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In our previous study, we demonstrated that butyrate induced ruminal epithelial growth
through cyclin D1 upregulation. Here, we investigated the influence of butyrate on the
expression of genes associated with cell cycle and apoptosis in rumen epithelium.
Goats (n = 24) were given an intra ruminal infusion of sodium butyrate at 0.3 (group
B, n = 12) or 0 (group A, n = 12) g/kg of body weight (BW) per day before morning
feeding for 28 days and were slaughtered (4 goat/group) at 5,7 and 9 h after butyrate
infusion. Rumen fluid was analyzed for short chain fatty acids (SCFAs) concentration.
Ruminal tissues were analyzed for morpho-histrometry and the expressions of genes
associated with cell cycle and apoptosis. The results revealed that the ruminal butyrate
concentration increased (P < 0.05) in B compared to group A. Morphometric analysis
showed increased (P < 0.05) papillae size associated with higher number of cell layers in
epithelial strata in B compared to A. Butyrate-induced papillae enlargement was coupled
with enhanced mRNA expression levels (P < 0.05) of cyclin D1, CDK2, CDK4, and
CDK6 (G0/G1 phase regulators) at 5 h, cyclin E1 (G1/S phase regulator) at 7 h and cyclin
A and CDK1 (S phase regulators) at 9 h post-infusion compared to A group. In addition,
the mRNA expression levels of apoptotic genes, i.e., caspase 3, caspase 9 and Bax at
5 h post-infusion were upregulated (P < 0.05) in group B compared to group A. The
present study demonstrated that butyrate improved ruminal epithelial growth through
concurrent and time-dependent changes in the expressions of genes involved in cell
proliferation and apoptosis. It seems that the rate of proliferation was higher than the
apoptosis which was reflected in epithelial growth.

Keywords: butyrate, rumen epithelium, gene expression, cell cycle, cell apoptosis

INTRODUCTION

Short chain fatty acids (SCFA) are generated in the rumen by microbial fermentation of dietary
carbohydrates. Absorption of SCFA across the epithelium contributes 70–80% of the total energy
requirement of the ruminants. Acetate, propionate and butyrate are the main SCFA in rumen
fluid (Bergman, 1990; Nozière et al., 2000) which induces morpho-functional alteration in
ruminal papillae (Gäbel et al., 1991a,b; Krehbiel et al., 1992; Nozière et al., 2000). Conversely, an
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increase of SCFA absorption has been linked to the surface
area enlargement of ruminal papillae in ruminants fed high
concentrate diets (Dirksen et al., 1984; Gäbel et al., 1991a,b).
The latter could be ascribed to an increased abundance of
gene transcripts related to epithelial proliferation (Penner et al.,
2011). Butyrate is a four-carbon SCFA normally produced in
the smallest ratio of 5–15% in rumen (Bergman, 1990; Nozière
et al., 2000). It is preferred metabolic fuels for rumen epithelium
and concerned with mucosal health maintenance (Hamer et al.,
2008; Leonel and Alvarez-Leite, 2012). The inner wall of the
rumen is covered with rumen papillae which increases the
surface area for absorption of nutrients (Malhi et al., 2013).
The morphological and functional changes in ruminal papillae
can be largely ascribed to butyrate (Krehbiel et al., 1992;
Shen et al., 2005). Previous studies indicated that sodium
butyrate modulates epithelial growth through cell proliferation,
differentiation and apoptosis in the small intestine of piglets and
stomach of calves and goats (Kotunia et al., 2004; Guilloteau et al.,
2009; Malhi et al., 2013). Butyrate improved papillae size and
thereby increased surface area in the dorsal sac of the rumen
in bulls (Kowalski et al., 2015). Increasing luminal butyrate
concentration either by enhancing its endogenous production
through dietary manipulation (Guilloteau et al., 2010) or by
exogenous administration (Sakata and Tamate, 1978; Shen et al.,
2005) has been shown to enhance ruminal epithelial proliferation.
The proliferative effects of butyrate differ not only with the age
and physiological status of the animals but also with the dose,
route and rate of butyrate administration. In young calves and
starved adult sheep butyrate induces epithelial proliferation at
high doses > 2.5 g/kg of BW/day (Sakata and Tamate, 1978;
Mentschel et al., 2001) and in fed cattle at low doses < 0.5 g/kg
of BW/day (Shen et al., 2005). Furthermore, the rapid infusion
of butyrate induced proliferation whereas the slow infusion
method did not (Sakata and Tamate, 1978; Mentschel et al.,
2001). In addition to cell proliferation, apoptosis is a vital
process involved in the maintenance of the cell homeostasis and
modulates the organ growth. Besides rapid proliferation, butyrate
also stimulates the apoptosis in order to maintain the normal
cell homeostasis (Mentschel et al., 2001). Oral administration
of butyrate reduced apoptosis in ruminal epithelium of calves.
In colonic epithelial cell culture, the butyrate deprived medium
reduced cell number in each phase of cell cycle, with the
maximum reduction in G1 phase caused by apoptosis (Luciano
et al., 1996). In vivo butyrate administration exerts selective
effects on cells depending on their phenotypes. Butyrate increased
proliferation of normal intestinal cells in piglets (Kien et al.,
2008) whereas inhibited proliferation and increased apoptosis in
artificially induced-tumor cells (aberrant crypt foci, ACF) in rat
intestine (Clarke et al., 2012). It seems that butyrate stimulates
apoptosis only in unwanted or defective cells produced during
rapid proliferation.

