analysis (Thompson, 2004;
principal factor extraction method with varimax rotation)
applied to the original ANS proxies. We regard the first
common factors each explaining a substantial percentage (i.e.,

at least 10%) of the total communality (i.e., the part of total
variance reproducible by common factors) as ANS latent
domains. And then:

ii. identifying, for each test group, the ANS latent domains of
stronger differentiation capability against the normal group
(according to the definition reported in Figure 1, step 2) using
the BA and JT test results of step 1. We refer to such domains
as discriminant ANS domains.

Regarding point (ii) above, discrimination capability of an ANS
latent domain was appraised for each test group by the number
of jointly significant results on BA and JT tests that occurred
for the Adj-ANS proxies connected with that specific domain.
In this regard, it is worth remarking that BA and JT tests might
not lead in general to concordant inferential results because these
procedures are based on far different theoretical grounds, and
therefore they can capture different aspects in the comparison
between two statistical distributions. Nonetheless, a significant
BA test followed by a not significant JT test could reveal that
two distributions differ in shape, but not in position, because of
a major/minor concentration of points in the central part or in
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the tails of one of the two distributions. The opposite situation
(a significant JT test and a not significant BA test) would indeed
be less clearly interpretable. From a practical point of view,
these situations could indicate weak empirical support toward the
alternative hypothesis of difference between distributions.

Statistical analysis ended with the set-up of ANS
differentiation profiles for each test group against the normal
group. These profiles were given for each test group by the
concurrence of the plurality of discriminant ANS domains
detected according to the above procedure. To provide a more
immediate clinical value, ANS differentiation profiles were
visualized through a graphical map (ANS differentiation map)
containing different color grades according to the strength of
their discrimination capability.

BA test, along with the smoothed density curves appearing
in Figure 2, and JT permutation test were carried out with
software R ver. 3.4.0 (R Core Team, Vienna, Austria, 2017) and
the libraries “clinfun” (Seshan, 2017) and “sm” (Bowman and
Azzalini, 2014), respectively. Descriptive statistics, construction
of Adj-ANS proxies through the 2-way full ANOVA model and
factor analysis were carried out with software SAS ver. 9.4.

RESULTS

Total and within-groups mean and standard deviation of the
considered 16 ANS proxies (definitions in Table 2) are presented
in Table 3.

Regarding the “test-vs.-reference” comparisons analysis (step
1, Figure 1), Figure 2 provides a graphical representation of
the BA test, which addresses the logic behind it. Empirical
density functions of a variable, rather than a usual summary
measure (e.g., the mean), are compared in their entirety across
two different groups and without assuming a priori hypotheses
on the data distribution. In such a way, the overall shape of
the distribution, and not only a single value, is considered
for comparisons. Pointwise comparisons are expressed by
means of a non-parametric 95%-confidence region (“reference
band for equality”). If two curves lie both inside it, then
they are accepted as equal. Otherwise, they are significantly
different. Specifically, in Figure 2 estimated density curves of
the distribution of six selected Adj-ANS proxies in the test
groups (red curve) and the normal group (black curve) are
depicted, and the reference band for equality (gray region) is
juxtaposed to show pointwise equality/difference between the
curves (Bowman and Azzalini, 1997). Overall, it is apparent
that different clinical conditions translate into diverse profiles
of autonomic differentiation from normal group. For instance,
the last row of panels in Figure 2 shows that, after controlling
for age and gender effects, the distribution of SAP Mean is
different from the normal group in all but athletes (first panel)
and stressed individuals (third panel). In these latter two groups,
the reference band exactly contains both the red and the black
curves (i.e., equality of the curves), while this does not occur
for the other groups (i.e., notice the difference between the
curves).

Figure 3 reports the significance diagram concerning the Adj-
ANS proxies resulted individually discriminant in each “test-
vs.-reference” comparison according to the BA and JT tests
jointly considered. Inequality symbol denotes BA significant
results. Solid up- and empty down-arrows mark JT significant
results (i.e., Adj-ANS proxy values greater/smaller than the
normal group, respectively). We regard an Adj-ANS proxy as
individually discriminant in a “test-vs.-reference” comparison
if both BA and JT test results are significant. In this way,
the probability of the overall type I error concerning the null
hypothesis of no difference in a “test-vs.-reference” comparison
of each Adj-ANS proxy is reduced to (0.05)2 = 0.0025. That is
in line with a more conservative approach that makes rejecting
the null hypothesis in favor of the alternative of individual
discrimination more difficult. A proxy of the level of strength
in individual discrimination capability is given here by the
magnitude of the BA and JT p-values jointly considered and
is indicated in the diagram by cells with different background
color shades (the darkest/lightest shade denotes the strongest/less
strong level of joint significance). On the other hand, blank cells
stand for at least a non-significant result and thus denote the
absence of individual discrimination capability.

