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The present study aims at identifying the lowest number of fish (European seabass) that
could be used for monitoring and/or experimental purposes in small-scale fish facilities
by quantifying the effect that the number of individuals has on the Shannon entropy
(SE) of the trajectory followed by the shoal’s centroid. Two different experiments were
performed: (i) one starting with 50 fish and decreasing to 25, 13, and 1 fish, and (ii) a
second experiment starting with one fish, adding one new fish per day during 5 days,
ending up with five fish in the tank. The fish were recorded for 1h daily, during which
time a stochastic event (a hit in the tank) was introduced. The SE values were calculated
from the images corresponding to three arbitrary basal (shoaling) periods of 3.5 min
prior to the event, and to the 3.5 min period immediately after the event (schooling
response). Taking both experiments together, the coefficient of variation (CV) of the SE
among measurements was largest for one fish systems (CV 37.12 and 17.94% for
the daily average basal and response SE, respectively) and decreased concomitantly
with the number of fish (CV 8.6–10% for the basal SE of 2 to 5 fish systems and
5.86, 2.69, and 2.31% for the basal SE of 13, 25, and 50 fish, respectively). The SE
of the systems kept a power relationship with the number of fish (basal: R2 = 0.93
and response: R2 = 0.92). Thus, 5–13 individuals should be the lowest number for
a compromise between acceptable variability (<10%) in the data and reduction in
the number of fish. We believe this to be the first scientific work made to estimate
the minimum number of individuals to be used in subsequent experimental (including
behavioral) studies using shoaling fish species that reaches a compromise between the
reduction in number demanded by animal welfare guidelines and a low variability in the
fish system’s response.

Keywords: fish monitoring, biological warning systems, fish welfare, the 3Rs, Shannon entropy, non-linear signal
processing, non-invasive monitoring, intelligent aquaculture
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INTRODUCTION

Large scale production aquaculture platforms, such as offshore
exploitations, alone or within offshore multipurpose structures,
are considered to hold the key to solve some of the challenges
that must be addressed in order to increase the total production
and the efficiency of fish farming to provide food for the
exponentially growing human population (Bostock et al., 2010;
Anon, 2011; European Aquaculture Technology and Innovation
Platform-Eatip, 2012; Kalogerakis et al., 2015; FAO, 2016).
One requisite for the optimal functionality of such production
platforms is the implementation of intelligent structures that
should be able to identify, register and respond to changing
external and internal environments. In answer to this need
and to improve the farmer’s ability to monitor, control and
document biological processes in fish farms by applying control-
engineering principles, the concept of precision fish farming
(PFF) has been introduced (Føre et al., 2018). Unfortunately,
in contrast to the increasing amount of works devoted to the
study of the physical and intelligent design of the farming
structures, there are few published works devoted to the
automatic monitoring of the real fish being farmed and to
the integration of that information into the whole intelligent
system (Eguiraun et al., 2015). Monitoring of the fish behavior
is important for at least three main reasons: (i) to avoid
escapes, (ii) for the early detection of abnormalities in their
behavior that may be an indication of disease, parasites or the
presence of contaminants that may compromise their health and
wholesomeness, and (iii) to document the fish welfare during the
production.

Fish cognition and behavior is a well-established research field
(Vila Pouca and Brown, 2017 and references therein), and the
characterisation of fish model systems’ behavior, using behavioral
measurable changes, has found several practical applications,
such as the detection of leaders in a group (Mwaffo et al.,
2017), the identification of information flows within a school
of fish (Crosato et al., 2018), the presence in the aquatic
environment of contaminants including caffeine (Ladu et al.,
2015), drugs (Liu et al., 2011), hypochlorite (Magalhães et al.,
2007; Nimkerdphol and Nakagawa, 2008; Teles et al., 2015),
methyl-mercury (Eguiraun et al., 2014, 2016), the Se:Hg molar
ratio in their feeds (Eguiraun et al., 2018) and alterations
in environmental parameters such as hypoxia, feeding regime
(Polonschii et al., 2013), and high fish density (Papoutsoglou
et al., 1998; Di Marco et al., 2008).

Consequently, and following Hellou’s (2011) recommen-
dations to assess the environmental quality of water, Eguiraun
et al. (2015) recommended the implementation of biological
warning system (BWS) into aquaculture by using fish of the
same species being cultivated as the system’s sensor. The working
hypothesis was that undesirable agents capable of altering
biochemical and/or physiological processes of the fish would also
alter the Shannon entropy (SE) of the system in a quantifiable
manner (as shown by Eguiraun et al., 2014), and that this
alteration could be used as an indicator of a deviation from
the desired working point established by the fish farmer. Once
the farmer detects a deviation, a series of pre-established rules

included in the obligatory Hazard Analysis and Critical Control
Point plan of each facility must be followed.