Though the considerable studies have been carried out
to evaluate the influence of butyrate on ruminal epithelial
growth but the underlined molecular mechanism particularly
in reference with cell cycle and apoptosis has not been fully
discovered yet. In continuation with our previous study, in
which we showed that butyrate induced ruminal epithelial growth

is associated with cyclin D1 upregulation, the present study
was intended to explore further the influence of butyrate on
expression of genes involved in cell cycle and apoptosis.

MATERIALS AND METHODS

The experimental plan and procedures were approved by Animal
Care and Use Committee for Livestock at Nanjing Agricultural
University following the requirements of the regulations for the
administration of affairs concerning experimental animals under
the “The State Science and Technology Commission of China,
1988” act.

Experimental Design, Goat Management,
and Infusion Method
Twenty four rumen-fistulated goats (Boer × Yangtze River Delta
White) of approximately 4 months of age; 18.29 ± 0.64 kg of
body weight (BW) at the start of the experiment were used in this
study. The goats were housed in individual cemented floor pens
(1.2 m × 1.0 m) and were randomly divided into two groups,
i.e., A and B (n = 12 each). Animals in group B were given
intraruminal infusion of sodium butyrate (Merck, Hohenbrunn,
Germany) at the dose rate of 0.3 g/kg of BW added in 50 ml
of 0.1 mol/l potassium phosphate buffer. Whereas animals in
group A received the same amount of buffer without butyrate.
The butyrate infusion was performed 1 h before morning feeding
within 10–15 s. Animals were fed concentrate (200 g) two times
daily in 2 equal meals at 8:00 am and 5:00 pm and provided with
free access to hay and water. Table 1 depicts all of the ingredients
in the feed and their chemical compositions. Body weight of
goats was recorded weekly. The duration of the experiment was
28 days.

Sampling and chemical analysis of the feed was performed
on days 7 and 28. On day 14 of infusion trial the ruminal fluid
samples were collected in equal portion from atrium ruminis,
ventral rumen and caudal dorsal and caudal ventral regions by
suction through inserting a pipe and combined to form one
sample at 0, 1, 2.5, 3.5, 5, and 7 h post-infusion. The pH was
determined by digital pH meter and then the samples were
immediately strained through 4 layers of gauze. Afterwards, 1 ml
of 5% HgCl2 solution was added to 20 ml of rumen fluid and

TABLE 1 | Chemical composition of diets fed to goats.