By the significance diagram, it is apparent that, controlling for
age and gender effects, athletes tend to have higher values of RR
Mean, RRHFa, RRHFnu,1RRLFnu, SAP, and DAP than normal
individuals (solid up-arrow), and lower values of HR, RR LFa, RR
LFnu, RR LF/HF, and RR LFHz (empty down-arrow). Moreover,
the most individually discriminant ANS proxies turn out to be
RR Mean, RR HFnu, 1RRLFnu (the darkest yellow cells), and
HR, RR LFa, RR LFnu, RR LF/HF, and RR LFHz (the darkest blue
cells). On the other hand, hypertensive individuals tend to have
higher values of HR, RRHFa, RR LFnu, RRHFHz, SAP, DAP, and
SAP Mean (solid up-arrow), and lower values of RR Mean, RR
HFnu, 1RRLFnu, and α index (empty down-arrow), while the
most individually discriminant ANS proxies are HR, RR LFnu,
SAP, DAP, SAP Mean (the darkest yellow cells), and RR Mean,
RR HFnu, and α index (the darkest blue cells).

Regarding setting-up of ANS differentiation profiles (step
2, Figure 1), the main results of factor analysis carried out
for extracting ANS latent domains are given in Table 4. Total
communality amounts here to 76.67% of the total variance. In
line with the above definition, ANS latent domains are given
by the first four common factors, which together account for
86.9% of total communality (Table 4). Each factor explains
more than 10% of total communality. Specifically, the first
factor (40.84% of total communality) represents the Oscillatory
Domain (all indices of rhythms are in normalized units), being
highly positively correlated with RR HFnu and 1RRLFnu, and
negatively correlated with RR LF/HF and RR LFnu (Table 4, first
column). The second factor (18.04% of total communality) is the
Amplitude Domain because of its highly positive correlations
with RR TP, RR HFa, RR LFa, and α index (all indices in
raw values, Table 4, second column). The third factor (16.48%
of total communality) is the Pressure Domain, being highly
positively correlated with SAP, DAP, and SAP Mean (Table 4,
third column). The fourth factor (11.58% of total communality)
represents the Pulse (rate) Domain for its highly positive
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FIGURE 2 | Panel plot of estimated density curves* of six selected adjusted ANS proxies (i.e., RR Mean, RR TP, RR LFnu, RR HFnu, 1RRLFnu, α index, and SAP

Mean). Gray regions represent reference bands for equality between the curves of each test group against the normal group (N).*Density estimates are obtained

through the kernel density method by Bowman and Azzalini (1997). Roughly speaking, histogram of each adjusted ANS proxy is interpolated in order to have a

smoothed empirical density curve. Colors in each panel: the black curve refers to the normal group (reference group); the red curve concerns a specific test group

(Athlete, Obese, Stress, Hypertensive, HT-Obese, or HT-Stress, resp.) regarded for the comparison with the normal group. The gray region is a reference band for

equality between the two curves. Panels with significant results include p-values and significance codes: 0.001
†††

, 0.01
††
, 0.05

†
.

correlation with HR and negative correlation with RR Mean
(Table 4, fourth column). Three of the ANS proxies (i.e., RR
HFHz, RR LFHz, and SAP LFa) prove to be linked far weakly
with these four factors and then with the ANS latent domains.
Accordingly, they are discarded from the analyses subsequently
performed to detect discriminant ANS domains (Figure 1,
step 2).

