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Dynamical models of biomolecular networks are successfully used to understand

the mechanisms underlying complex diseases and to design therapeutic strategies.

Network control and its special case of target control, is a promising avenue toward

developing disease therapies. In target control it is assumed that a small subset of

nodes is most relevant to the system’s state and the goal is to drive the target

nodes into their desired states. An example of target control would be driving a cell

to commit to apoptosis (programmed cell death). From the experimental perspective,

gene knockout, pharmacological inhibition of proteins, and providing sustained external

signals are among practical intervention techniques.We identify methodologies to use the

stabilizing effect of sustained interventions for target control in Boolean network models

of biomolecular networks. Specifically, we define the domain of influence (DOI) of a node

(in a certain state) to be the nodes (and their corresponding states) that will be ultimately

stabilized by the sustained state of this node regardless of the initial state of the system.

We also define the related concept of the logical domain of influence (LDOI) of a node,

and develop an algorithm for its identification using an auxiliary network that incorporates

the regulatory logic. This way a solution to the target control problem is a set of nodes

whose DOI can cover the desired target node states. We perform greedy randomized

adaptive search in node state space to find such solutions. We apply our strategy to in

silico biological network models of real systems to demonstrate its effectiveness.

Keywords: target control, Boolean network, biological network, domain of influence, logical modeling, network

dynamics

1. INTRODUCTION

In cellular systems various molecular species, such as DNA, RNA, proteins and small molecules,
interact in diverse ways. The totality of these interactions gives rise to cellular functions. The
relationship between molecular interacting systems and cellular functions is studied in the new
emerging field of systems biology (Alon, 2006; Palsson, 2006). A promising systems biology
methodology is to represent the molecular interacting system as a network, construct a dynamic
model of the information propagation on this network, and identify the cellular functions with
long-term behaviors of the dynamic model (Palsson, 2006; Newman, 2010; Wang et al., 2012;
Barabási and Pósfai, 2016). Various types of dynamical models of biological networks have been
built to integrate related experimental results and to reveal the underlying mechanisms of complex
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diseases such as cancers, and predict beneficial interventions.
Quantitative, mechanistic models, generally using systems of
ordinary or partial differential equations, can be highly accurate
and provide quantitative information (e.g., response time to
a signal, or fold-changes of protein concentrations) (Tyson
et al., 2003, 2011; Alon, 2006; Iyengar et al., 2012). These
models’ widespread use is limited by the scarcity of high-quality
quantitative data, such as kinetic and temporal information
about individual nodes in the network. Logical models using
discrete variables, such as Boolean network models, have the
advantage of being scalable and not requiring detailed knowledge
of kinetic parameters (Morris et al., 2010; Wynn et al., 2012;
Saadatpour and Albert, 2013; Laubenbacher et al., 2014; Abou-
Jaoudé et al., 2016; Bloomingdale et al., 2018; Zañudo et al., 2018).
An abundance of recent literature has shown that logical models
can capture the emergent behaviors of real biological systems,
they can generate predictions that are validated by follow-
up experiments and they can predict successful intervention
strategies (Li et al., 2004; Espinosa-Soto et al., 2004; Mendoza,
2006; Saez-Rodriguez et al., 2007; Naldi et al., 2010; Miskov-
Zivanov et al., 2013; Steinway et al., 2015; Albert et al., 2017;
Gómez Tejeda Zañudo et al., 2017). For example, logical models
of signaling networks that underlie hallmarks of cancer identified
the key mechanisms that yield cancer phenotypes and predicted
therapeutic interventions that disrupt these phenotypes; many
of these predictions were validated experimentally (Grieco et al.,
2013; Cohen et al., 2015; Méndez-López et al., 2017; Khan
et al., 2017; Kim et al., 2017). Discrete and quantitative models
are often consistent in capturing the response repertoire of
biological networks (e.g., their potential bistability or response to
perturbations) (Kraeutler et al., 2010; Steinway et al., 2016).

Analysis of a logical model entails the determination of
the attractors (long-term behaviors) of the system and of the
initial states that converge into each attractor (the basins of
attraction). Among other uses, this information is used to identify
therapeutic interventions as interventions that make a disease
attractor unreachable or unstable (Samaga et al., 2010; Abou-
Jaoudé et al., 2015; Kim et al., 2017). Attractor identification
can be accomplished by simulations of the system’s trajectories,
determination of all allowed state transitions, or by formal
methods such as model checking (Klarner and Siebert, 2015;
Abou-Jaoudé et al., 2016), process hitting (Paulevé et al., 2012),
or Groebner bases (Laubenbacher et al., 2014). The state space
of logical models is finite, but its size scales exponentially
with the number of nodes, and thus its full mapping is
impossible for systems with many elements. Methods that
determine the attractor repertoire of logical models without state
space exploration provide a desirable complement to dynamical
methods. For example, it was shown that the presence or absence
of positive and negative feedback loops in the interaction network
puts bounds on the type and number of attractors; e.g., a
necessary condition of multistability is the existence of a positive
feedback loop (Thomas and D’Ari, 1990; Paulevé and Richard,
2012).

Network control has recently become a popular research topic
as it reflects our interest to not only understand an interacting
system, but also intervene in it and modify its outcomes (Motter,

2015; Liu and Barabási, 2016). Network control is a broad subject;
different underlying models, different control goals and different
possible interventions can be considered (Liu and Barabási,
2016). Various control strategies have been designed for both
continuous dynamical systems (Liu et al., 2011; Cornelius et al.,
2013; Mochizuki et al., 2013; Wells et al., 2015; Wang et al.,
2016; Zañudo et al., 2017) and discrete ones (Murrugarra and
Dimitrova, 2015; Zañudo and Albert, 2015; Murrugarra et al.,
2016; Yang et al., 2016). Of particular interest are the methods
that do not require knowledge of the detailed dynamics and
parameters of the system, but instead are largely based on the
structure of the interaction network and generic assumptions
about the functional form of the dependences among variables.
In electric circuits modeled by a system of linear ordinary
differential equations, it is possible to use graph theoretical
methods to identify the set of nodes whose external control can
drive the system to any state from any initial condition (Lin,
1974; Liu et al., 2011). For systems with non-linear dynamics,
attractor control, that is, to drive the system to one of its natural
attractors from any initial condition, has been achieved in several
modeling frameworks. Among these, two methods are based
on the control of feedback loops: feedback vertex control for
ordinary differential equation models (Mochizuki et al., 2013)
and stable motif control for logic (Boolean) models (Zañudo and
Albert, 2015). However, in biological systems it is not necessary
and often not practical to control every component of the system.
A more realistic problem is target control, where we assume that
the state of the system is characterized by a subset of components
and the control goal is to drive these components into desired
states. The target control problem has been considered in systems
with linear dynamics by Gao et al. (2014), who identified sets
of nodes which, if put under suitable (potentially time-varying)
external control, drive the target nodes into the desired state.

Despite recent progress in molecular biology, quantitatively
manipulating the level of a chemical species is still a
challenging problem for experimentalists. Thus any control
strategy involving applying time-dependent, variable signals to
a target is hard to implement in real systems. However, gene
knockout, pharmacological inhibition of proteins and providing
sustained external signals have been robustly implemented and
demonstrated to be effective intervention strategies (Hopkins
and Groom, 2002; Nicholl, 2008; Shalem et al., 2014). Thus we
choose our intervention options to be maintaining a sustained
state (either absence or abundant activity) in order to make
the solution more practical. The effect of such interventions to
achieve target control in Boolean network models was previously
considered by Klamt et al. (2006) and Samaga et al. (2010). Klamt
et al. used the interaction network and regulatory logic to identify
the effect of interventions, and determined minimal intervention
sets by systematic consideration of all single interventions and
combinations of interventions. Samaga et al. made the search for
interventions more efficient by using filtering strategies based on
the interaction network (e.g., if a candidate intervention source
has only negative paths to a target node, then an activating
intervention of the source is not useful for activation of the target
node) and by grouping equivalent interventions (e.g., if activating
a node is sufficient for activating a direct neighbor, then these
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interventions are equivalent and only one of them needs to be
considered).

Here we propose an alternative and complementary
intervention prediction method that uses heuristics based on
the system-wide influence of the intervention due both to
the connectivity and regulatory logic of the modeled system.
Specifically, we base these heuristics on each node’s domain
of influence (DOI), which identifies which other nodes will
adopt a fixed state following an intervention that maintains a
sustained state of this node, regardless of the system’s initial
state. While in general determining the DOI of a node requires
exploration of the state space, here we introduce the related
concept of logical domain of influence (LDOI) of a node, which
can be determined based on the interaction network and the
regulatory logic. Specifically, the LDOI is defined on the so-called
expanded network introduced in (Albert and Othmer, 2003;
Wang and Albert, 2011), which is similar in spirit to a logical
interaction hypergraph (Klamt et al., 2006). We use the size and
internal consistency of the logic domain of influence (LDOI)
to inform a greedy randomized adaptive search to identify the
sets of nodes whose DOI can cover the desired target node state
(combination).