Each cage may hold several hundred thousand fish in intensive
farming, i.e., up to several million fish per farm (Føre et al.,
2018), which complicates the monitoring of all fish for control
purposes. Therefore, to implement the BWS in an effective
manner, one alternative is to construct a small-scale facility
with fish of the same characteristics and subject to the same
conditions as those in the commercial farming cages. Such
a small-scale monitoring set-up would resemble and impose
similar demands to the set-up for experimental studies with fish.
These demands include respecting the ethical principles (Russell
and Burch, 1959) and legal framework (European Commission,
2010) concerning the 3Rs. These three Rs (3Rs), necessary for a
more ethical use of animals in testing, were initially mentioned
by Russell and Burch (1959). They stand for Replacement: the
adoption of methods which avoid or replace the use of animals
in research (for example the use of mathematical models to study
animal behavior instead of using live organisms); Reduction: the
application of methods to obtain adequate information from
fewer animals, or to obtain more information from the same
number of animals and Refinement: the use of methods to
eliminate or minimize potential pain, suffering or distress, and
enhance animal welfare for the animals used. The present work
can only contribute to the Reduction in the number of individuals
for procedures that demand the use of live fish. To identify this
lowest possible number is in itself a challenge, since there is
usually no explanation regarding the criteria used to select the
number of fish in physiological and toxicological experiments.
The studies published on the effect of perturbations on fish
systems, as well as behavioral studies, use different numbers of
fish: some use only one fish (Magalhães et al., 2007; Brodin et al.,
2013), while others use three fish (Teles et al., 2015), five fish
(Crosato et al., 2018), fewer than 15 fish (Krause, 1993; Huth
and Wissel, 1994; Krause and Tegeder, 1994; Ladu et al., 2015),
18–40 fish (Sadoul et al., 2014), 19–26 fish (Eguiraun et al., 2016),
30–300 fish (Tunstrøm et al., 2013), and 81 fish (Eguiraun et al.,
2014). However, we have not been able to find any publication
providing any scientific explanation about the reasons that led the
authors to use those particular numbers of individuals.

In order to select the number of fish to test, the shoaling
nature of the species must be taken into consideration. Studies
on the collective behavior of different species have indicated
that many observed features of social interactions can be
predicted assuming that the individuals follow behavioral rules
that maximize their entropy (Mann and Garnett, 2015) and
that the collective behavior is determined by the number of
topologically interacting neighbors, as proposed by Ballerini et al.
(2008). These authors reconstructed 3D positions of airborne
birds in flocks of thousands of individuals and showed that their
interactions were based on their topological, and not metrical,
distance, i.e., each bird interacted on average with a fixed number
of neighbors (6–7), and not with all the neighbors within a fixed
metric distance. Examples of interactions are orientation toward
other fish, collective swarming, schooling, or flocking behaviors.
Thus, in flocking starlings, each individual topologically interacts
with 6–8 neighbors and the interaction with about 10 neighbors
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speeds up the rate of convergence (both speed and time to initiate
the flocking behavior) irrespective of the total size of the swarm
(Shang and Bouffanais, 2014). Studies on the social behavior
of fish (Hemelrijk, 2002) indicate that fish schooling behavior
emerge from the interaction of at least four neighbors (Huth and
Wissel, 1994) and Crosato et al. (2018) used five fish to examine
their interactions during the performance of U-turns in a circular
tank of water. Consequently, considering the shoaling nature of
the European seabass (Dicentrarchus labrax), our hypothesis was
that there would be critical differences between the SE of, on one
hand, the basal (shoaling) behavior of the systems of only one fish
and those of more than one fish, and, on the other, the SE of the
response to the event (schooling) of systems with fewer than five
fish and systems with five or more fish (Huth and Wissel, 1994).

Accordingly, and given that previous studies (Kadota et al.,
2011; Liu et al., 2011; Spasic et al., 2011; Quach et al., 2013; Bae
and Park, 2014; Eguiraun et al., 2014, 2016, 2018; Forlim and
Pinto, 2014) have identified the SE of the system as a variable with
the potential to serve for fish health and welfare monitoring, the
present work was designed to understand how the variation in the
fish number affects the system dynamics in order to answer the
following research questions: (i) Does the SE of a fish system vary
according to the number of fish? (ii) if it does vary, how is this
relationship? and, finally (iii) is it possible to identify the lowest
number of individuals which could be used in monitoring and/or
experimental settings? To answer these questions two different
experiments were performed: (i) one experiment starting with 50
fish and decreasing the number to 25, 13, and finally one fish, and
(ii) a second experiment, studying the system with initially one
fish, then adding one new fish per day during 5 days, and ending
with five fish in the tank.

Based on the experimental results, the main scientific
contribution of the present work is to provide a key piece of
information to set up a BWS, namely the minimum number
of fish necessary to be monitored. The last part of this study
presents a theoretical BWS model that integrates all the empirical
knowledge obtained in order to provide results, in a non-invasive
manner, about the health status of monitored or experimental
fish.

MATERIALS AND METHODS

Ethics Statement
The experimental protocols and procedures conducted in
the present experiment had been approved by The Ethical
Committee of the University of the Basque Country UPV/EHU
for Animal Welfare No. CEBA/285/2013MG.

Animals and Acclimation Conditions
European sea bass (Dicentrarchus labrax) generously provided
by Grupo Tinamenor (Cantabria, Spain) had been acclimated
in the Research Centre for Experimental Marine Biology and
Biotechnology – Plentzia Marine Station of University of
the Basque Country UPV/EHU for 3 months in two flow-
through 1,800 L epoxy-coated fiberglass tanks containing aerated,
naturally sand filtered seawater pumped from the Cantabric

Sea in the North of the Iberian Peninsula (43◦24′49.5′′N
2◦57′06.5′′W). During this period, the seawater conditions
oscillated according to the natural environmental variation, and
they were always within the values for optimal growth for
the species. The fish were fed INICIO Plus feed from BioMar
(56% crude protein, 18% crude fat) following the manufacturer
specifications for fish size, biomass and water temperature.