Chemical composition Concentrate† Hay

DM (%) 87.7 89.8

CP (% of DM) 20.8 7.3

Crude fat (% of DM) 3.6 2.0

Crude fiber (% of DM) 6.6 28.2

Crude ash (% of DM) 7.7 6.4

ME (MJ/kg of DM) 10.8 6.9

†The concentrate was composed of ground corn, soybean meal, cottonseed bran,
wheat bran, fish meal, calcium phosphate, limestone, trace mineral salt, and vitamin
premix (vitamins A, D, and E). DM, dry matter; CP, crude protein; ME, metabolizable
energy; MJ, Megajoule.

Frontiers in Physiology | www.frontiersin.org 2 May 2018 | Volume 9 | Article 496

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00496 May 18, 2018 Time: 16:54 # 3

Soomro et al. Butyrate Modulates Rumen Epithelial Growth

preserved at −20◦C for SCFA analysis. Goats were slaughtered
on day 28 (4 goats from each group) at three different time points,
i.e., 5, 7, and 9 h after last infusion. After slaughter, the abdomens
were immediately opened, and the stomachs were exteriorized.
After emptying and washing with PBS (pH 7.4), ruminal tissues
(approximately 2 cm2) from the atrium ruminis, ventral rumen
sac and ventral blind sac were taken for morphological analyses
of the papillae. These tissues were fixed in 4% paraformaldehyde
solution. Epithelium for RNA extraction was taken from ventral
blind sac (∼10 g). After cleansing with ice-cold PBS, the
epithelium was detached from muscle layer by hand, shifted into
liquid nitrogen and then stored at−80◦C until analyzed for PCR.

Determination of Ruminal SCFA
Concentration
The SCFA concentrations in the ruminal fluids were detected
using a HP6890N chromatograph (Agilent Technologies,
Wilmington, DE, United States) according to a standard method
(Yang et al., 2012). The carrier gas was nitrogen (99.99% purity)
and was applied at a steady flow rate of 2.8 ml/min with a split

ratio of 1:30. The capillary column temperature was fixed at
140◦C for 4 min and then increased at 25◦C/min to 240◦C.
Regarding the injection port and the flame-ionization detector
(FID), the temperatures were set to 180 and 250◦C, respectively.
Crotonic acid (CH3CH) was used as the internal standard.

Morphometric and Histomorphometric
Analyses
One centimeter square piece of paraformaldehyde fixed
epithelium, taken from each of the anterior, ventral and ventral
blind sac of the rumen was used for morphological analyses
of the papillae. Papilla was held gently with forceps and the
caliper was slowly opened wide, from base to the tip of papilla to
measure the length, and from one side to the other at the mid of
papillae to measure the width. The papillae were cut from these
epithelial sections and counted (density, number/cm2). For every
goat in groups B and A, 15 papillae were measured from each of
the samples of the atrium ruminis, ventral rumen sac and ventral
blind sac. The surface areas of the rumen mucosa (mm2/cm2)
were determined as the length× width× density× 2.

TABLE 2 | Primers used in quantitative real-time PCR analysis.