In the following, we give background information on the
Boolean modeling framework and relevant previously-developed
concepts such as the expanded network and stable motifs. Then
we define the DOI and LDOI of a node or multiple nodes and
analyze their properties, such as their internal consistency (or
lack thereof) and relationship to dynamic attractors. We then
define our target control problem and describe our DOI-based
target control strategy using greedy randomized adaptive search
in node state space. We finally illustrate the effectiveness of our
target control strategy in random ensembles and four in silico
biological network models.

2. MATERIALS AND METHODS

2.1. Background on Boolean Network
Models of Biological Systems
A dynamical model of a biological system starts with the
construction of a network (graph) consisting of nodes (also called
vertices) that represent the system’s elements and edges that
specify the pairwise relationships between nodes. In biological
networks at the molecular level, nodes are molecular species such
as small molecules, RNA, protein, and edges indicate interactions
and regulatory relationships. In discrete dynamic (also called
logical) models, each node i is characterized by a discrete state
variable σi, and the vector (σ1, · · · , σn) represents the state of
the system (Morris et al., 2010; Wynn et al., 2012; Saadatpour
and Albert, 2013; Laubenbacher et al., 2014; Abou-Jaoudé et al.,
2016; Bloomingdale et al., 2018; Zañudo et al., 2018). The state
of the system can be followed in continuous time or at discrete
time intervals. In discrete time models, the activity of each
node σi is described by a regulatory function σi(t + τi) =
fi(σi1 (t), · · · , σik (t)), where i1, · · · , ik are the regulating nodes
of i and τi is a discrete time delay. The regulatory functions f
cannot be constant functions (i.e., cannot yield the same output

regardless of the state of the regulators). In models describing
signal transduction networks the external signals are represented
with source nodes whose regulatory functions depend only on
their own state, usually sustaining this state: σi(t + τi) = σi(t).

Here we focus on discrete time Boolean network models,
where node states are binary, 1(ON) or 0(OFF), and the
regulatory function is specified by a truth table or using the
Boolean operators AND, OR, NOT (Kauffman, 1969; Glass
and Kauffman, 1973). This is motivated by the fact that
biological species are frequently observed to demonstrate switch-
like behaviors and have highly nonlinear regulations; thus the
node state 1 means the molecular species is above a threshold
concentration or activity and thus it is able to regulate its targets,
and the node state 0 means it is below a threshold concentration
or activity and is thus ineffective (Bornholdt, 2008; Wang et al.,
2012). Depending on the updating scheme, the time trajectory
of the system is simulated deterministically or stochastically. A
simple deterministic updating scheme is synchronous updating,
where τi = 1 for every node (Wang et al., 2012). In this scheme,
the systemwill deterministically evolve from a specific initial state
into an attractor, which can be a steady state (fixed point) or a
limit cycle, which consists of several states that repeat regularly.
Steady states can be interpreted as cell types; limit cycles may
correspond to a cell cycle or circadian rhythms. In general
asynchronous updating, a commonly used stochastic updating
scheme, a random node is selected to be updated at each time
step (Glass, 1975). This type of update is motivated by the fact
that different biological processes have various timescales, and
often the timescales of specific processes are not known (Papin
et al., 2005). While limit cycles depend on the specific chosen
updating regime, fixed points (steady states) do not depend on
the updating scheme (Klemm and Bornholdt, 2005). Stochastic
update may lead to attractors that involve irregular repetition of
a set of states, called complex attractors.

2.2. The Expanded Network and Its Use in
Identifying the Attractor Repertoire of a
Boolean Network
The possible combinatorial effect of multiple incoming regulators
of a node is important, however, it is not explicitly represented
by a regular interaction network. This motivated researchers to
develop a concept called the expanded network, which integrates
the original network with the regulatory rules of each node
(Albert and Othmer, 2003; Wang and Albert, 2011). We illustrate
the expanded network with the example in Figure 1 , which
consists of five nodes, node 0, 1, 2, 3, and 4 with the regulatory
functions f0 = NOT σ3, f1 = (NOT σ0) OR σ3, f2 =
NOT σ1, f3 = (NOT σ2) OR (NOT σ4), f4 =

σ0 OR σ1. First, we denote each original node i by ni in the
expanded network, and we introduce a complementary node
for each original node in the system to represent the negation
(deactivation) of the original node, denoted by ∼ni (Wang and
Albert, 2011). As the NOT function is a unary operator, all the
NOT functions are replaced by the negated state of the respective
node (i.e., its complementary node) in each Boolean regulatory
function. Edges are introduced in the expanded network to
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FIGURE 1 | Illustration of the expanded network, stable motifs and logic domain of influence on a simple example. The network is shown in panel (A). Each edge

with an arrow represents activation and each edge with a flat bar represents inhibition. The Boolean regulatory functions are specified as follows: f0 = NOT σ3,

f1 = (NOT σ0) OR σ3, f2 = NOT σ1, f3 = (NOT σ2) OR (NOT σ4), f4 = σ0 OR σ1. Panel (B) shows the expanded network of this example. Each node i in panel (A) has

a correspondent ni and its complementary node ∼ni in panel (B). (Note that ni is labeled as ni in panel (B) to be more visible). A composite node is drawn as a filled

black circle and & represents the AND logic operator. Panel (C) indicates the stable motifs; each blue node is a single-node core of the corresponding stable motif.

Panels (D,E) show the LDOI of {∼n4} and {n2, n4}, respectively, overlaid over the expanded network. Nodes with thick orange boundary are the sustained

interventions and the green nodes are their LDOI.

represent the thus-transformed regulatory functions so that
every edge represents a positive regulatory relationship in the
expanded network. For example, f0 = NOT σ3 implies the
rule for the original node n0 as fn0 = NOT n3 = ∼n3,
and thus a corresponding edge is drawn from ∼n3 to n0 in
the expanded network. The Boolean regulatory function for
the complementary (negated) node is the logical negation of the
regulatory function of the original node. In this example, f∼n0 =
NOT (NOT n3) = n3 and thus a corresponding edge is drawn
from n3 to∼n0 in the expanded network.

Second, to differentiate OR rules from AND rules when
multiple edges point toward the same target node, we introduce
a composite node for each set of edges that are linked by an
AND function (Wang and Albert, 2011). In order to uniquely
determine the edges of the expanded network, the regulatory
functions need to be specified in disjunctive normal form, that
is, a disjunction of conjunctive clauses (in other words, grouped
AND clauses separated by OR clauses). For example, (A AND
B) OR (A AND C) is in a disjunctive normal form, while
its equivalent form A AND (B OR C) is not. The desired
disjunctive normal form can be formed by a disjunction of
all conditions that give output 1 in the Boolean table and
then simplified to the disjunction of prime implicants (Blake
canonical form) by the Quine-McCluskey algorithm (McCluskey,
1956). Now we add a composite node for each AND clause

in the Boolean regulatory function, denoted by a filled black
circle in Figure 1B. We add edges from the non-composite
nodes of the expanded network that form this clause to this
composite node. For example, the composite node ∼n0&∼n1
in the left upper part of Figure 1B represents the expression
(NOT n0) AND (NOT n1). The expanded network has edges
from∼n0 to the composite node and from∼n1 to the composite
node. This composite node expresses the regulatory function of
the complementary node ∼n4, namely, f∼n4 = NOT fn4 =
NOT n0 AND NOT n1 = ∼n0 AND ∼n1. To reflect this,
the expanded network contains an edge from this composite
node to ∼n4. Now the benefit of introducing complementary
and composite nodes is evident: one can read all the regulatory
functions from the topology of the expanded network. The NOT
rule is indicated by a complementary node, the AND rule is
indicated by a composite node with multiple regulators, while all
the other edges represent independent activation (parts of an OR
function). Moreover, the expanded network also incorporates the
negations of the regulatory functions. Thus, for each node i, the
expanded network reflects the condition that needs to be satisfied
in order for σi = 1 (in the incoming edges of the node ni) and
the condition that needs to be satisfied in order for σi = 0 (in the
incoming edges of the node∼ni).

As the expanded network encapsulates the regulatory logic
that determines the network dynamics, it can serve as a basis
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for attractor analysis. One approach is through analyzing the
stable motifs of the expanded network (Zañudo and Albert,
2013). A stable motif is defined as the smallest strongly connected
component (SCC) satisfying the following two properties: (1)
The SCC cannot contain both a node and its complementary
node and (2) If the SCC contains a composite node, it must also
contain all of its input nodes (Zañudo and Albert, 2013). The
first requirement guarantees that the SCC does not contain any
conflict in node states and the second requirement guarantees
that all the conditional dependence is satisfied and the SCC is
self-sufficient in maintaining each node state inside the stable
motif. Thus the stable motif represents a group of nodes that
can sustain their states irrespective of outside nodes’ states. The
corresponding node states implied by the stable motif can be
directly read out: an original node represents the ON (1) state
and a complementary node represents the OFF (0) state (Zañudo
and Albert, 2013). For example, in the left part of Figure 1C,
node n1,∼n2, and n3 form a stable motif, representing that
node 1 and node 3 are ON and node 2 is OFF. There is a
strong correspondence between stable motifs and the attractors
of the system. Specifically, there is a one-to-one correspondence
between a sequence of stable motifs and a fixed point or a partial
fixed point (a part of a complex attractor). A partial fixed point
is defined as a true subset of all the nodes whose respective state
remains unchanged after being updated regardless of the states of
the nodes excluded from this subset (Zañudo and Albert, 2013).