The length and weight of the fish used in Experiment A
are shown in Table 1 and the approximate total biomass for
Experiment B is shown in Table 2. Fish of this size are considered
sexually immature (Pickett and Pawson, 1994; Fishbase.org,
2015).

Experimental Conditions
The salinity was measured using a multiparametric meter
HANNA HI98192 and the O2 saturation with the JBL O2 kit.
Water temperature, pH, and ammonium were monitored daily in
both tanks using a thermometer (±0.5◦C), a CRISOM pH-meter
Basic 20+ and Sera NH4-NH3 ammonium kit, respectively. The
values are shown in Table 3. Water flow (fixed at 0.54 m3/h) and
additional air supply diffused by stone were kept constant and
were interrupted, in order to avoid artifacts in the images, only
during the time necessary to record the fish. The experiments
were performed in the period November-December during
which only small variations were detected in the seawater
temperature and pH following the usual seasonal changes.

Two identical fiberglass tanks were used (100 cm ×

100 cm × 90 cm) under direct white artificial light (2 × 58 W

TABLE 1 | Experiment A.

n = 50 fish Tank 1 Tank 2

Size [mm] Weight [g] Size [mm] Weight [g]

Avg 159.5 36.02 158.1 35.28

Max 200.0 60.00 197.0 64.00

Min 135.0 18.00 130.0 17.00

Median 154.5 33.50 156.0 33.00

Total biomass 1,801 1,764

Biomass at the beginning of the experiment. Tanks 1 and 2 were filled with 50 fish
each. Data on individual fish are shown in Supplementary Data Sheet S1.

TABLE 2 | Experiment B.

Day
number

Tank 1 Tank 2

Fish
name

Total biomass
[g]

Fish
names

Total biomass
[g]

1 a 77 b 78

2 c 51 a,b 155

3 d 53 a,b,c 206

4 e 58 a,b,c,d 259

5 f 53 a,b,c,d,e 312

Daily biomass in Tank 1. The biomass in Tank 2 is an approximation estimated by
adding the weights of the fish coming from Tank 1, but the individual fish were not
taken out of the Tank 2 and weighted every day.
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TABLE 3 | Water/environmental conditions.

Min Max

Temperature [◦C] 16.9 18.5

pH 7.76 7.93

Ammonium 0.0 0.0

Water flow [m3/h] 0.54 0.54

Salinity [g/l] 33 33

O2 Saturation >80% >80%

Minimum and maximum values in relevant seawater parameters during
the experimental period (November–December). Daily values are listed in
Supplementary Data Sheet S2.

and 5,200 lm), avoiding the formation of shadows into the tanks
and using the same light conditions in both. The tanks, equipped
with a flow through system, were filled up to 81 cm from the
upper border with 810 L of naturally sand filtered seawater. One
camera was placed in each tank and exactly in the same position
in both tanks, obtaining in both situations the same visual angle.
The photoperiod was fixed at 12h/12h dark/light.

Experimental Set-Up
Experiment A was performed reducing the number of fish
to imitate the usual procedure in many physiological and
toxicological experiments. The fish are exposed to a given
condition or contaminant and every x-days a certain number
of fish (usually between 10 and 20, depending on the type of
analyses to be performed, their cost and the expected variability of
the parameter measured) are removed and sacrificed to perform
biochemical and histological analyses, while the rest remains in
the tank. After a new period of x-days the same number of fish
is removed and so on. This is usually done to examine the effect
of the contaminant, or the treatment, along time. In addition, we
were interested in having more replicates of the measurements
in tanks with only one fish, because, if it was a reliable system,
that would be the most convenient from the point of view of
reducing costs and animal suffering, and because many protocols
use only one-fish to perform diverse studies, as mentioned in the
introduction. Therefore, Experiment B was designed with two
purposes: firstly, to obtain more replicates from one-fish system,
but using different individual fish, and, secondly, to study the
behavior of the system for 1–5 individuals, since Experiment A
did not cover than range. In both, A and B Experiments, however,
the individuals came from a larger group of fish and had been
acclimated for at least 23 h to the identical settings as those used
for this study.

Experiment A – Systems With 1 to 50 Fish
Each of the two replicate groups consisted of 50 fish with a
biomass as similar to each other as possible (Table 1). The fish
were acclimated for 12 days to the new conditions, and they
were monitored and recorded during the next 5 days following
the procedure described below. After that, both groups were
reduced to 25 fish, trying to maintain a similar biomass in both
groups. The remaining 25 fish per group were acclimated for
another 2.5 days and subsequently monitored and recorded for

5 days. Past those 5 days both groups were reduced to 13 fish per
group, acclimated for 2.5 days and recorded for 5 days. Finally,
the groups were reduced to only one fish. Again, after 2.5 days
of acclimation, they were recorded for the final 5 days of the
experiment (Figure 1).