Finally, Figure 4 reports the ANS differentiation map, i.e., the
graphical map of the ANS differentiation profiles set up for every
test group as described in Figure 1, step 2. Colored cells represent
the discriminant ANS domains, and are shaded differently
according to their level of discrimination capability (Figure 1,
step 2). For example, athletes’ ANS differentiation profile consists
of all the four domains together. Oscillatory and pulse domains
have the strongest discrimination capability, pressure domain has
a medium-strong level, and amplitude domain a medium level.
Moreover, by the significance diagram (Figure 3) it can be seen

that inside the oscillatory domain, controlling for age and gender
effects, values of RR HFnu and 1RRLFnu tend to be higher than
in normal individuals, while RR LFnu and RR LF/HF tend to
have lower values. Similarly, inside the pulse domain, HR is lower,
and RR Mean is higher than in normal individuals (Figure 3). In
pressure domain, SAP and DAP are higher, while in amplitude
domain RR LFa is lower and RR HFa is higher than in normal
individuals. ANS differentiation profile of hypertensive subjects
is also formed by the four ANS domains together (pressure
and pulse domains with the strongest discrimination capability).
Obese group differs from the normal group for pulse (strongest
discrimination), pressure and amplitude domains, similarly to
HT-Obese group (pulse and pressure domains with the strongest
discrimination capability). Pulse (strongest discrimination) and
amplitude domains characterize Stress group, while pressure
(strongest discrimination), oscillatory, and amplitude domains
constitute the ANS differentiation profile of HT-Stress.
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TABLE 3 | ANS proxies: Descriptive data (mean and standard deviation) within clinical groups and over the groups.

Groups

Vars Athlete Normal Obese Stress Hypertensive HT-obese HT-stress Total

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

HR 55.54 11.22 67.02 10.39 73.85 11.05 61.27 12.40 71.83 11.39 73.82 10.66 66.39 12.01 66.69 12.31

RR Mean 1124.00 227.53 917.62 148.68 831.11 128.45 1019.18 206.29 855.47 131.71 828.11 110.57 934.15 176.69 932.48 184.94

RR TP 6086.07 6843.65 3184.62 3414.38 1643.55 1689.91 2616.41 2388.96 1507.40 1412.89 1068.84 1189.08 1718.37 1266.80 2844.80 3632.93

RR LFa 1180.54 1186.36 1022.47 1491.71 501.45 608.27 804.60 1006.64 460.29 530.03 355.92 421.25 556.36 815.79 818.26 1170.04

RR HFa 2672.21 3800.57 998.40 1672.46 378.76 511.09 664.46 999.15 294.30 594.16 222.18 357.88 231.21 280.84 905.92 1878.27

RR LFnu 34.98 17.92 51.16 20.33 53.92 21.94 54.47 22.19 58.59 20.49 54.69 22.95 61.28 20.95 51.97 21.65

RR HFnu 59.53 19.08 41.61 20.23 37.51 21.36 37.74 21.61 31.75 18.73 36.57 20.91 29.66 18.92 40.21 21.53

RR LF/HF 0.82 0.91 2.28 3.24 4.29 9.87 3.34 4.97 3.99 5.82 3.18 4.59 5.98 12.33 2.90 5.31

RR LFHz 0.10 0.02 0.10 0.02 0.09 0.03 0.09 0.02 0.10 0.03 0.09 0.03 0.09 0.02 0.10 0.03

RR HFHz 0.27 0.06 0.27 0.06 0.30 0.07 0.25 0.06 0.28 0.06 0.30 0.08 0.23 0.06 0.27 0.06

1RRLFnu 47.57 20.92 27.44 20.54 14.45 23.40 23.05 21.90 15.44 20.21 7.95 23.12 15.85 17.76 24.55 23.20

α index 34.78 22.62 24.67 16.25 12.99 9.24 20.41 14.81 11.45 8.31 8.11 4.06 15.45 14.72 20.42 16.26

SAP 112.53 15.36 113.55 11.86 119.49 9.88 117.26 12.63 147.75 16.67 149.47 15.01 140.00 11.45 123.62 19.90

DAP 68.63 7.62 70.87 7.71 75.11 6.80 74.26 8.46 93.50 9.62 93.76 11.61 91.66 5.71 77.58 12.87

SAP Mean 108.62 12.91 114.38 12.49 120.30 12.06 119.17 13.69 150.95 19.91 144.06 12.26 140.34 14.41 123.50 20.19