2.3. The Domain of Influence of a
Sustained Node State
We define the DOI of an intervention that maintains a sustained
node state as all the node states that will be stabilized (i.e., attain
a stationary value) in the long term under the influence of this
intervention for all initial conditions in any updating regime.
Mathematically, D(σi = σ̃i) = {σj = σ̃j : σj(t) = σ̃j as t →
∞ for any (σ1(t = 0), ..., σk(t = 0)) when σi(t) = σ̃i for any t >

0}, where σi(t) = σ̃i is the intervention, σ̃i = 0 represents
knockout or suppression and σ̃i = 1 represents sustained
activation, σ̃j represents a node state fixed by the intervention,
and (σ1(t = 0), ..., σk(t = 0)) represents the initial condition of
all the nodes of the system. We do not include the intervention
node state σi = σ̃i in its own DOI, unless the node is sufficient
to maintain the corresponding node state in the long term even
in the absence of a sustained intervention. Notice that there is
one-to-one correspondence between a node state σi = σ̃i and
a non-composite node nex in the expanded network : σi = 1
corresponds to a normal node ni in the expanded network and
σi = 0 corresponds to a negation node ∼ni. Thus we use the
two notations interchangeably, that is, σj = 1 ∈ D(σi = 1) is
equivalent to nj ∈ D(ni) and σj = 0 ∈ D(σi = 0) is equivalent to
∼nj ∈ D(∼ni).

The DOI of a node is difficult to calculate because it
entails determining the common part of all attractors of a
dynamical system to identify the nodes whose states stabilize
due to the considered intervention. As an alternative to this
computationally hard problem, we define a related concept
called the LDOI of an intervention that maintains a sustained

node state. The LDOI consists of all the node states that, for
any initial condition, are stabilized by the first update of the
corresponding node in an updating regime that preserves the
level order (breadth first search order) of the expanded network.
An updating regime preserves the level order if all the nodes
in the nth level are updated at least once before updating any
node in the (n+ 1)th level (see details in Supplementary Material
2.1). We denote the LDOI of a node state σi as LD(σi =
σ̃i). We define the LDOI of an empty set to be an empty set,
LD(Ø) = Ø. This is consistent with the definition as an updating
order preserving the level order starting from a null set can
start from any node, and a node will not achieve a stationary
state upon its very first update for all initial conditions unless
its regulatory function is a constant. Source nodes remain in
their initial state, which nevertheless will be different for different
initial conditions.

2.4. Determining the Logical Domain of
Influence of a Sustained Node State
We propose to find the LDOI of a node state by doing a modified
breadth first search (BFS) on the expanded network (see the
pseudocode in Supplementary Material section 1.1). In order
to find the LDOI of σi = σ̃i, we start the search from the
corresponding node ni on the expanded network if σi = 1
or we start the search from the complementary node ∼ni if
σi = 0. If we meet another non-composite node, we add this
node to the LDOI; if we meet a composite node, we add this
composite node only if all of its parent nodes (i.e., regulators)
are already part of the LDOI. This is due to the fact that any
edge from a node to a non-composite node represents a sufficient
relationship and any edge from a node to a composite node
represents a necessary relationship. We keep searching on the
expanded network until no new nodes can be added to the LDOI.
For example, in Figure 1B, one can readily see that LD(σ1 =
1) ≡ LD(n1) = {n4,∼n2, n3, n1,∼n0} following the described
search procedure. The first difference from a normal BFS to find a
connected component starting from a node is that we put an extra
rule for including a composite node. Another subtle difference
is that we do not include the starting point unless we visit this
starting point again in our search process.

During the search process, there is a possibility that we meet
the negation of the starting point. This reflects the possibility that
a node state can indirectly lead to the opposite state through
a negative feedback loop. This outcome represents a conflict
with the original intervention. We do not add this node to the
LDOI because we assume that the intervention can sustain the
original node state, thus the opposite state is not reachable. This
truncation of the LDOI to avoid including the negation of the
starting node state ensures that the LDOI will not contain a node
which is the negation of an already visited node. Mathematically,
if a non-composite node nexi ∈ LD(nexj ), then nexj is sufficient

to activate nexi , i.e., the long-term logical rule for nexi can be
expressed in the form nexi = nexj OR · · · ; this implies

∼nexi =∼n
ex
j AND · · · , i.e., ∼nexj is necessary to activate ∼nexi .

Thus any conflict between nexi and ∼nexi will occur after the
conflict between nexj and ∼nexj during the search process. This

Frontiers in Physiology | www.frontiersin.org 5 May 2018 | Volume 9 | Article 454

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Yang et al. Target Control in Logical Models

truncation of the LDOI is the third difference compared with a
normal BFS.

For example, in the network of Figure 1D, the LDOI of
the complementary node ∼n4 includes nodes n3,∼n0, n1,∼n2
following the search procedure. From n1 one can also reach node
n4, which is the negation of the considered intervention. Thus we
stopped this branch of searching based on our truncation rule.
Since there are no more nodes that can be added, we conclude
that LD(∼n4) = {n3,∼n0, n1,∼n2}.

Our LDOI search procedure is equivalent to doing a
simulation on the expanded network. If we update the system
corresponding to the BFS order of the expanded network starting
from the intervention node (i.e., we update node i if we visited nexi
on the expanded network), all the updated nodes are guaranteed
to stabilize in the corresponding visited state on the expanded
network, i.e., as in the LDOI of that node. In the example of
Figure 1, as discussed above, LD(n1) = {n4,∼n2, n3, n1,∼n0}.
If we update the nodes in the order 4, 2, 3, 1, 0, each node will
stabilize in the state as in LD(n1). We note that this does not put
a restriction on the updating regime: if we update the system in
an arbitrary order, each node in the LDOI of the given sustained
intervention will attain a stationary state in the first update after
all of its regulators included in the LDOI have been updated once.
For example, if we fixed the node 1 to be ON and we perform
rounds of update of the nodes in the order 0, 1, 2, 3, 4, nodes 2, 3,
and 4 will be stabilized in the first round of updating, while nodes
0 and 1 will be stabilized in the second round.

The difference between the LDOI and DOI is that LDOI
requires the nodes to be stabilized when being updated for the
first time, while DOI just requires the nodes to be stabilized in
finite time. Thus one can see that the LDOI of a node will be
a subset of the DOI of a node. In many cases the two concepts
give the same result. Two exceptions are illustrated in Figure 2.
In both cases the DOI of an intervention contains more nodes
than the LDOI of this intervention. This is because certain nodes
may stabilize not because of the influence of the intervention
but because of the collective effect of two inconsistent feedback
loops or because of a stable motif stabilized by an oscillation.
In the network of Figure 2A, the three regulators of node B
are independent and the network includes both a positive and
a negative feedback loop. To analyze the LDOI of A = 1,
taking the feedback effect of C and D on B into consideration,
the regulatory function of B is simplified into σB(t + τB) =
σB(t − τC) OR NOT (σB(t − τD)), where τi is the discrete time
delay for node i, as introduced in section 2.1. This regulatory
function admits a constant solution σB = 1 regardless of the
values of the time delays (Saadatpour et al., 2010; Azuma et al.,
2014). It may additionally admit an oscillatory solution for strict
relationships among the time delays. In the cases where there
is no oscillatory solution, for example in the cases where only
one node can change state at a time, D(A) = {B,C,∼D}, as
the stabilization of B leads to the stabilization of C and D as
well. However, LD(A) = Ø as the activation of the composite
node requires nodes A,∼C,∼D on the expanded network shown
in Figure 2B and thus we cannot add the composite node to
the LDOI of node A. In the example shown in Figure 2C, the
two regulators are independent for node B, D(C) = {B} as the

FIGURE 2 | Two example networks (A,C) and their respective expanded

networks (B,D) that illustrate the difference between DOI and LDOI. In both

networks, an edge with an arrowhead represents activation while an edge with

flat bar represents inhibition. Implicit positive self-loops stemming from the

assumed sustained states of source nodes are not shown in panels (A,C). In

panel (A) the regulatory functions are fA = A, fB = (NOT A) OR C OR D,
fC = B, fD = NOT B . When A = 1 the system has a fixed point

σB = σC = 1, σD = 0. In panel (C) the regulatory functions are fA = NOT A,
fB = A OR B OR NOT C, fC = C. When σC = 1 the system has a complex

attractor in which A oscillates and σB = 1.

negative feedback loop of node A will make A oscillate, but B will
stabilize into the ON state after the first time that A visits the ON
state and activates B, while LD(C) = Ø for the same reason as in
the last example.