Experiment B – Systems With 1–5 Fish
The experimental schedule is shown in Figure 2. In this particular
case and during the 5 days the experiment lasted, tank 1 had only
one fish and every day the fish that had been 1 day in tank 1
was transferred to tank 2, and a new fish was placed in tank 1.
The new fish introduced every day in the experimental tank was
taken from the acclimation tank not used for the experiments.
All fish had an acclimation period of 23 h to the new experimental
conditions. For a better understanding of the procedure, each fish
has been named with a letter from a to f in Figure 2 and Table 2.
The approximate biomass is summarized in Table 2.

Data Acquisition
Data acquisition was done by video camera as described in
Eguiraun et al. (2014). In short, recording was performed using a
GoProHero3 camera with underwater housing inside each tank.
Raw data were recorded in 1080p high definition format, 24
frames per second (fps) and 16:9 video size and it was stored in
SanDisk 32Gb UltraMicroSDHCTM (Class 10) secure cards.

As already mentioned, the water flow and air intake were
halted during the recording period to avoid bubbles and
disturbances in the images. Recording was set to 1 h per day and

FIGURE 1 | Description of Experiment A. The fish number is halved in each
step except the last one, when it was reduced from 5 to 1 individual. T1 and
T2 indicate tank 1 and 2, respectively, and the sub-index the number of fish.
The number of days the activities lasted is shown under “Days” on the left.
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FIGURE 2 | Description of Experiment B. The fish number is kept constant,
only one fish, in tank 1. Each day the fish that had been for 1 day in tank 1
was transferred to tank 2. Thus, the number of fish in tank 2 increased by one
individual every day. T1 and T2 indicate tank 1 and 2, respectively. The
number of days the activity lasted is shown under “Days” on the left; each
letter within the tanks, a, b, c, d, e, and f refer to an individual fish.

approximately in the middle of that period a stochastic event (a
disturbance) consisting of a hit in the tank was introduced. The
disturbance is a stochastic event, because it is meant to occur in
a random manner, i.e., the fish must not be able to predict when
it will take place The images to be processed consisted of three
measures of the basal state, of 3.5 min each, and the 3.5 min
after the disturbance, as described in Eguiraun et al. (2014) and
in Figure 3.

Image Post-processing
It was performed as described by Eguiraun et al. (2014). Once
the four video clips (three arbitrary clips of the basal state
and one clip containing the system’s response to the event) per
tank and per day were located in the 1 h recording, they were
transformed into a 640 pixel× 480 pixel format image sequences
per video clip at 24 fps using the iMovie commercial software and
MPEG Streamclip free software. Subsequent image and feature
extraction were carried out with MATLAB R2014a (MathWorks
Inc.) running on a MacBookPro 2,6 GHz Intel Core i7 laptop with
a SSD storage disk and 16 Gb of RAM. The procedure used for
image and feature extraction is detailed in Supplementary Data
Sheet S3.

Trajectory Estimation
The methodology used from image acquisition to fish group
centroid trajectory estimation is depicted in Figure 4 and was
based on that described in Eguiraun et al. (2014) with the
modifications detailed in Supplementary Data Sheet S4 and
already used in Eguiraun et al. (2016). It was performed using
MATLAB R2014a (MathWorks Inc.). Firstly, the trajectory of the
cluster’s centroid was built computing the elements center’s in
every single frame, which led to a very noisy signal unsuitable
for the subsequent non-linear signal analysis. Thus, the noise of
the signal was reduced calculating the cluster’s centroid applying
the K-means algorithm to the number of elements in each frame
using the centers of the elements in the first frame as input
coordinates. Secondly, the trajectories in X and Y were analyzed
in the same format they were obtained although they have
different scale dimensions. X trajectories have dimension from 0
to 640 and Y trajectories have dimension from 0 to 480 due to the
640 × 480 pixel image size. The results indicated that analyzing
those raw trajectories leads to satisfactory results and differences
were not found between the results obtained analyzing the raw
and the normalized trajectories. However, and with the purpose
of building a more robust algorithm for future applications, the X
and Y trajectories presented in the current work were normalized
using Z-score technique. Supplementary Data sheet S5 contains
the data for each of the 200 calculated trajectories.

FIGURE 3 | Recording procedure. Three basal and one event response measurements were processed from the total recorded period of 1 h.
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FIGURE 4 | Data acquisition and processing workflow. Taken from Eguiraun et al. (2016).

Non-linear Trajectory Analysis
Shannon entropy has been used because our previous work
(Eguiraun et al., 2014) showed it to be the most sensitive
among five algorithms tested, namely: Shannon and permutation
entropies, and Katz, Higuchi, and Katz-Castiglioni’s fractal
dimensions, to serve as a tool for the non-invasive quantification
of fish responses and has subsequently been successfully applied
to the study of the effect of certain chemicals (methylmercury
and sodium selenite) on the complexity of the seabass centroid
trajectories (Eguiraun et al., 2014, 2016, 2018). The Shannon
entropy was initially described as an expression of the amount
of missing information within a message, since the concept
of entropy, within this particular context, was developed
by Shannon in his works on a mathematical theory of
communication (Shannon, 1948, 1951). Thus, the SE is a measure
of the predictability of the value of a variable. The variable
in our case is a time series consisting of samples constructed
as successive positions of the fishes’ cluster’s centroid (xi,yi)
in the frame of the image (640 pixels × 480 pixels; i.e.,
0 < xi < 640 and 0 < yi < 480). If the predictability of the
value of variables (x and y) is high, then the SE is low (i.e.,
if, knowing the values of xi−1 and yi−1, then it is easy to
predict xi and yi, respectively). On the other hand, the higher
the difficulty to predict xi and yi, the higher the SE. Thus, the
highest SE will correspond to a system whose centroid may
jump from any one position to any other one from frame to
frame (i.e., all the pixels will have the same probability (1/640

will be the probability for every xi and 1/480 for every yi).
The lowest SE will correspond to a system whose centroid
moves in a completely predictable manner: the centroid will
occupy some few positions with a very high probability and the
probability of occupying any other position will be practically
zero. A real-life system will be somewhere between these two
extremes.