Gene† Primer sequence 5′ to 3′‡ Accession number§ Size(bp)¶

CCND1 GGTCCTGGTGAACAAACTC EU525165.1 114

TTGCGGATGATCTGCTT

CDK4 TGAGCATCCCAGTGTTGT NM-001127269.1 122

CCTTGTCCAGATACTTCCT

CDK6 AGAGTGATTGCAGCTTTATGTCCA GAAI01006376.1 158

TGCCCAGGTTGCTCACTTC

CCNE1 GGGACAAGCACCTTATGCAAC NM-001192776.1 153

GTGTTGCCATATACCGATCAAAGA

CDK2 CTGCACCGAGACCTTAAACCTCA BT020790.1 140

GCTCGGTACCACAGAGTCACCA

CCNA TGGACCTTCACCAGACCTACCT X68321.1 105

GTGGGTTGAGGAGAGAAACACC

CCNB1 AGCGGATCCAAACCTTTGTAGTG NM-001045872.1 137

CAATGAGGATGGCTCTCATGTTTC

CDK1 CCAATAATGAAGTGTGGCCAGAAG NM-174016.2 164

AGAAATTCGTTTGGCAGGATCATAG

p21 AGGGCACGTCTCAGGAGGA NM_001098958. 1 164

CAGTCTGCGTTTGGAGTGGTAG

Bax TCTGACGGCAACTTCAACTG NM-173894.1 205

TGGGTGTCCCAAAGTAGGAG

Caspase 3 AGCCATGGTGAAGAAGGAATCA NM-001077840.1 156

ACCACAGTCCAGTTCTGTGCCT

Caspase 9 TCCTTTGTTCATCTCCTGCTTG XM-004013798.1 115

TTTTCCTTGGCTTGGCTTTG

Bcl-2 GATGACCGAGTATCTGAACCG NM-001166486.1 120

GACAGCCAGGAGAAATCAAACA

GAPDH TTGTCTCCTGCGACTTCA HM043737.1 135

CCACCACCCTGTTACTGTT

†CCND1, cyclin D1; CDK4, cyclin-dependent kinase 4; CDK6, cyclin-dependent kinase 6; CCNE1, Cyclin E1; CDK2, cyclin-dependent kinase 2; CCNA, cyclin A;
CCNB1, cyclin B1; CDK1, cyclin-dependent kinase 1; p21, cyclin-dependent kinase inhibitor; Bax, Bcl-2-associatedX protein; Bcl-2, B-cell lymphoma 2; GAPDH mRNA,
Glyceraldehyde 3-phosphate dehydrogenase ribosomal RNA. ‡The first primer listed for each gene is the forward primer and the second primer is reverse primer.
§Accession number. ¶The base pair of primers.
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FIGURE 1 | Effect of ruminal butyrate infusion on the molar concentration of total short chain fatty acids (I), acetate (II), propionate (III), and butyrate (IV) at 6 time
points on day 14th of butyrate infusion. The goats were infused by 0.1 M potassium phosphate buffer (50 ml) with sodium butyrate at 0.3 (B = butyrate group,
n = 12) or 0 (A = control group, n = 12) g/kg of BW per day for 28 days in the experimental duration. Values (means ± SE) differ if they do not share a common letter:
a,bP < 0.05.

For the histomorphological evaluations, the formalin fixed
tissue samples from the atrium ruminis were taken, dehydrated,
cleared and embedded in paraffin. Sections of 4-µm thickness
were cut and stained by the standard hematoxylin and eosin
(H&E) procedure. For each tissue, 25 to 30 papillae were
embedded for paraffin-sectioning and microscopic observation.
From these, the 4 paraffin sections with the best orientation of
papillae in the median sagittal plane were used to evaluate the
morphological characteristics of the ruminal papillae by using
Image-Pro Plus 6.0 (Media Cybernetics Inc., Bethesda, MD,
United States).

For each papillae three visual fields were used for counting cell
density from three cell layers of the epithelium, i.e., SS+ SG = the
stratum germinativum (SGv) and stratum basale (SB), to reveal
the following parameters:

(i) The epithelial cell density of the SGvs in numbers of cells
per mm2 (n/mm2).

(ii) The epithelial cells in SB are in single row and there
counting unit is numbers of cells per mm (n/mm).

Total RNA Extraction, cDNA Synthesis
and Quantitative Real-Time PCR
The guanidinium thiocyanate-phenol-chloroform extraction
method reported by Chomczynski and Sacchi (2006) was
used for the total RNA extraction from the homogenized
ruminal tissue. The RNA concentration and integrity were
evaluated based on extinction measurements at 260 and 280 nm

made with a Biophotometer (Eppendorf, Hamburg, Germany).
The absorption ratio (260:280) was between 1.8 and 2.0 for
all of the RNA samples, which indicated high RNA purity
in every sample. Aliquots of RNA samples were subjected to
electrophoresis through a 1.4% agarose-formaldehyde gel to
verify integrity. The RNA concentrations in the samples were
then adjusted to1 µg/µl. Random hexamer primers (Invitrogen,
Shanghai, China) and Moloney murine leukemia virus (M-MLV)
reverse transcriptase (Fermentas, Burlington, ON, Canada) were
used for the cDNA synthesis. The target genes of interest and
their respective sources and primer sequences are listed in
Table 2.