2.5. Properties of the Logical Domain of
Influence of a Sustained Node State
In order to further illustrate the concept of LDOI, we discuss
a few of its properties and its relationship with established
concepts in Boolean dynamics. The LDOI of a node state is
mathematically equivalent to the three-valued logical steady state
that results when this node state is fixed (Klamt et al., 2006;
Samaga et al., 2010). Here the three values are 0, 1, and unknown
(for nodes who do not attain a stationary state solely due to
the original node’s fixed state). The LDOI of a node state is also
equivalent to the set of nodes, and corresponding states, that are
identified using network reduction techniques [i.e., by iteratively
substituting the fixed node state(s) into the regulatory function(s)
of target nodes] (Bilke and Sjunnesson, 2001; Naldi et al., 2012;
Saadatpour et al., 2013). Previous analysis (Samaga et al., 2010;
Saadatpour et al., 2013) identified that if node i has a single
outgoing edge, and is a sufficient regulator of its sole target node,
j, the LDOI of the ON state of i contains the LDOI of the ON state
of j. Here we study in general the possible inclusion relationship
between the logic domains of influence of two node states σi = σ̃i
and σj = σ̃j in the case when σj = σ̃j ∈ LD(σi = σ̃i) or
nexj ∈ LD(nexi ) in the expanded network notation, where nexi and

nexj represent any non-composite node in the expanded network.

In a directed graph, if node nj is a reachable from node ni, all
descendants of nj will also be reachable from ni; indeed one can
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easily prove this by contradiction. However, due to the special
properties of the expanded network and the truncation of the
LDOI, this inclusion relationship LD(nexj ) ⊆ LD(nexi ) is not

generally true for the expanded network. It is possible that nexj ∈

LD(nexi ), however, ∼nexi ∈ LD(nexj ). In this case, by definition

of the LDOI, we won’t allow the negation of a node state to be
part of the LDOI of a node state. For example, n1 ∈ LD(∼n4),
however, n4 ∈ LD(n1). Thus LD(n1) 6⊂ LD(∼n4).

If we add an additional restriction on the two nodes, this
inclusion relationship will hold the same way as for descendants
in a directed graph. To be specific, the first key property of the
LDOI is, if the node state σi = σ̃i and σj = σ̃j, corresponding
to the two non-composite node nexi and nexj on the expanded

network, are both included in the same (partial) fixed point and
nexj ∈ LD(nexi ), the LDOI of nexj will be a subset of the LDOI of

nexi , i.e., LD(nexj ) ⊆ LD(nexi ). (Recall that a partial fixed point is

a subset of nodes whose respective state remains unchanged after
being updated regardless of the states of the nodes excluded from
this subset.) The reason why the inclusion relationship holds is
that node states in a (partial) fixed point stabilize in the long
term, thus they will not lead to a situation with opposing behavior
nexj ∈ LD(nexi ) and ∼nexi ∈ LD(nexj ). This restriction can be

weakened to only require that node state nexi is in a (partial)
fixed point. The reason is that if nexj ∈ LD(nexi ) and nexi is in a

(partial) fixed point, then nexj must also be in the same (partial)

fixed point, or be a node whose state stabilizes due to the nodes
in the partial fixed point. Also, as one or more stable motifs are
part of a (partial) fixed point, the conclusion will be true if one
replaces “(partial) fixed point” by “stable motif ” in the above
statement. In the example of Figure 1, as nodes n1, ∼n2 and n3
form a stable motif and its corresponding (partial) fixed point is
(σ1, σ2, σ3) = (1, 0, 1) as shown in Figure 1C, which also lead to
the stabilization of the remaining two nodes as σ0 = 0 and σ4 =

1, thus n3 ∈ LD(n1) implies that LD(n3) ⊆ LD(n1). In fact,
LD(n3) = LD(n1) = {n4,∼n2, n3, n1,∼n0}. Also n4 ∈ LD(n1)
implies that LD(n4) ⊆ LD(n1). Note that only n1 is part of the
stable motif or partial fixed point in the latter example, n4 is not.

As stable motifs represent generalized positive feedback loops
of the Boolean network (Zañudo and Albert, 2013), we explore
the relationship between stable motifs and the LDOI of a node
state. The second key property of LDOI is, if the LDOI of a
node state contains this node state itself, the LDOI contains a
stable motif. As the LDOI of a node state only contains the node
state itself if we meet this node during the search process on
the expanded network, this indicates the existence of a positive
feedback loop, which is the intuition why this proposition holds.
(A sketch of proof from the dynamical standpoint is included in
Supplementary Material section 2.2). For example, n1 ∈ LD(n1)
implies that there exists a stable motif contained in LD(n1),
indeed, SM1 = {n1,∼n2, n3} ⊆ LD(n1).

2.6. The Domain of Influence of a Node
State Set
Now we generalize the concept of DOI of a single node state to
DOI of a node state set (i.e., a set of nodes, each in a sustained
state). We define the DOI of a node state set as all the node

states that can be stabilized in the long term by the given set of
node states under all initial conditions in any updating regime.
Mathematically, D({σi = σ̃i}) = {{σj = σ̃j} : σj(t) = σ̃j as t →
∞ for any (σ1(t = 0), ..., σk(t = 0)) when σi(t) = σ̃i for any t >

0}, where {σi(t) = σ̃i} represents the intervention consisting of a
specific set of node states. Note that the following two notations
are equivalent: D({σi = σ̃i}) ≡ D({nexi }). Similarly, we define the
LDOI of a node state set, LD({σi = σ̃i}), as all the nodes that can
be stabilized by the first update in any BFS order-preserving (on
the expanded network) update order starting from this given set
of node states under all initial conditions. As in the single node
state case, the LDOI of a node state set will be a subset of the DOI
of the same node state set.

The LDOI of a node state set can be determined by a
modified BFS on the expanded network, now using multiple
starting points. This does not add complexity to the iterative
implementation of BFS: we just need to initialize the queue with
the set of given node states. Similar to the case of finding the
LDOI of a single node state, we need to deal with the conflicts
that may occur during the search process. To be precise, conflict
means that during the search we visit a node state that is the
negation of a node state included in the intervention. Two types
of conflict can arise. First, a node state in the given set may
be impacted by negative feedback and have a LDOI that was
truncated to avoid containing its own negation. Second, the
LDOI of two node states nexi and nexj may have the property

∼nexi ∈ LD(nexj ) or ∼nexj ∈ LD(nexi ), or both. In other

words, node i may regulate node j (or vice versa) in a way
that is incompatible with the intervention (e.g., a node whose
sustained activity is part of the intervention may negatively
regulate another node whose sustained activity is part of the
intervention). We call intervention sets that have either type of
conflict incompatible sets; we refer to the rest of the intervention
sets as compatible sets. Similarly to the truncation we did to
find the LDOI of a single node state, we do not include any
node state that is the negation of any node state given in the
intervention set and we stop searching that branch. We note
that this truncation strategy avoids any following conflict. For
example, if nC ∈ LD(nA) and ∼nC ∈ LD(nB), then one may
expect that the LDOI of the set {nA, nB} will have a conflict
between nC and ∼nC. However, nC ∈ LD(nA) implies that ∼nC
requires ∼nA, this means that meeting the conflict between nC
and∼nC, must be aftermeeting the conflict between nA and∼nA,
which is avoided by our truncation strategy.

For a compatible set {nexi } ≡ ∪in
ex
i , it is guaranteed that

∪iLD(nexi ) ⊆ LD(∪in
ex
i ). For example, as shown in Figure 1E,

the node set {n2, n4} is a compatible node set as LD(n2) = Ø,
LD(n4) = Ø and LD({n2, n4}) = {∼n3, n0, n4,∼n1, n2}. Note
LD(n2)∪LD(n4) ⊆ LD({n2, n4}). However, for an incompatible
set, we just know that the situation ∪iLD(nexi ) ( LD(∪in

ex
i )

cannot happen and all the remaining situations are possible. In
the network of Figure 1, node set {n2,∼n4} is an incompatible
node set as LD(n2) = Ø, LD(∼n4) = {n3,∼n0, n1,∼n2},
and LD({n2,∼n4}) = {n3,∼n0, n1}. Note that neither n4 nor
∼n2 are included in LD({n2,∼n4}) due to the truncation rule
and LD({n2,∼n4}) ( LD(n2) ∪ LD(∼n4). Node set {∼n1, n3}
is another incompatible set as LD(∼n1) = {n2}, LD(n3) =
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{∼n0, n1,∼n2, n4, n3} and LD({∼n1, n3}) = {n2,∼n0,∼n4, n3}.
Note thatLD({∼n1, n3}) 6⊂ LD(∼n1)∪LD(n3), andLD(∼n1)∪
LD(n3) 6⊂ LD({∼n1, n3}).

The properties of the LDOI of a single node can also be
generalized to the LDOI of a given node set. For the first key
property, let Sj = {σj = σ̃j} and Si = {σi = σ̃i} be two sets
of node states, if Si is a subset of any (partial) fixed point and
Sj ⊆ LD(Si), then LD(Sj) ⊆ LD(Si). The intuition is similar,
the requirement restricting us to consider those nodes which can
be stabilized in the long term, that is, we rule out the possibility
of Si being an incompatible node set. For example in Figure 1

consider Si = {∼n3} and Sj = {n2, n4}. As ∼n3 is part of the
stable motif SM2 = {n0,∼n1, n2,∼n3, n4}, corresponding to the
fixed point (σ0, σ1, σ2, σ3, σ4) = (1, 0, 1, 0, 1), Sj ⊂ LD(Si) implies
LD(Sj) ⊆ LD(Si). In fact, LD(Sj) = LD(Si).