We are aware of the fact that SE is not the optimal algorithm
to explain sophisticated mental or behavioral processes, but
we wish to stress that it is not our aim to study complex
behavioral characteristics, as may be the orientation of the
individuals, their interactions, how the shoal is formed, the
presence of leaders, how the information flows among the
individuals initiation and characteristics of collective behavior,
etc. That kind of complex studies requires a completely different
technical set up regarding image acquisition, data extraction,
and analysis (see all the above mentioned papers on collective
behavior and Gauvrit et al. (2017) for a recently published
method of analysis for complex human behavior). We use the
SE because we aim at implementing a system as simple and
robust as possible and with the sole purpose of characterizing
the trajectory signals of different experimental cases to perform
comparisons among them. This very same simplicity, already
described in our previous work (Eguiraun et al., 2014) and
particularly regarding the 2D analysis of a 3D event together
with the image segmentation method, makes our approach not
suitable for complex behavioral studies, but adequate for routine
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monitoring of normal/not normal behaviors of the fish system,
not of individual fish.

As already mentioned, the SE was first described by Shannon
(1948, 1951) and it is calculated by the equation:

H(X) = −
∑
xi∈2

p(xi) logp(xi) = −E[logp(xi)]

Where X represents a random variable with a set of values
2 and probability mass function p (xi) = Pr {X = xi }, xi ∈

2, and E represents the expectation operator. Note that
p log p = 0 if p = 0. The implementation in MATLAB
R2014a (MathWorks Inc.) of the SE function is described in
Supplementary Data Sheet S6.

Statistical Parameters
The coefficients of variation (CV), defined as the ratio of the
standard deviation to the mean, were calculated in Microsoft
Office Excel 2007 and the curve fittings were performed using the
Curve Fitting Toolbox 3.4.1 that is included in MATLAB R2014a
(MathWorks Inc.).

RESULTS

Table 4 and Figure 5 show the daily evolution in both tanks
of the SE corresponding to the basal trajectories (T1-b and T2-
b in Figure 5) and to the trajectories followed in response to
the stochastic event (T1-e and T2-e in Figure 5) of Experiment
A. The responses obtained in both tanks were very similar and
the SE of the system kept a power relationship with the number
of fish (Table 5). In addition, the SE of the basal and response
trajectories in tanks with 13 or more fish had always values higher
than 3.97, while the in one-fish systems they were lower than 2.79.
The coefficient of variation (CV) of the basal SE values also kept
a relationship with the number of fish, being largest in the 1 fish
systems (60.8% vs. about 4–8% for 50–13 fish, see Table 6). The
raw data are listed in Supplementary Data Sheet S7.

The results of Experiment B are shown in Figure 6. As in
Experiment A, the SE of one-fish systems always kept similarly
low values (lower than 2.2 for the basal and 2.7 for the response)

and the SE of both the basal and response trajectories increased
with increasing number of fish (Figure 6) following a power
function (Table 5). Also as in Experiment A, the CV of the SE
in the one-fish systems was much larger than in any of the other
ones: 43.7% vs. about 10% for the 2–5 fish systems (Table 6). The
raw data are listed in Supplementary Data Sheet S8.

Taken the results of both experiments together improved the
goodness of the fit of the power relationship between the SE
and number of fish (R2 = 0.93 for the basal and R2 = 0.92 for
the response) and confirmed the higher variability in the SE of
low-fish number systems, particularly those with only one-fish
(Tables 5, 6 and Figure 7).

BWS Model
The purpose of measuring the SE of the basal and of the disturbed
states was to obtain information on two relevant statuses (i.e.,
shoaling and schooling) in a healthy system in order to be
integrated in a BWS. Since we found that both SE values kept a
similar relationship with the number of fish, but they were not
identical (Figure 7), we considered that the inclusion of both
might strengthen a potential model that would ultimately permit
their integration into a BWS monitoring tool, an example of
which is described below. As already mentioned, our hypothesis,
supported by previous works on the alteration of the SE in seabass
systems contaminated with MeHg (Eguiraun et al., 2014, 2018), is
that those SE values would be different in a healthy system than
in an unhealthy one, and that this information may make possible
to construct a model for a BWS.