SAP LFa 4.28 4.46 4.12 5.79 4.96 6.75 4.82 6.30 5.70 8.50 6.61 8.25 6.23 8.91 4.78 6.66

DISCUSSION

This investigation on a relatively large population of ambulant
subjects shows that multiple statistical tools used in an integrated
way can be profitably applied to the analysis of cardiovascular
variability. In particular, it suggests that clustering of ANS proxies
according to hidden factors (Thompson, 2004; Lucini et al., 2014)
might help differentiate properties of clinical groups (athletes,
obese subjects, people with high stress, and hypertensives) from
controls. To this end, we employ a three-step statistical analysis.
We use 2-way ANOVA residuals instead of raw values of the ANS
proxies to account for age and gender effects. We employ non-
parametric statistical procedures to identify discriminant Adj-
ANS proxies. Finally, we set up ANS differentiation profiles by
detecting which ANS latent domains have the highest capacity to
discriminate HRV properties of clinical groups vs. controls.

Statistics: A Novel Tool to Interpret
Autonomic Proxies
Usual studies on autonomic innervation representing ANS
proxies as raw values must deal with several potential
confounders. First, autonomic proxies show an important
age (Jandackova et al., 2016) and gender (Dart et al., 2002)
dependency, which might hinder clinical applications and affect
the capacity to discriminate between clinical groups.

In the present study, we have avoided this possible bias
by removing age and gender effects from the considered ANS
proxies and obtaining so-called adjusted ANS proxies (Adj-ANS
proxies), (Figure 1, preliminary step). This step permits to assess
the discrimination capability (clinical groups against controls) of
ANS proxies and ANS latent domains free of age and gender
effects. Accordingly, this approach avoids the drawback of the

difficulty of stratifying the subjects within the clinical groups
in age and gender classes of adequate size and composition, as
already discussed in the Statistics section. In this respect, we argue
that resorting to a de facto statistical remedy, i.e., the adjustment
of the ANS proxies using a statistical model (2-way ANOVA),
has the advantage of being applicable in every context where
stratification of subjects according to auxiliary characteristics
(e.g., age and gender) is not feasible.

Moreover, we are still facing the problem of the redundancy
of the measures. In other words, we do not know whether
all the individually discriminant ANS proxies carry the same
discriminant value (Malliani et al., 1997; Lucini et al., 2014), or
which one would be better to employ in practice. In this regard,
the significance diagram (Figure 3) highlights, with different
color shades of the cells, the ANS proxies that result in significant
comparisons between clinical groups and control. It should be
noticed that these shades represent the empirical significance
levels (i.e., the p-values) of BA and JT tests jointly considered and
not the pure discriminant power of the single ANS proxies.

Factor analysis is a statistical tool that helps unravel hidden
links between variables (Thompson, 2004). It also provides
clusters of variables that carry homogeneous overall meaning. It
appears particularly valuable in this context since it permits to
formulate hypotheses about the type of information carried by
the extracted clusters of ANS proxies. In doing so, it combines
statistics with underlying neural physiology. Here we have shown
that the information underlying the considered 16 ANS proxies
can be represented with a very good degree of approximation
by four common factors (whose fraction of information is of
sufficient amplitude: at least 10%). The combination of variables
strongly linked to the four hidden factors may suggest an
underlying meaning and physiological interpretation. More in
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FIGURE 3 | Significance diagram summing up the results of BA and JT permutation tests applied to the adjusted ANS proxies within each test group. Normal group is

the reference term in all the comparisons. Columns with header BA: Two-sided BA permutation test (at 0.05 level) in the comparison between the population density

functions fg (x) of test group g and fN (x) of normal group, resp.: 6= stands for significantly different population density functions for at least one x, a blank cell denotes

equal density curves (Figure 1, step 1). Columns with header JT: One-sided JT test (at 0.05 level) in the comparison between the two population distribution functions

Fg (x) of test group g and FN (x) of normal group: denotes Fg (x) significantly higher than FN (x) for at least one x; denotes Fg (x) significantly lower than FN (x)

for at least one x. A blank cell denotes a non-significant comparison (Figure 1, step 1).