The second key property also generalizes: if the LDOI of a
given node state set contains the set itself, then the LDOI of the
set contains at least one stable motif. The intuition and proof
is similar to the case of a single node state. Taking the same
example, consider Si = {∼n3} and Sj = {n2, n4}, note that both
Si ⊂ LD(Si) and Sj ⊂ LD(Sj), this implies that both LD(Si) and
LD(Sj) contain a stable motif, which is SM2 in this case.

Following these examples, we define the core of a stable motif
to be a minimal subset of the stable motif whose LDOI contains
the stable motif. Here by minimal we mean that no true subset
of the core of the stable motif will contain the entire stable motif.
The core of a stable motif can be a single node or more than one
node. For example, as shown in Figure 1C ∼n3 is a single-node
core of the stable motif SM2 = {n0,∼n1, n2,∼n3, n4}. {n2, n4}
is another core of the same stable motif as SM2 6⊂ LD(n2),
SM2 6⊂ LD(n4), and SM2 ⊆ LD({n2, n4}).

We also define a driver node (set) of the stable motif to be a
node (set) whose DOI contains the entire stable motif. The driver
node (set) can be inside the stable motif, in which case it is the
core of the stable motif; it can also be an upstream node that
is sufficient to activate (the core of) the stable motif. We note
that stabilization of a stable motif does not require the sustained
state of a driver node, that is, oscillations can also lead to the
stabilization of a stable motif. An example of this behavior was
shown in Figure 2B: node B, which constitutes a self-sustaining
stable motif, can stabilize by a single instance of A= 1, regardless
of the fact that the negative self-regulation of A makes it oscillate.

2.7. Target Control Algorithm
Now that we have equipped ourselves with the tool of LDOI
to find the long term effect of a sustained intervention, we can
formulate the target control problem as the identification of a
node set S∗ whose LDOI contains the target node state set, i.e.,
LD(S∗) ⊇ Target. This problem can be framed as a planning
search problem (Russell and Norvig, 2003). We start with a null
set whose LDOI is also null. We repeatedly add a new node
to the set until the LDOI of this set contains the target node
state set. We use LDOI instead of DOI for this purpose because
identification of the DOI is a computationally more difficult
problem. Our current solution using LDOI sets a tight upper
bound for the optimal solution for the target control problem as
D(S∗) ⊇ LD(S∗) ⊇ Target.

Previous work in the target control of Boolean models has
focused on full enumeration of the solutions for the target control
problem (Klamt et al., 2006; Samaga et al., 2010), which can
be used to identify the solutions that involve combinations of
a small number of nodes but is not generally viable because of
combinatorial explosion. In our work, we use a complementary
approach to avoid a full state space search in this combinatorial
search problem. We apply a random heuristic algorithm called
the greedy randomized adaptive search procedure (GRASP)
(Pardalos et al., 1998; Festa et al., 2001). The pseudocode is
described in Algorithm (Tables 1, 2). The algorithm consists of
two main phases. The first phase is the construction of a greedy
randomized solution and the second phase is a local search to
remove any redundancy of the solution.

Algorithm 1 GRASP algorithm for Target Control Problem

1: procedure GRASP(G_expanded,Target,max_itr)
2: solutions← List()
3: for index← 1,max_itr do
4: solution ←ConstructGreedyRandomizedSolution

(G_expanded,Target)
5: solution←LocalSearch(G_expanded,Target, solution)
6: if solution then

7: Solutions.append(solution)
8: end if

9: end for

10: return solutions
11: end procedure

Algorithm 2 Algorithm for constructing a greedy randomized
solution
1: procedure CONSTRUCTGREEDYRANDOMIZEDSOLUTION

(G_expanded,Target)
2: solution← Set()
3: α← random(0, 1)
4: candidates←Construct_Initial_Candidates(G_expanded,

Target)
5: G(v) ←Construct_Greedy_Functions(G_expanded,

candidates)
6: while candidates do
7: RCL←MakeRCL(candidates,G(v),α)
8: s←Select_Candidate(RCL)
9: solution← solution ∪ {s}
10: if Target ⊂ LDOI(solution) then
11: return solution
12: end if

13: Update_Candidates(candidates)
14: end while

15: return Set()
16: end procedure

In the first phase, we first generate an initial candidate list (line
4 in Algorithm 2). In the simplest case, the initial candidate list
is all the non-composite nodes of the expanded network except
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the nodes in the target set and their negation, both of which are
ineligible for control. One can also be more selective to adapt to
the specific needs of controlling biological systems. For example,
we can forbid the use of certain nodes or node states when
constructing the initial candidate list, to incorporate the fact that
certain chemical species are harder or even unrealistic to control.
Thus these nodes/chemical species will never appear in the final
solution since they are not in the initial candidate list.

Then, we begin the procedure of iteratively adding nodes to
the trial solution set (which is initially empty) and evaluating
whether the LDOI of the trial solution set covers the target set.
We form a restricted candidate list (RCL, line 7 in Algorithm 2)
based on a greedymeasureG(v) defined for each candidate node v
in the candidate list (line 5 in Algorithm 2). A greedy function is a
heuristic score to estimate whether this node should be included
in the solution. We evaluated five choices of G(v), as described
at the end of this section and in section 3.1. We determine the
minimum score Gmin = minv∈V G(v) and maximum score
Gmax = maxv∈V G(v) among the heuristic scores of all the nodes.
Then we use a previously generated random number α from a
uniform distribution between 0 and 1 to set a passing score for the
RCL as Gpass = Gmin + α · (Gmax − Gmin). Then the RCL consist
of nodes whose greedy function is no less than the passing score,
i.e., RCL = {v ∈ V|G(v) ≥ Gpass}. This procedure of generating
RCL is summarized in Supplementary Material section 1.3.

Next we randomly pick a node from the RCL and add it
to the current trial solution (line 8 and 9 in Algorithm 2).
The trial solution is used as the source node set of the LDOI
algorithm (whose pseudocode is presented in Supplementary
Material section 1.1). If the target set is contained in the set of
nodes returned by the LDOI algorithm, we end the first phase
and start the second phase (local search procedure) with this
candidate solution (line 10 and 11 in Algorithm 2). Otherwise,
we update the candidate node set and start the next iteration
toward adding another node from the RCL to the trial solution
set.We update the candidate node set by removing the previously
added node, its negation and any node in the LDOI of the
current trial solution (line 13 in Algorithm 2). We do this latter
exclusion because these nodes will stabilize because of the current
trial solution, and it is useless to add any stabilized state to
the trial solution. We repeat the whole procedure including
selecting a node randomly from the candidate set as long as
there are still candidate nodes (line 6 in Algorithm 2). We
return an empty set if we do not find a solution (line 15 in
Algorithm 2).

In the second phase (see the pseudocode in Supplementary
Material section 1.2), we start with a candidate solution that
covers the target set. We randomize the order of nodes in the
candidate solution and then iteratively attempt to remove each
node. If after removing this node the LDOI of the modified
solution still covers the target set, then we replace the candidate
solution with the modified solution. Thus after one iteration of
traversing all the nodes, we obtain a final solution. At worst, no
node is removed from the set and the final solution is the same
as the candidate solution. The randomness in the removal order
provides a possibility for obtaining different minimal solutions
from the same candidate solution.

In this random heuristic algorithm, we introduce two aspects
of randomness in the construction phase, one is the randomness
of the passing score by a different α for each iteration of solution
generation process (line 3 in Algorithm 1) and another is the
random selection of a node each time from the RCL inside
each solution generation process (line 8 in Algorithm 2). These
techniques help strike a balance between the bias of a greedy
function and exploring the whole node state space (Pardalos
et al., 1998; Festa et al., 2001). An efficient greedy function/
heuristic score is important to guide the search procedure toward
the subspace with the optimal solution. However, a universally
efficient greedy function may not exist; rather, the efficiency
of a greedy function may depend on the specific network
structure and target set. We have implemented five choices of
greedy functions G(v) for a given node state (equivalently, non-
composite node of the expanded network): score 1 is the size of
the LDOI of that node state (denoted as |LDOI|); score 2 is the
size of the set of composite nodes which are nearest neighbors of
the LDOI of that node state (denoted as |Comp_LDOI|); score
3 is a linear combination of the previous two measures with
equal weight (denoted as Scores_1+2), and score 4 and 5 as the
size of the LDOI of that node state with penalty if the LDOI
contains a node that is the negation of a node in the target set
(denoted as |LDOI|_Pen1 and |LDOI|_Pen2). The penalty can
be implemented by multiplying this score by -1 (score 4) or by
decreasing this score by the size of the largest LDOI among all
node states (score 5); both of these implementations ensure that
this score becomes non-positive. A python implementation of
the target control algorithm is available at https://github.com/
yanggangthu/BooleanDOI.