The relative gene expression was determined via real-time
polymerase chain reaction (PCR) by using the MyiQ2 two-color
real-time PCR detection system (Bio-Rad Laboratories, Inc.,
Hercules, CA, United States). Real-time PCR was performed in
a total volume of 20 µl containing 1× iQSYBR Green Supermix
(Bio-Rad Laboratories Inc., Hercules, CA, United States), a
mixture of the forward and reverses primers (500 nM each),
cDNA template (1 ng), and a known amount of sterile water for
volume adjustment. An initial cycle of 30 s at 95◦C was used to
denature the cDNA. Forty PCR cycles involving denaturation at
95◦C for 10 s and primer annealing and extension at 55◦C for
30 s were then performed. A standard dilution series was used
to calculate the amplification efficiencies of all of the primers
before performing the PCRs for the experimental samples. The
efficiencies of all the primers used were between 97 and 101%.
Gene expression was normalized to GAPDH. All samples were
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run in triplicate. These experiments were repeated twice with
80–90% similarity. Melt curve analyses were performed after all
of the PCR analyses. The data were analyzed via PCR array
data analyses based on the 1Ct method with normalization of
the raw data to GAPDH; i.e., 1Ct = Cttarget − CtGAPDH, where
Ct = the cycle threshold. The relative gene expression values were
calculated using the formula 2−11Ct, as explained by (Livak and
Schmittgen, 2001). All samples were analyzed in triplicate.

Statistical Analysis
Data are expressed as means ± SE. Differences with a P-value
of <0.05 were considered significant. An independent sample
t-test (two-tailed test) was used to compare the data between
two groups. All statistical analyses were performed by using
SPSS software (version 13.0.1 for Windows; SPSS, Chicago, IL,
United States).

RESULTS

Ruminal Short Chain Fatty Acid
Concentration
Figure 1 shows the effect of butyrate infusion on ruminal
fermentation pattern of goats. At 0 h the individual and total
SCFA concentrations did not differ between the groups, however,
at 1 h after butyrate infusion, the molar concentration (mmol/l)
of butyrate (17.96) in B increased by about 99.78% (P < 0.01)
compared to A (8.99). Whereas the molar concentrations
(mmol/l) of acetate (48.93 in B vs. 54.50 in A) and propionate
(13.54 in B vs. 17.41 in A) were decreased (P < 0.05) in
B compared to A. The concentrations of both acetate and
propionate in group B returned to the base-line levels by 2.5 h
whereas the butyrate concentration remained significantly
elevated up to 2.5 h and then returned to its base-line value
by 3.5 h.

Morphometric and Histometric Analysis
of Rumen Papillae
Butyrate infusion significantly increased (P < 0.05) the papillae
length, width and density in the atrium ruminis (AR),

ventral rumen (VR), and ventral blind sac (VBS) compared to
group A (Table 3 and Figure 2). The increases in papillae length,
width and density led to an increase (P < 0.05) in the surface
area of all the tested regions in group B compared to group
A. Histometric analysis of rumen papillae revealed that the cell
density in the stratum germinativum (SGv) and stratum basale
(SB) increased (P < 0.05) in group B compared with group A
(Table 4 and Figure 3).