Background color shades for joint significance of BA and JT tests:

- JT test with significant alternative

- JT test with significant alternative

.

detail, near 87% of the total communality (Table 4) is explained
by the first four latent factors. They refer to: (1) oscillatory
behavior (oscillatory domain, in nu) (Gerstner et al., 1997;
Buzsáki and Watson, 2012); (2) total variance, oscillatory raw
values and alpha index (amplitude domain, in absolute units) (La
Rovere et al., 1998; Pagani and Malliani, 2000); (3) raw values
of arterial pressure (pressure domain), and (4) raw values of
heart rate and RR interval (pulse domain). It seems therefore
that the major part of information carried by ANS proxies could
provide a window on the two principal coding of cardiovascular
variability (oscillations and amplitude, i.e., first and second
factor) (Pagani and Malliani, 2000) and simple hemodynamic
measures (arterial pressure and pulse rate, i.e., third and fourth
factor). Importantly this approach might help resolve (at least
as a first approximation) the riddle of which autonomic indices
should be clinically employed. In fact, it provides information
on how hidden factors govern major aspects of cardiovascular
variability. As a corollary, since all information about HRV and
arterial pressure findings can be summarized in four uncorrelated
factors, we may propose that this approach could be employed
to describe and monitor autonomic regulation and its changes
during relevant conditions. Just as an example, we may consider

managing training season in athletes, or monitor the effects of
stress and recovery, or of diets interventions in obese individuals.

In this context, the previous report of a strong coherence
between RR and ANS rhythms, according to the “concept
of common central mechanisms governing sympathetic and
parasympathetic rhythmic activity” (Pagani et al., 1997), seem to
imply a greater strength of oscillatory (i.e., nu) than amplitude
(i.e., raw values) information.

Individual Discrimination vs. Joint
Discrimination, Discrimination Capability
vs. Discrimination Power
As already mentioned, a fundamental step in the study was
to assess the individual discrimination capability of the Adj-
ANS proxies in the comparison between test groups and the
reference normal group in order to define the ANS differentiation
profiles. On this point, two remarks are worth making. First,
we have decided to proceed variable-by-variable and assess what
we have denoted as individual discrimination capability. In this
way, we intended to give some practical indications directly
usable in clinical terms about which ANS proxies could help
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TABLE 4 | Detection of ANS latent domains by factor analysis: Rotated factor

pattern matrix with the varimax method arrested to the first four factors.

Variables Factor1 Factor2 Factor3 Factor4

RR HFnu 92* 10 −12 −14

1RRLFnu 65* 12 −22 −8

RR LF/HF −57* −2 6 11

RR LFnu −96* −7 8 11

RR TP 15 96* −11 −17

RR HFa 40 77* −11 −9

RR LFa -21 74* −11 −15

α index 17 63* −27 −25

SAP −12 −12 96* 3

SAP Mean −11 −13 91* 3

DAP −19 −14 82* 8

HR −15 −20 9 96*

RR HFHz −14 −9 −3 29

RR Mean 13 19 −7 −94*

RR LFHz 12 6 −8 17

SAP LFa −14 5 12 3

% of total communality 40.84% 18.04% 16.48% 11.58%

cumulative % of total

communality

40.84% 58.88% 75.36% 86.94%

Total communality (i.e., total reproduced variance) = 12.267, total variance = 16,

percentage of total variance explained = 76.67%. Printed values are correlation

coefficients multiplied by 100 and rounded to the nearest integer. Asterisks flag correlation

coefficients greater than, or equal to, 0.4 in absolute value. Interpretation of the first four

factors: Factor 1 = Oscillatory domain (variables colored in lilac), Factor 2 = Amplitude

domain (variables in pink), Factor 3 = Pressure domain (variables in green), Factor 4 =

Pulse domain (variables in blue).

recognize subjects that are outside the normal group. As an
alternative, we could have proceeded by considering the ANS
proxies jointly and detecting the most discriminant ones each
net of the others. This would have required us to work within a
genuine statistical modeling approach, by specifying a suitable
functional form linking the variables along with formulating a set
of conjectures about the distribution of the data. Nevertheless,
this was outside our objective. At this stage of our exploration,
we feel that forcing the data in order that they meet relationships
still under investigation may be too premature. As another
alternative, we could have tested the discrimination capability
of the ANS latent domains produced by factor analysis, rather
than the single ANS proxies, thus working indirectly on the
clusters of the ANS proxies connected each to a specific HRV
domain. However, this approach has two main drawbacks.
The common factors representing the ANS latent domains are
not observable variables so that any analysis concerning their
individual discrimination capability would lead to indications
not directly usable in clinical practice. Moreover, the common
factors are extracted by the principal factor method, and then
from the part of the multidimensional variability shared by all the
ANS proxies. Consequently, the specificity of each ANS proxy,
which instead is the part of the variability not in common, would
have been de facto excluded from the discrimination capability
analysis.