The first step in the construction of the model would be the
collection of data corresponding to the healthy system under
the same conditions in which the monitoring is going to be
performed. These data include the size and number of the fish,
and all the other environmental parameters. From these data,
the SE of both the basal and disturbed states of both the control
(healthy) system and of the system being monitored should be
estimated. Using these four measurements, three sub-models
would be constructed whose combination would provide the
integrated or “overall” model, as shown in Figure 8. The three
sub-models are: (i) Basal reference sub-model: built using the
entropy generated by the fish system in its basal state; (ii) Event

TABLE 4 | Daily evolution of the Shannon entropy in Experiment A in tanks 1 (T1) and 2 (T2).

Day 1 Day 2 Day 3 Day 4 Day 5

# fish Tank # Basal Event Basal Event Basal Event Basal Event Basal Event

50 T1 4.92 ± 0.14 5.16 4.98 ± 0.15 5.23 4.73 ± 0.11 5.00 4.79 ± 0.04 4.77 5.09 ± 0.28 4.82

T2 4.62 ± 0.07 4.62 4.66 ± 0.09 5.68 4.60 ± 0.04 4.89 4.63 ± 0.08 4.84 4.68 ± 0.10 4.81

25 T1 4.71 ± 0.01 4.85 4.47 ± 0.10 4.53 4.50 ± 0.14 4.41 4.30 ± 0.05 4.75 4.46 ± 0.11 5.46

T2 4.76 ± 0.04 4.98 4.78 ± 0.22 4.76 4.67 ± 0.11 4.73 4.67 ± 0.10 4.58 4.69 ± 0.36 5.41

13 T1 4.11 ± 0.23 4.27 4.05 ± 0.11 3.88 4.75 ± 0.45 4.43 4.20 ± 0.34 4.05 4.34 ± 0.55 4.40

T2 3.97 ± 0.17 4.47 3.99 ± 0.20 4.40 4.21 ± 0.27 4.16 3.99 ± 0.08 4.02 3.97 ± 0.08 4.06

1 T1 0.59 ± 0.39 2.79 1.84 ± 0.63 2.63 0.97 ± 0.77 2.26 1.34 ± 0.34 2.15 0.87 ± 0.03 1.49

T2 0.52 ± 0.23 2.79 0.73 ± 0.19 1.63 0.38 ± 0.13 2.07 1.40 ± 0.47 1.50 2.01 ± 0.49 2.31

Shannon entropy (SE) of the basal (average of six different measurements; two tanks and three measurements per tank) and event responses are shown. The raw data
are listed in Supplementary Data Sheet S7.
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FIGURE 5 | Daily evolution of the Shannon entropy (SE) for Experiment A showing the SE values obtained in tanks 1 and 2 for the basal state (T1-b and T2-b) and in
response to the stochastic event (T1-e and T2-e). The number of individuals is indicated on the Top-Left of each plot.

TABLE 5 | Curve fitting parameters and goodness of the fit of the Shannon entropy (SE) vs. fish number.

y = a . xb + c Basal 95% confidence bounds Response 95% confidence bounds

For 1–5 fish systems

Coefficients a −143.6 −22700, 22400 −0.92 −11.77, −0.06

b −0.01 −1.48, 1.47 −1.89 −7.80, 4.01

c 145.10 −22400, 22700 3.42 2.60, 4.23

Goodness of the fit SSE 8.07 0.42

R2 0.72 0.79

Adjusted R2 0.70 0.73

RMSE 0.55 0.24

For 1–50 fish systems

Coefficients a −4.17 −4.70, −3.64 −5.92 −11.77, −0.06

b −0.49 −0.64, −0.34 −0.16 −0.38, 0.05

c 5.40 4.87, 5.94 8.21 2.31, 14.10

Goodness of the fit SSE 28.24 5.90

R2 0.93 0.92

Adjusted R2 0.92 0.91

RMSE 0.44 0.35

The SE values (y) of the basal state and of the response to the event were fitted as a function of the fish number (x). a, b, and c are the coefficients of the curve. The
goodness of the fit was estimated by the sum of squares due to error (SSE), R-square, adjusted R-square, and root mean squared error (RMSE).

reference sub-model: built using the entropy of the fish system in
response to a disturbance; (iii) Basal/Event relationship reference
sub-model: built using the ratio between the “basal” and the
“event” SE values.

The difference between the expected SE of the healthy system
and the online signals measured by the monitoring tool detecting
the actual SE of the system (for both the basal and disturbed
statuses) will be called “error signal.” These error signals are

the outputs of the proposed “overall” model and they should be
integrated in knowledge models of higher order, i.e., as inputs to
the “Model Integration” block in Figure 8. Error signals larger
than the previously estimated normal variation in a healthy
system should be interpreted as a deviation from the norm in
the system (i.e., the introduction of a possibly undesirable agent)
and the supervisor in charge of the monitoring operation should
proceed to identify the cause of such deviation and follow the
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TABLE 6 | Coefficients of variation (CV) of the measured SE values for Experiments A and B.

Number of fish

SE 50 25 13 5 4 3 2 1

Experiment A, all measurements Basal 4,19 4,34 8,10 60.83

Experiment B, all measurements Basal 9,90 10,03 8,63 9,85 43.66

Experiments A+B

All measurements Basal 4,19 4,34 8,10 9,90 10,03 8,63 9,85 55,15

AVG of three replicates Basal 2,31 2,69 5,86 37,12

All measurements Response 6,12 7,20 4,93 19,51

The CV of “All measurements” were calculated including all the SE values obtained, i.e., three basal and one response for each day. The “AVG of 3 replicates” were
calculated including only the average of the three basal replicates obtained each day. There were no replicates of the responses to the event.