Gene Expression Analyses
The mRNA expression levels of cyclin D1, CDK4, CDK6, CDK2,
and p21 were significantly increased (P < 0.05) in group B
compared to A at 5 h after butyrate infusion (Figure 4I).
Whereas the butyrate infusion increased (P < 0.05) the mRNA
expression levels of cyclin E1 at 7 h and that of cyclin A and
CDK1at 9 h post-infusion compared to A (Figures 5I, 6I). The
assessment of genes showed that the butyrate infusion caused
significant increase (P < 0.05) in mRNA expression levels of
caspase 3, caspase 9 and Bax at 5 h post-infusion compared to
control (Figure 4II). However, the expression levels of apoptotic
genes at 7 and 9 h post-infusion were remained unchanged
(P > 0.05) between the groups (Figures 5II, 6II). Furthermore,
the increased mRNA expression levels of cyclin D1, cyclin E1,
CDK2, 4, and 6, and P21, caspase 3, caspase 9 and Bax were
positively correlated with the ruminal butyrate concentration in
B and the differences were significant (P ≤ 0.05, Table 5).

DISCUSSION

Fermentation Pattern and Morphology
of Rumen
Butyrate concentration in rumen fluid of B group increased from
1 to 2.5 h post-infusion compared to A group and declined
subsequently. Conversely the molar concentration of acetate
and propionate significantly decreased at 1 h post-infusion. The
changes in the concentration of three major ruminal SCFAs in
response to intraruminal infusion of butyrate are consistent with
previous study (Malhi et al., 2013). The reduction of acetate and
propionate might be due to inhibitory impact of butyrate on

FIGURE 2 | Effect of ruminal butyrate infusion on papillae growth. Goats were infused by 0.1 M potassium phosphate buffer (50 ml) with sodium butyrate at 0.3
(B = butyrate group, n = 12) or 0 (A = control group, n = 12) g/kg of BW per day for 28 days.
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their production by ruminal microbes (Li et al., 2012) or butyrate
could promote the absorption of acetate and propionate by the
ruminal epithelium (Malhi et al., 2013). In the present study the
ruminal infusion of butyrate increased dimensions and density
of papillae in atrium ruminis, ventral sac and ventral blind sac
of rumen. Furthermore, the histometric analysis showed that the
number of cell layers in SGv and density of cells in SB increased in
butyrate infused goats compared to control. This could be largely
attributed to increased intraruminal butyrate concentration as
previously reported by (Mentschel et al., 2001; Shen et al., 2005;
Malhi et al., 2013).

Genes Expression Related to
Proliferation and Apoptosis
In the present study, the butyrate infusion showed
time-dependent effects on genes related to cell cycle and
apoptosis in ruminal epithelium. The mRNA expressions level of
cell cycle genes involved in early to mid G1 phase, i.e., cyclin D1,
CDK2, CDK4, and CDK6 increased at 5 h and those involved
in late G1 phase, i.e., cyclin E1 at 7 h after butyrate infusion.
Based on histo-morphometric studies, many researchers have
demonstrated that butyrate improves rumen epithelial growth
through increased cell proliferation (Sakata and Tamate, 1978;
Mentschel et al., 2001; Shen et al., 2004). The cell cycle of a
mammalian cell including ruminal epithelium is a complex
process consisting of four phases including G1, G2, S, and M
(Goodlad, 1981; Mathew et al., 2010). In general, the rumen
epithelial cells complete the cell cycle in a period of 24 h,
however, the duration may increase or decrease depending
upon shortening or elongation of various cell cycle phases
under the influence of diet or dietary-produced SCFA (Goodlad,
1981). The cell cycle phases are strictly regulated by cyclins and
cyclin-dependent kinases (CDK) proteins (Matsushime et al.,
1992; Jacks and Weinberg, 1996). Cyclin D1 forms a complex
with either CDK4/6 that promotes the cells from early to mid
G1 phase (Mathew et al., 2010). The upregulation of cyclin D1
and CDK 4/6 at 5 h after butyrate infusion suggest that butyrate
enhanced the transition of cells through G0/mid-G1 phase. The
cyclin E1 mRNA synthesis is initiated during the G1 phase and
its expression reaches at its peak in late G1 (Petersen et al., 1999;
Coverley et al., 2000). In the present study, the increased cyclin
E1 mRNA expression level in ruminal epithelial tissue collected
at 7 h post-infusion suggest that the cell population was in G1/S
transition phase. If we presume that at the time of butyrate
infusion (0 h) the ruminal epithelial cells were in G0-phase, the
cells took 4–5 h to enter mid-G1 phase and another 2–3 h to
enter the mid/late G1 phase and the total duration of G1-phase
would be 6–7 h. In sheep fed roughage-based diet, the maximum
duration of G1 phase in rumen epithelial cells was 8.2 h which
reduced to 6.5 h when the sheep were transitioned from roughage
to concentrate based-diet (Goodlad, 1981). Previous studies have
shown that butyrate induces ruminal epithelial growth in goats
by shortening G1 phase through cyclin D1 upregulation (Malhi
et al., 2013). Moreover, the cyclin D1 expression was influenced
by sampling time. According to our previous report, ruminal
tissue samples collected at 3 h post-infusion of butyrate already
showed significant increase in cyclin D1 mRNA expression
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FIGURE 3 | Effect of ruminal butyrate infusion on rumen papillae histology. Goats were infused by 0.1 M potassium phosphate buffer (50 ml) with sodium butyrate at
0.3 (B = butyrate group, n = 12) or 0 (A = control group, n = 12) g/kg of BW per day for 28 days. Histomicrographs showing epithelial strata at maximum (a) and
minimum (b) depths in epithelium of goats. Morphological characteristics of the ruminal papillae observed by using Image-Pro Plus 6.0 (Media Cybernetics Inc.,
Bethesda, MD, United States).