2.8. Computational Complexity of the
Target Control Algorithm
The time complexity of calculating the LDOI of any set is
bounded by O(Nex + Eex), where Nex is the number of nodes
and Eex is the number of edges of the expanded network. For
each non-composite node in the network, we initially calculate its
LDOI and the value of its greedy function, with time complexity
O(N(Nex + Eex)), where N is the number of nodes in the
original network. We then cache these results to improve the
performance of the GRASP algorithm. In the first phase of the
GRASP algorithm, we run at most N iterations and we need to
calculate the LDOI of the trial solution in each iteration, thus
the time complexity is bounded by O(N(Nex + Eex)). In the
second phase, the time complexity is also bounded byO(N(Nex+

Eex)) as we need to go through each node, bounded by O(N)
as a crude estimate, delete the node from the solution and
check the modified solution’s LDOI, which is O(Nex + Eex). The
Boolean regulatory functions of biological network models are
often nested canalizing rules (Kauffman et al., 2003; Li et al.,
2013), thus for each node with k regulators there are at most k
newly generated composite nodes in the expanded network, as
well as two corresponding non-composite nodes; each of these
nodes have at most k regulators. Thus Nex is bounded by O(k̄N),

and Eex is bounded by O(k2N). Biological networks are sparse,
with an average node in-degree 1 < k̄ < 3 (Newman, 2010).
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Thus the complexity of the target control algorithm applied to

biological network models is O(k2N2) ∼ O(N2) for a well-
behaved degree distribution in the sparse limit and bounded by
O(N3) for an extremely skewed degree distribution in the sparse
limit. Different iterations of the solution generation process (line
3 in Algorithm 1) can be easily parallelized as each iteration
is independent. The space complexity of BFS search on the
expanded graph is bounded by O(Nex), and the space complexity
of the entire procedure is bounded by time complexity times the
storage space of LDOI of a node set, which is bounded byO(Nex).

2.9. Damage Mitigation as Target Control
We can generalize the target control algorithm to solve a damage
mitigation problem. Consider a Boolean network that has two
steady states, one corresponding to the normal state of the system
and the other corresponding to a disease state. The system is
currently in the normal steady state, but damage to a node, which
causes it to stabilize in the opposite state, will lead the system
to the disease steady state without any intervention. Under
such conditions, previous research has proposed modifying the
network topology (as soon as possible, or preventatively) to block
the propagation of damage (Yang et al., 2016). Here we are
interested in designing a damage mitigation strategy to bring
the system back to an attractor similar to the normal steady
state in the sense that a subset of nodes are in the same state as
their states in the normal steady state. This problem is almost
the same as the target control problem except that we need
to take the permanent damage into consideration. There are
two ways of incorporating this. First, we treat this permanent
damage as an initial condition and apply network reduction to
the system. However, this risks reducing a significant fraction
of the nodes in the network, including the target nodes we are
interested in. Second, we can apply our GRASP algorithm as
above while initializing the solution with the damaged node
state(s) and forbidding the damaged node state to be removed
in the local search phase in GRASP algorithm. This means that
we include the damage as part of the intervention. When the
LDOI of the node state set containing the damage effect covers
the target set, the target nodes will stabilize in their desired states
after a finite number of time steps under all initial conditions
of the subspace of the damaged network. We note that we only
need to do this when the damage is a permanent one; when
the damage is temporary (i.e., when the node is allowed to go
back to its original state), this can be treated as a different initial
condition for the target control problem and we can still apply
our GRASP algorithm to solve it as DOI/LDOI is robust to any
initial condition by definition.

3. RESULTS

3.1. Application to Ensembles of Random
Boolean Networks
We tested the two proposed properties of the LDOI and
the target control algorithm on different random Boolean
network ensembles. Specifically, we generated an ensemble of
1000 Erdős Rényi random graphs (Newman, 2010) (using the
gnm_random_graph() function of NetworkX; Hagberg et al.,

2008), with size ranging from 15 to 50 nodes and average in-
degree ranging from 1 to 2 . The Boolean regulatory functions
of the random ensemble are required to be effective (irreducible)
Boolean functions (Zertuche, 2009) to be consistent with the
generated topology, or nested canalizing functions to simulate
biological systems. (A nested canalizing Boolean function with
k inputs can be generated by determining two sequences,
the input sequence (I1, I2, · · · , Ik) and the output sequence
(O1,O2, · · · ,Ok), where Ii or Oi is either 0 or 1. The output
o as a function of input configuration (i1, · · · , ik) is thus
determined through the hierarchy o = O1 if i1 = I1; o = O2

if i1 6= I1 and i2 = I2; · · ·; o = Ok if i1 6= I1, · · ·, ik−1 6= Ik−1,
ik = Ik; o = NOT Ok if i1 6= I1, · · ·, ik−1 6= Ik−1, ik 6= Ik.) We
have successfully tested and validated the two properties for the
LDOI of each node in the generated networks. We also tested and
validated the properties of the LDOI of node sets of size up to 3∼7
depending on the specific network (as the complexity of testing
the property grows faster than Nk for k << N, where N is the
network size and k is the node set size).

With respect to testing the target control algorithm, we
generate 50 random target sets with size 2 or 3 for each random
network. We calculate the average number of generated solutions
for each pair formed by a target set and a network. As shown
in Table 1, the average number of solutions is significantly
high, between 10 and 40 for ensembles with nested canalizing
functions and between 25 and 70 for ensembles with effective
Boolean functions. The dominance of the canalizing variables in
determining certain outcomes tends to yield sparser expanded
networks than non-canalizing functions, and fewer effective
interventions. This is reflected in the smaller number of solutions
in the ensembles with nested canalizing functions compared to
the ensembles with effective Boolean functions. As shown in
Figure S1, the average time for finding solutions for a target set
(through 500 iterations) is 100 s or less for networks with 15–
35 nodes and 20–60 edges. As expected, the runtime increases
with the number of nodes and edges, reaching 600 s for 50
nodes and 100 edges. The relatively slow increase and practical
runtime suggest that our algorithm is effective for logical models
of biological systems.

It is not always possible to find a solution for a specific target
set for a network, especially when the Boolean network model

TABLE 1 | Mean number of solutions found for each target set and random

network pair for 50 target sets and 1,000 networks.

Custom score

index and

notation

1

LDOI

2

Comp_LDOI

3

Scores_1+2

4

LDOI_Pen1

5

LDOI_Pen2

Nested canalizing

rules

12.29 31.66 12.30 31.21 40.64

Effective boolean

rules

26.21 61.94 26.22 57.08 66.91

Half of 50 target sets have size two and the other half is of size three; none of them contain
source nodes. The 2nd to 6th columns correspond to different custom score (greedy
function) indexes and notations, which are described in the last paragraph in section 2.7.
The second and third row corresponds to the random network ensemble with nested
canalizing rules and effective Boolean rules, respectively.
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does not have a (partial) fixed point type of attractor (i.e., if all
nodes oscillate in the attractor) or when the desired target state
set consists of node states that are part of different attractors,
which conflict with each other. Another case where target control
is impossible is when the target set is not reachable from the
rest of the network. In the simulations of the two ensembles
mentioned above, we verified that we are able to find a solution
for more than 99.5% of the target sets when the target set satisfies
two criteria: (i) it is a subset of a (partial) fixed point and (ii)
the targets in this set are accessible from nodes outside of this
set in the original network (that is, the targets do not consist of
source nodes only and do not form amotif without any incoming
edges). Note that there can be counter-examples where satisfying
these criteria is not sufficient to find a solution. For example, in
Figures 2A,B, there are no solutions for the target set {∼B,∼C}
as the remaining nodes are not enough to activate the composite
node in Figure 2B. However, the probability of such situations
is small in both random ensembles with moderate size and real
biological network. Moreover, the fact that one cannot find a
solution through our GRASP algorithm for the target control
problem often indicates that the target set is not a reasonable
target. It is likely that one would not be able to find a solution
in such situation even with a whole state space search.

We also test the performance of different heuristic functions
for the target control problem. We calculate the average
number of generated solutions for each pair formed by a target
set and a network. As shown in Table 1, greedy functions
with a penalty for containing the negation of a node state
included in the target set (score index 4 and 5) consistently
perform better than the greedy functions directly using the
size of the LDOI (score index 1 and 3). The intuition behind
this is that it is more efficient to choose from those nodes
whose DOI does not contain a conflict with the target. The
second greedy function (|Comp_LDOI|) also performs quite
well.

3.2. Biological Examples
We applied our methodology on four Boolean models of
signal transduction networks. The four Boolean models are
freely available on GitHub (https://github.com/yanggangthu/
BooleanDOI) in SBML Qual format and in our custom format.
In the following we demonstrate our algorithm on two of these,
the epithelial-to-mesenchymal transition (EMT) network and the
PI3K mutant ER+ breast cancer network. The results on the
ABA induced stomatal closure network and the T-LGL leukemia
network are shown in Supplementary Materials sections 3.3, 3.4.
Table 2 summarizes representative interventions found with our
algorithm and compares them to the results of the most relevant
previous analysis of these four biological network models. In
Supplementary Data Sheet 1 we include the LDOI of each single
node in the four models analyzed.

3.2.1. EMT Network

EMT is a cell fate change involved in embryonic development,
which can be reactivated during cancer metastasis (Steinway
et al., 2014). During EMT, epithelial cells lose their original
adhesive property, and become mesenchymal cells which leave
their primary site, invade neighboring tissue, and migrate to
distant sites. A Boolean network model of EMT in the context
of hepatocellular carcinoma invasion has been established by
Steinway et al. (2014). Several predictions of this model were
validated experimentally (Steinway et al., 2014, 2015). The EMT
network has 70 nodes and 135 edges. The adhesion factor E-
cadherin is the sink node; its OFF state indicates the transition
to a mesenchymal state. The network has a normal (epithelial)
steady state and an abnormal (mesenchymal) steady state. (See
details in Supplementary Materials section 3.1). In Figure 3 we
show a simplified version of the EMT network; our analyses were
done on the full network.