FIGURE 6 | Daily evolution of the Shannon entropy in Experiment B. Tank 1 (Left plot) contained only one fish, but a different fish every day, during the 5
experimental days. The number of fish in Tank 2 (Right plot) increased by one individual daily. The number of fish is indicated on the Top-Left of the panels. The
square markers correspond to the SE values for the basal states and the crosses to the SE in response to the event.

FIGURE 7 | Curve fitting of the Shannon entropy as a function of the fish number. The basal state (Left) and the response to the event (Right) are shown together
with the 95% confidence bounds. The parameters of the curve fitting are shown in Table 5.

previously established corrective actions. Since it is desirable that
the normal variation is a low as possible, one-fish systems (with
CV of up to 60%) should be avoided.

DISCUSSION

The aim of the present work was to obtain an essential piece
of information for BWS design purposes and for physiological
research: to elucidate whether the number of fish affected the

SE of the system in a known shoaling fish species (European
seabass) and, if so, what type of relationship these two variables
kept. As we have already mentioned, it must be noted that we
did not aim at mapping behavioral characteristics such as time
swimming or resting, aggressive behavior, the kind of shoaling
and schooling itself or inter-individual interactions which would
require a different methodological approach and algorithms more
sophisticated than the SE to analyze the data (see for example the
works by Tunstrøm et al., 2013; Teles et al., 2015; Gauvrit et al.,
2017; Crosato et al., 2018).
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FIGURE 8 | Schematic representation of the model defining inputs, generated outputs due to error signals, internal variables, and sub-model interactions. The
output error signals should feed the subsequent phase of the model where all this information is integrated in the Model Integration box.

The two experiments performed, A and B, are considered
to contribute equally to the study of the system’s behavior
with different number of fish, and whether the experiment was
performed by decreasing or by increasing the number of fish in
the tank should not have a bearing on the results because the fish
had been acclimated for a long enough period of time prior to
the recordings. The acclimation periods we have used (12 and
2.5 days and 23 h) are longer or similar to most of those reported
in the literature, for example Stienessen and Parrish (2013) used
only 1 day and Melvin et al. (2017) indicated that these kind
of studies should be preceded by an acclimation period of at
least several hours to evaluate normal baseline behaviors. For
the freshwater species they used, mosquitofish (Gambusia affinis),
this period was 8 h. Moreover, in both Melvin et al. (2017) and our
present work, the fish had been acclimated to the laboratory tanks
for 3 months prior to the initiation of the experiment, which was
carried out in similar tanks and conditions to those to which they
had been acclimated to.

Implementation of a BWS, or establishment of an
experimental fish system, requires the characterization of
the “normal” or “healthy” biological system, in order to be
able to detect alterations provoked by the introduction of
undesirable agents (such as predators, infectious or parasitic
agents, contaminants or others) that would make the system
become unbalanced, stressed or unhealthy. The healthy
system will have a basal and a disturbed state, each with
their corresponding SE values that will be “normal,” meaning
that those will represent the shoaling basal state and the
schooling reaction to a stochastic stimulus. The introduction
of a detrimental agent (chronic stress, a toxicant, pathogen,

parasite, etc.) should initiate the transformation of the “healthy”
system into an “unhealthy” one and, consequently, induce
alterations in the SE of both the basal and altered statuses. We
initially thought that the SE in the response to a disturbance
(i.e., the schooling reaction) might reflect better the health
status of the system, so that if the fish had been affected for
example, by a contaminant, its reflexes might have been altered
and hence the initiation of the schooling should be different
from the response of a healthy one (Eguiraun et al., 2014).
On the other hand, it was also possible that the SE of the
shoaling basal state itself might be different in healthy than in
contaminated fish-systems and, in any case, it was likely that
the information obtained from both measurements would be
more robust than the information provided by any one of them.
Therefore, we decided to include the analysis of both, the basal
and disturbed states, in the present work and in the proposed
model.

The number of fish is a characteristic intrinsic to the system
and it should, a priori, not have a bearing on its health status.
However, in the mid to long-term it may affect the health of the
system if the number is too high or too low. Thus, in order to
save costs, animal suffering and to respect the legal framework,
it is desirable to select the lowest number that affects as little as
possible the health status of the system, i.e., the lowest number of
fish that provides results according to the variables being tested,
such as contaminant concentration, and not to the composition
of the system itself.

The one-fish systems had unusually low SE values, which
may be explained by the shoaling nature of the species: when
placed alone, we observed that fish moved very little, and
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this will translate in a low SE value due to the fact that it
would be easier to predict the positions xi and yi (knowing
xi−1 and yi−1) of a one-fish system that is hardly moving
(we hypothesize that this is probably due to fear, as explained
in the next paragraph), than the centroid of a cluster of
fishes feeling safer within a shoal of increasing size that will
probably display increased unpredictability of movements due
to either free, random swimming, or to schooling to escape
predators. The increased difficulty in predicting the trajectory
of the shoal would result in concomitantly increasing SE values,
as shown in Tank 2 of Experiment B and in Experiment
A.