Accordingly, at this stage, we have chosen to apply the non-
parametric BA and JT testing procedures to each single ANS
proxy (adjusted for age and gender effects) in order to: (1)
carry out “test-vs.-reference” comparisons variable-by-variable
without introducing a priori assumptions on the ANS proxy
distributions (most ANS proxies, both in original and adjusted
units, are not normally distributed), (2) perform the above
comparisons by considering the distributions of the ANS proxies
in their entirety, (3) draw conclusions about the individual
discrimination capability of each ANS proxy using two different
statistical testing procedures, to obtain as more robust results as
possible.

Second, strictly related to the point above there is the implicit
distinction, which ultimately affected the choice of the statistical
approach, between discrimination capability and discrimination
power. All the analyses we performed were addressed to detecting
the potential capability of the ANS proxies of distinguishing a test
group from the normal one in a wider population of subjects.
As already pointed out, this is not the same as evaluating the
discrimination power of the ANS proxies because, in general, it
is one thing to assess if a relation exists, quite another to say
how strong that relation is. Then, since we are at an exploratory
stage of the investigation, we have preferred to focus here on the
existence of the discrimination capability of each ANS proxy, and
defer any inspection toward their discrimination power in future
studies.

The Differentiation Profile
Traditionally comparison among groups is provided by the
difference from controls of various paradigmatic groups. Athletes
show, e.g., what could be interpreted as a vagal shift (Iellamo
et al., 2002; lower Heart Rate, greater RR variance, smaller
LF in nu, higher alpha index), combined with the greatest
value of increase LF nu with standing up (suggestive of
greatest sympathetic responsiveness, a much valued element in
competitive sport; Manzi et al., 2009).

From a practical point of view, we remind that a similar profile
can be observed in the distribution of raw and adjusted values. A
detailed statistical comparison with BA and JT non-parametric
tests suggests that differences between individual paradigmatic
groups and controls may be condition specific (Jänig, 2008;
Table 3 and Figures 2, 3). Moreover, BA and JT tests may disclose
subtle nuances of hidden coding modalities (Gerstner et al.,
1997; Buzsáki and Watson, 2012) between different indices that
might merit a deeper inquiry, as furnished by factor analysis
(Thompson, 2004; Table 4) according to a unique approach.
In brief, with BA and JT we perform comparisons between
the distributions of individual ANS proxies in clinical groups
and controls, while with factor analysis we reduce the number
of meaningful proxies to only four, and hence we can largely
simplify the assessment of the main traits distinguishing clinical
groups from controls (Figure 4). Instead of dealing with the
small portion of information individually distributed across all
autonomic indices, we can rely on the strength of the ANS
differentiation profiles, i.e., the discriminant ANS latent domains
disclosed by combining factor analysis with the test-vs.-reference
comparisons based on BA and JT tests. Notably, this approach,
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FIGURE 4 | ANS differentiation map of the test groups toward the normal group. *ANS differentiation profiles are given for each test group by the concurrence of the

discriminant ANS domains depicted in red, dark pink and light pink according to their strength of discrimination capability toward the normal group.

This strength is assessed as the number of jointly significant results on BA and JT tests occurred for the Adj-ANS proxies connected with each specific ANS latent

domain. Red cells denote the strongest level of discrimination, where all the tests involving Adj-ANS proxies in that domain are significant. Dark pink cells indicate a

medium-strong level of discrimination, in which there is at least a majority of significant results on both BA and JT tests. Light pink cells denote a medium level of

discrimination, where there is at least a majority of significant results on either BA or JT tests. Finally, white cells indicate that there are not enough significant test

results to regard a specific ANS latent domain as discriminant toward the normal group. **As a result of factor analysis (Table 4), ANS latent domains are connected

with the following ANS proxies: Oscillatory domain = RR LFnu, RR HFnu, RR LF/HF, and 1RRLFnu; Amplitude domain = RR TP, RR LFa, RR HFa, and α index;

Pressure domain = SAP, DAP, and SAP Mean; Pulse domain = HR and RR Mean.

which simultaneously uses all available information about the
system (Haken, 1977), shows that e.g., athletes (Figure 4) differ
from controls in all domains, but with a graded strength: maximal
in the (normalized) oscillatory and in the pulse domains, slightly
less in the pressure domain, and minimal in the amplitude
domain.