Previous research on this network has indicated that sustained
activation of TGFβ signal can trigger EMT through the

TABLE 2 | Summary of representative target control solutions found by our algorithm for four biological network models.

Model Target state(s) Representative interventions found Previous results from dynamic analysis

EMT-blocking E cell inducing

EMT network ∼EMT β-catenin_memb = 1, SNAI1 = 0 SNAI = 0 β-catenin_memb = 1,

SMAD = RAS = 0, SNAI1 =

GLI = 0
β-catenin_memb = 1, SMAD = RAS = 0 SMAD = 0, RAS = 0

∼EMT, ∼MEK β-catenin_memb = 1, SNAI1 = RAS = 0 Not studied previously

β-catenin_memb = 1, miR200 = RKIP =

1, RAS = 0

Breast cancer network Apoptosis = 2, Proliferation = 0 PI3K = 0, ESR1 = 0 PI3K = 0, ESR1 = 0

Apoptosis <2, Proliferation >2

when PI3K = 0

PI3K = 0, ESR1 = 1 PI3K=0, ESR1 = 1

ABA induced closure network Closure = 1 when ABA = 0 Ca2+c = ROS = 1 ROS = 1

H2O efflux when ABA = 0 K+ efflux =1, SLAC1 = ROS = 1 Not studied previously

T-LGL leukemia network Apoptosis = 1 S1P = 0, RAS = 1 S1P = 0

The first column indicates the relevant network model, the second lists one or two target states we considered, the third column presents the intervention set obtained by our algorithm,
and the fourth column indicates the most relevant results of previous analysis of these network models. The previous analysis considered a unique initial state or a restricted family of
initial states (in the case of the ABA network). The interventions found by our algorithm will be successful regardless of the initial state.
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FIGURE 3 | An illustration of the EMT network. Attractor-preserving network reduction (Saadatpour et al., 2013) was applied to better focus attention on the most

relevant nodes. Specifically, source nodes that represent input signals that are absent in the studied context are removed and each node with one input or one output

is absorbed into its input or output, respectively. Nodes with light gray background are direct regulators of E-cadherin and nodes with dark gray background represent

external signaling molecules. Edges ending with an arrow represent positive regulation while edges end with a flat bar represent negative regulation. See more details

in Supplementary Material section 3.1.

activation of eight stable motifs (Steinway et al., 2015). In
addition, stabilization of any of these stable motifs can drive
EMT. Our analysis of the LDOI of each node state indicates
that any of 60 node states (out of 138 node states for
the 69 nodes) can lead to EMT, including the previously
established EMT drivers. Moreover, 43 node states (nodes of
the expanded network) have the same LDOI, which contains
48 node states, including EMT = 1 (see Supplementary
Data Sheet 1). Each of these 43 node states is either the
core of one or more of the eight stable motifs, or an
external driver of one or more of the eight stable motifs.
Thus the EMT outcome and the mesenchymal steady state
has a large basin of attraction. As we are more interested
in designing therapeutic strategies to block the epithelial to
mesenchymal transition, we set the negation of EMT as a

target. Previous analysis indicated that when considering an
initial epithelial state and turning on the TGFβ signal, the
knockout of any of the transcription factors that downregulate
E-cadherin (i.e., knockout of SNAI1, SNAI2, FOXC2, TWIST1,
ZEB1, ZEB2, HEY1) or multiple double node knockout
combinations (knockout of SMAD and one of RAS, CSL, DELTA,
NOTCH, NOTCH_ic, SOS/GRB2) are effective in blocking
EMT (i.e., leading to E-cadherin=ON). The effectiveness of
transcription factor knockout had been established in the
literature; unfortunately these transcription factors cannot
be targeted with existing drugs. Several double knockout
combinations were validated experimentally in (Steinway et al.,
2015) and are more amenable to drug targeting.

For EMT as target, our target control algorithm gives 7 two-
node solutions (activation of β-catenin_memb and knockout of
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any of SNAI1, SNAI2, FOXC2, TWIST1, ZEB1, ZEB2, HEY1) and
5 three-node solutions (activation of β-catenin_memb, knockout
of SMAD and knockout of any of RAS, CSL, DELTA, NOTCH,
and NOTCH_ic). The main difference between the target
control solution and the previously found EMT-blocking single
and double knockout interventions is that our target control
solution includes the additional control of β-catenin_memb.
To understand this difference, we note that EMT is in the
LDOI of TFGβ , however, EMT is not in the LDOI of the
set consisting of TGFβ together with any of the previously
found EMT-blocking knockout interventions. This indicates
that the knockout intervention is effective in the sense that it
can block the process of reaching EMT. However, ∼EMT is
also not in the LDOI of the set of TGFβ together with any
knockout intervention. The knockout intervention is effective
when the initial condition is the epithelial steady state, however
the knockout intervention does not block EMT for all initial
conditions. The target control algorithm, which can block
EMT for all initial conditions, requires one more node (β-
catenin_memb) in the target control solution. In fact, treating
this problem as a damage mitigation problem, where the damage
is sustained activation of TGFβ , we verify that EMT is in the
LDOI of TGFβ together with any of the target control solutions.

As established in previous results, the single node EMT-
blocking knockouts do not lead back to an epithelial state
but rather to hybrid epithelial or mesenchymal steady states
(Steinway et al., 2015). The hybrid epithelial steady state has
certain epithelial features, e.g., E-cadherin and β-catenin_memb
are activated, and also some mesenchymal features, e.g., MEK,
ERK, and SNAI1 are activated. The hybrid mesenchymal steady
state demonstrates the opposite features compared to the
epithelial steady state. A good target set to avoid reaching such
a hybrid state (which is likely pathological and may even be a
worse outcome as the mesenchymal state) would be {∼EMT,
∼MEK} (Steinway et al., 2015). The minimum solution found
involves controlling three nodes: activation of β-catenin_memb,
inhibition of SNAI1, inhibition of RAS or RAF. We also find a
four-node intervention that does not involve ERK and SNAI1:
activation of β-catenin_memb, miR200 and RKIP, and also
inhibition of RAS. If the target set is {∼EMT, ∼MEK, ∼SNAI1},
the minimum solution size is found to be six.

Stable motif control indicates that control of at least five nodes
is needed to drive any initial state (including the mesenchymal
state) to the epithelial state (see Supplementary Table 3 of
Steinway et al., 2015) Although the control goal is different, one
can still see the connection between our target control solution
for the target ∼EMT and the stable motif control solution (to
drive the system to the epithelial state). Specifically, they both
require activation of β-catenin_memb. Knockout of SNAI1 ,
knockout of TWIST1, or knockout of SMAD and RAS, as one
of the target control solutions, also appear as a part of stable
motif control solution that does not require control of TGFβ or
TGFβR.

These results demonstrate both the accuracy and effectiveness
of our target control algorithm. The solutions found through
1,000 iterations are comprehensive (comparable to the solution
found through a systematic search of knockout pairs). Our

algorithm indicates intervention sites that are close to the target
but also sites that are further away (e.g., SMAD). This diversity
enables the selection of the most practical interventions.

3.2.2. Breast Cancer Network

In 2017, Zañudo et al. established a discrete dynamical model of
the signal transduction processes involved in the PI3K mutant,
estrogen receptor positive (ER+) breast cancer, as shown in
Figure 4 (Gómez Tejeda Zañudo et al., 2017). The model
includes 58 nodes, which correspond to proteins, transcripts,
drugs, and two cellular outcomes, apoptosis (programmed cell
death) and proliferation (cell cycle progression). A fraction of
the nodes (16), including the outcome nodes, are characterized
by multiple levels, which is implemented by additional virtual
nodes, e.g., apoptosis2 corresponds to level 2 of apoptosis, which
has a more stringent regulatory function than apoptosis1 (level
1 of apoptosis). This network as implemented is essentially
a Boolean network because all the regulatory functions are
Boolean (Gómez Tejeda Zañudo et al., 2017). The network
model successfully captures the key role of the PI3K/AKT/mTOR
signaling pathway in determining the pathological proliferation
and survival of cancer cells. In untreated simulated cancers
cells, PI3K, MAPK, AKT, mTORC1, and ER signaling are active,
leading to high level of proliferation and lack of apoptosis. The
network model successfully captures the effectiveness of PI3K
inhibiting drugs in leading to low level of proliferation and
high level of apoptosis (Gómez Tejeda Zañudo et al., 2017).
Through extensive simulations, the network model confirms
known drug resistance mechanisms, i.e., additional mutations
or other dysregulations that lead to the loss of effectiveness of
PI3K-inhibiting drugs. It also predicts new possible resistance
mechanisms and the degree of survivability under different
resistance mechanisms (Gómez Tejeda Zañudo et al., 2017).