To explain the above hypothesis, we would like to introduce
the selfish herd theory proposed by Hamilton (1971), according
to which individuals in a herd will try to avoid the periphery
where the risk of predation is greatest. This theory was
empirically proven in a situation of stress for the minnow
(Phoxinus phoxinus) (Krause, 1993) and for sticklebacks
(Gasterosteus aculeatus) (Krause and Tegeder, 1994). Applying
this theory, it is reasonable to assume: (i) that a fish which
would naturally shoal, being alone in a clean tank where
it cannot even exhibit full mimicry, will feel exposed and
stressed, and will try to move as little as possible to avoid
attracting undesired attention from potential predators, (ii) that
the intensity of the response to this stress will vary according
to the individual genotype, stock of origin and possibly life
history of the individual, as shown by Herbert-Read et al.
(2017), and (iii) that those factors will, in turn, contribute to
the large CV of individual SE values of 1-fish systems, which
must necessarily reflect the variability in the responses from each
different individual.

Consequently, we would not recommend performing
physiological or toxicological experiments, nor set up a BWS,
with only one fish, given that the set up itself will likely
influence the well being of the individual. Rather, it should be
selected a system with the lowest number of fish that allows
the individuals to feel safe, i.e., the lowest number that allow
the fish feel that they are in a shoal and with possibilities to
school and escape predators if necessary. For our fish and
experimental conditions, somewhere between 5 and 13 fish
would be acceptable. It is interesting to note that this number
agrees with the 6–10 number of interacting neighbors to initiate
convergence to swarming in birds (Shang and Bouffanais, 2014)
and with the “at least four neighbors” necessary to achieve
schooling behavior in fish (Huth and Wissel, 1994) previously
mentioned.

The concepts and results shown here may apply not only to
European seabass, but also to other similarly shoaling species.
Although the behavior and response of the system will likely
be species-specific, this approach might be applied with few
modifications to monitoring species such as salmon, seabream,
charr, cod, trout, and others of high relevance to the aquaculture
industry. Furthermore, once the number of fish to be used in
live systems has been scientifically selected, complex behavioral
studies may be carried out using some of the more sophisticated
analytical methods described by different authors and software
(see references from the section “Introduction,” “Material and

Methods,” and the free available software1). The main use of the
present work would be to contribute to animal welfare and to
scientifically justify the selection of the lowest possible number
of individuals to be experimented upon when applying for the
permit to perform experiments to the respective Animal Welfare
Committees.

CONCLUSIONS

We believe this to be the first scientific work designed to estimate
the minimum number of individuals to be used in studies of
shoaling fish species (albeit not of the shoaling itself) that reaches
a compromise between the Reduction in number demanded by
animal welfare guidelines and a low (or as low as possible)
variability in the fish system’s response. This work also presents
for the first time a potential model using the SE of the biological
system, for the robust and practical implementation of a small-
scale BW-monitoring system (to monitor the health and welfare
of the fish) into an intelligent aquaculture platform.

Several conclusions can be drawn from the present study. One
is that to set-up a monitoring BWS or an experiment using a
shoaling species such as the European seabass, one should avoid
using 1-fish systems. The second is that the minimum number
of fish to monitor should be between five and 13 fish since that
number is a good compromise between acceptable variability in
the results and the concept of Reduction to satisfy the criteria
for animal welfare in experimental settings. A third conclusion
is that one should use both the basal SE and the SE in response
to an event in the design of the practical model, since they give
complementary information and both parameters are relevant.
Finally, there is still a significant amount of work that needs to
be done, as described in the next section, in order to further
develop the BWS approach in practical aquaculture settings and,
in particular, in Intelligent Aquaculture structures.

Future Work
Further work within this line of research should include the
validation of the present results using individuals of different size
and species, as well as the development and validation of an early
response model (such as the one presented above) of the system
integrating all the relevant information needed to establish the
“normal” response of the system. Once the monitoring system is
defined, the next step will be its integration within the intelligent
aquaculture structure. Additionally, it must be borne in mind that
data on the system’s SE can be obtained by processing images,
as we have done here, but infrared images, echo signals and
labels carried by the fish are also methods with potential to
provide such relevant information that have been tested and offer
great promise (Føre et al., 2011, 2017). Last, but not least, the
use of more complex methods for the acquisition of behavioral
data and of algorithms for their analysis may provide further
evidence as to the type of disturbance that may affect the system,
when such disturbance takes place. The current procedure is only
designed to identify a normal operating system from a deviated

1http://complexitycalculator.com
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one, which may be enough for the farmer or the researcher to
identify the presence of an agent causing an alteration into the
system but, as mentioned above, more fine analyses might help
to elucidate the type of alteration suffered and/or the type of
external agent introduced that one should look for. The latter
may be particularly interesting in the case of novel or unexpected
contaminants.

It is a challenge to speculate on how a very large fish system, for
example with several hundred thousand fish, may behave. This
question, however, is very important if one wishes to optimize, in
a rational manner, the building of large off-shore fish aquaculture
structures. Whether it is the SE or some other better suited
algorithm the one that may help us to understand the dynamics
of such large systems and optimize them and the welfare of
the fish, we cannot say at this time, but it is with no doubt
a very interesting and challenging field of research that will
contribute practical data to fish farmers. Future works in this field
will require the contribution from experts with wide and very
different fields of expertise.
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