Also, the hypertensive group differs (Lucini et al., 2014) from
control in all the four domains, but with a different grading
(maximal strength for pressure and pulse domains, less so for
amplitude and oscillatory domains). Obese (Peterson et al., 1988),
Ht-Obese and Ht-Stress groups differ in three differentiating
domains. The Stress group (Lucini et al., 2002) differs in only
two domains (amplitude and pulse). We posit in addition that for
clinical applications the ANS differentiation map (as in Figure 4)
permits to rapidly and simply synthesize the possible difference
between clinical groups and controls, evidencing the ANS latent
domains that have at least a medium strength of discrimination.
While the ANS differentiationmap considers, in practice, clusters
of ANS proxies, the significance diagram (Figure 3) permits to
identify the single ANS proxies inside each ANS latent domain
that resulted in significant comparisons according to BA and
JT tests. This aspect may also help define ANS investigations
addressing differences between clinical groups on a more rational
basis.

Lastly, it is worth pointing out that the statistical methodology
we used here for setting up ANS differentiation profiles is broader
in scope. It is given by the integrated use of statistical analysis
methods that, from a theoretical point of view, were developed
irrespective of specific fields of application. Consequently,
we argue that, after due adjustments, this methodology
could be as well employed to study ANS differences of other
non-normal conditions, or even applied to detect differentiation
profiles among groups in other completely different
contexts.

Limitations
Important limitations must be recognized in this pragmatic
protocol (Ford and Norrie, 2016). First, this is an indirect study,
comparing groups at a one-time point only, but following usual
clinical routines. Moreover, the study population is large, and we
utilize extensively, we believe for the first time, a set of integrated
statistical procedures capable of providing a differentiation
map, showing which cluster of variables best indicate the ANS
difference between test groups and controls.

In addition, we do not present direct data on activity and
syntax of neurovegetative neurons (Buzsáki and Watson, 2012).
Indirect is, in particular, the nature of autonomic indices that are
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employed in this investigation. However, the integrated use of
multiple statistical tools permitted to provide empirical support
to the hypothesis that autonomic codes are expressed in either
amplitude or oscillations (Pagani and Malliani, 2000). Present
findings derive from the prevailing use of a data-driven (instead
of model-based) approach to the analyses, which allowed us to
build the ANS differentiationmap directly from the data, without
the need for a priori assumptions on the distributions of the ANS
proxies and their mutual relationships.

Moreover, given that the composition of the groups was
not homogeneous with respect to age and gender, we were
forced to rely on a statistical remedy, i.e., performing the
analyses on the ANS proxies adjusted for age and gender
effects instead of the original ones. Overall, in the “test-vs.-
reference” comparisons carried out using the Adj-ANS proxies
we have obtained results in line with the literature, e.g., in the
hypertensive group results concerning 1RRLFnu and α index,
which are the proxies with the highest informative content
for this group, are congruent with what is expected (Lucini
et al., 2014). There are, however, few exceptions. Again, in the
hypertensive group, net of age and gender effects, RR HFa
results significantly greater than in the normal group (Figure 3),
while we would have expected the opposite situation (Table 3).
This anomaly could be because we have used the adjusted ANS
proxies, with respect to which there is no comparability with the
literature yet.

In spite of a relatively large overall population, combined
conditions (such as stress, obesity, and hypertension) may lead
to very small subgroups, rendering impossible to interpret
confounding effects, or generalizing all findings. This would
require focused studies, possibly with specific interventions with
a longitudinal design.

CONCLUSIONS

The application of a pragmatic approach (Ford and Norrie,
2016), designed to show the behavior of ANS proxies close
to real life rather than in stringent laboratory conditions, and
the prevailing use of data-driven statistical methods on a large
dataset of several different paradigmatic groups of ambulant
subjects indicate that ANS variables cluster in a small number of
latent factors. Each factor is strongly linked to few homogeneous
proxies of autonomicmodulation. The properties of latent factors
might therefore suggest a novel way to interpret underlying
physiological mechanisms.

Thus the application of multiple (non-parametric and
exploratory) statistical and graphical tools to ANS proxies
defines differentiation profiles that could pave the way to a
better understanding of autonomic differences between clinical
groups and controls, with potential beneficial effects on clinical
applications.
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