Similar insights can be drawn by LDOI analysis and applying
the target control algorithm to the discrete dynamical network
model without doing dynamical simulations, which demonstrate
the rich information contained in the network topology and
logic and the effectiveness of our control methodology. We
obtained a (relatively large) reduced network by considering
the system under the relevant initial condition of PI3K mutant,
ER+ cancerous state, while keeping the seven drugs as source
nodes (see details in Supplementary Material section 3.2). The
five node states with the highest LDOI are Fulvestrant, ∼ESR1
(which both mean the inhibition of the estrogen receptor) and
Alpelisib,∼PI3K,∼PIP3 (which all mean the inhibition of PI3K).
The LDOI of these four nodes is very similar and includes
18 node states, including a high level of apoptosis (Apoptosis
= 2), and a reduction in proliferation. Other drugs or node
inhibitions yield subsets of the largest LDOI (see Supplementary
Data Sheet 1). These results are consistent with, and yield further
insight into the current knowledge on the effect of drugs in this
network. If we now set the target to be high level of apoptosis
and no proliferation, i.e., Target = {Apoptosis2, ∼Proliferation},
the algorithm gives multiple two-node interventions as minimal
interventions, these consists of either of {∼PI3K, ∼PIP3} and
inhibition of any node in the MYC-CDK4/6 axis of cell-cycle
regulation, i.e., {∼ESR1, ∼ER_transcription, ∼MYC, ∼CDK46,
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FIGURE 4 | An illustration of the PI3K mutant, ER+ breast cancer network. Attractor-preserving network reduction was applied to focus on the nodes most relevant

to our analysis. Nodes are colored according to the signaling pathway that they participate in. Edges ending with an arrow represent positive regulation while edges

ending with a hollow diamond represent negative regulation. See more details in Supplementary Material section 3.2.

∼cyclinD,∼cycD_CDK46,∼Rb,∼E2F}. There are several drugs
that can target these nodes. For example, Alpelisib is a PI3K
inhibitor, Fulvestrant is a ESR1 inhibitor and Palbociclib is a
CDK4/6 inhibitor. This result is consistent with the results found
in the (Gómez Tejeda Zañudo et al., 2017): inhibition of PI3K
leads to an increase in ER transcriptional regulatory activity,
leading to a decrease in proliferation, and simultaneous PI3K
and ER inhibition has a synergistic effect in completely blocking
proliferation and maintaining a high level of apoptotic activity.
If PI3K inhibitor or PIP3 inhibitor is not allowed to be used,
the algorithm finds three node solutions involving an AKT
inhibitor (e.g., Ipatasertib), MAPK inhibitor (e.g., Trametinib)
and inhibition of any node from the MYC-CDK4/6 axis of cell-
cycle regulation. In other words, inhibition of AKT together
with MAPK provides a similar functionality with inhibition
of PI3K. One can also use the LDOI to identify possible
drug resistance mechanisms, i.e., perturbations that make PI3K
inhibition less effective. As {Apoptosis2,∼Proliferation4} ⊂
LD(∼PI3K), we simply go through all possible two-node
interventions containing PI3K inhibitor and screen out those
interventions whose LDOI either does not contain Apoptosis2
or contain Proliferation3 or higher level (Proliferation4). We
reproduce most of the potential drug resistance mechanism to
PI3K inhibitors indicated in Table 3 of Gómez Tejeda Zañudo
et al. (2017).

4. DISCUSSION

In summary, we have developed the new measures DOI and
LDOI to describe the long-term effect of a sustained intervention.
We have applied these measures to find solutions to the target
control problem in logical networkmodels. This work takes a step
forward toward practical control of real biological systems, as
illustrated by the applications presented here. The target control
solutions we find recover previous predicted interventions
obtained by other methods (dynamic simulations and stable
motif analysis). As several of these previous predictions are
validated experimentally, this agreement also serves as validation
of our target control solutions. Notably, by generating a
large number of valid target control solutions, we are going
significantly beyond previous results (seeTable 2). Themultitude
of predicted target control interventions allows their filtering
according to biological or technological considerations.

Here we assumed the existence of a discrete dynamical model.
As there are significant uncertainties in the existing models
due to the scarcity of experimental information, we estimate
the sensitivity of the LDOI measure to the incompleteness of
the dynamical model. As the primary way of obtaining causal
information that can be used in a logical model is to perform
knockout experiments, the predominant causal information
indicates a node as being necessary for the activation of another
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node. For example, if the knockout of either of two regulators A
or B leads to a decrease in the activity of target C, we would infer
that the logical rule for C is C = A AND B. Suppose that there
is a so far undetected regulator of C, which we denote by X. This
X will likely also be necessary, which would maintain agreement
with the previous observations, i.e., C = A AND B AND X
is the true rule. Consider the rule for the complementary node
∼C = ∼A OR ∼B in the case of the incomplete system versus
the true rule ∼C =∼A OR ∼B OR ∼X. We can see that the
LDOI of any of ∼A,∼B,A,B will be robust to the addition of X.
The LDOI of node X and ∼X need to be established in the true
system. The LDOI of node state set {A,B} will be affected by this
change. (However, LDOI of ∼A and ∼B will not change). Thus
the size of the solution of the target control problemmay increase
due to this incomplete information. Due to the binary essence of
the Boolean rule, missing a sufficient regulator (an extra OR rule)
will give similar results.

The LDOI is closely related to previously introduced concepts
and methods used to analyze Boolean models. In particular, the
LDOI of a node state (or a set of node states) is mathematically
equivalent to the three-valued logical steady state that results
when these node states of interest are fixed (Klamt et al., 2006;
Samaga et al., 2010) and is also equivalent to the set of node states
that become stationary if using network reduction techniques
after fixing the node(s) of interest in the appropriate state(s)
(Bilke and Sjunnesson, 2001; Naldi et al., 2012; Saadatpour et al.,
2013). The work presented here goes beyond previous work and
identifies general properties of the LDOI of node states and their
union (the first key property of the LDOI), and of the relation
of the LDOI and stable motifs (the second key property of the
LDOI).

The algorithm to identify the LDOI using the expanded
network bears similarities with the algorithm in Samaga et al.
(2010) and Klamt et al. (2006), which uses signed interaction
hypergraphs to calculate logical steady states resulting from
fixing node states. An important difference is that the expanded
network assigns a complementary node to each node to denote
the inactive state of a node, while the hypergraph representation
instead assign signs to nodes and to composite nodes to keep
track of their states. Although the LDOI obtained using either
method is the same, we argue that the expanded network
representation has several desirable properties that differentiate
it, in particular, (i) it makes the interpretation of the LDOI
more intuitive and the algorithm for calculating it purely graph-
theoretical, i.e., a modified breadth-first search on the expanded
network, (ii) it treats the active/inactive states equally (a reflection
of the fact that a change of variables can redefine what an
active/inactive state means), and (iii) it provides a natural way to
generalize the LDOI from Boolean to discrete models by defining
a virtual node for each allowed node state (e.g., if a node has 3
states we would have 3 virtual nodes: one denoting state 0, one
denoting state 1, and one denoting state 2).

The DOI and LDOI is also related the concept of elementary
signaling mode (ESM), originally defined as a minimal subgraph
that can propagate a signal from a source node to an output node
(Wang and Albert, 2011; Sun and Albert, 2016). An ESM on
the expanded network is the generalization of a path on a usual

directed network. Similarly, the LDOI of a node on the expanded
network is analogous to a connected component reachable from
a node on a usual directed network. In the same way a connected
component reachable from node i consists of nodes that have
a path starting from node i, the LDOI of a node consists of
all the nodes included in any ESM that starts from that node.
Recent work by Maheshwari and Albert (2017) developed a logic
framework to identify causal relationships that are sufficient or
necessary. This framework allows an alternative definition of the
LDOI. The LDOI of the ON state of a node (σ̃i = 1) includes all
the nodes for which the node is a sufficient activator (these nodes
will have σ̃j = 1) or sufficient inhibitor (these nodes will have
σ̃k = 0). Similarly, the LDOI of the OFF state of a node includes
all the nodes for which the node is a necessary activator (these
nodes will have σ̃j = 0) or necessary inhibitor (these nodes will
have σ̃k = 1).

An algorithm to construct ESMs through a backward search
from an output node was presented in Wang et al. (2013); this
algorithm can be adapted to find solutions of the target control
problem of a single output. If we treat the output node as the
root of a backward search, the set of nodes found in the ESM in
each search depth (distance from the output node) can serve as
a control solution. A truncation technique similar to ours needs
to be applied to deal with inconsistent feed-forward or feed-
back loops. This algorithm can be generalized to solve the target
control problem of a target set by simultaneous search from each
target node. We chose to transform the target control problem
into a planning search problem; and it has been established
that such a planning search problem can be solved in both a
forward propagation and a backward propagation approach, or
even a mixed approach (Russell and Norvig, 2003). It will be
an interesting future work if such techniques can improve the
efficiency of the algorithm.

This work points out interesting questions as future research
directions. First, though evaluating the DOI of a node (set) is
computationally hard, a better estimation of the DOI rather than
the LDOI is desirable and can be used to reduce the size of the
solution given by our current target control algorithm. Second,
the requirement that the solution works for all initial conditions
in the setup of the target control problem gives robust solutions,
however it may be overly conservative for biological systems
in certain applications, especially if one is certain about the
relevant initial condition subspace. A semi-structural approach
(without doing dynamical simulations) to solve the target control
problem starting from a subspace of initial conditions are also
desirable.
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