FIGURE 4 | Effect of ruminal butyrate infusion on mRNA expression of (I) proliferation and cell cycle inhibition and (II) apoptosis related genes in the rumen
epithelium of goats. Goats were infused by 0.1 M potassium phosphate buffer (50 ml) with sodium butyrate at 0.3 (B = butyrate group, n = 4) or 0 (A = control group,
n = 4) g/kg of BW per day for 28 days and slaughtered on day 28 at 5 h after infusion. The levels of gene expression were calculated with real-time PCR in
comparison with GAPDH mRNA. Values are mean ± SE. Asterisks exhibit the differences between groups with ∗P < 0.05.
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FIGURE 5 | Effect of ruminal butyrate infusion on mRNA expression of (I) proliferation and cell cycle inhibition and (II) apoptosis related genes in the rumen
epithelium of goats. Goats were infused by 0.1 M potassium phosphate buffer (50 ml) with sodium butyrate at 0.3 (B = butyrate group, n = 4) or 0 (A = control group,
n = 4) g/kg of BW per day for 28 days and slaughtered on day 28 at 7 h after infusion. The levels of gene expression were calculated with real-time PCR in
comparison with GAPDH mRNA. Values are mean ± SE. Asterisks exhibit the differences between groups with ∗P < 0.05.

level compared to control whereas at 7 h post-infusion did not
(Malhi et al., 2013). In the present study, we also observed that
cyclin D1 expression was remained elevated at the ruminal tissue
samples collected at 5 h post-infusion but not at 7 h post-infusion
(Figure 4). On the other hand, we found significantly increased
CDK4 expression (Figure 4) but they not observe any change in
CDK4 (Malhi et al., 2013). The reason of this contradiction is not
clear. To our best knowledge, the influence of in vivo butyrate
on cyclins A, B and E1, and CDK 1 and 2 and their possible role
in ruminal epithelial growth has not been previously reported.
However, high concentrate diet-induced ruminal epithelial
proliferation was associated with modulation of cell cycle genes
including cyclins D1, E1, A and B, and CDK 2/4 and 6 (Gui
and Shen, 2016). The activity of cyclin E requires CDK2 with
which it forms cyclin E1/CDK2 complex that derives the cell
cycle through late G1/S phase (Sherr and Roberts, 1999, 2004).
However, in the present study, we did not observe any change
in CDK2 mRNA expression. This suggests that there could be
an alternate mechanism for binding with cyclin E1 to drive
the late G1 events of cell cycle. The loss of CDK2 in mice did
not affect G1/S transition and cell cycle progression and it was

suggested that either cyclin E1 performed independent of CDK2
(Berthet et al., 2003; Ortega et al., 2003) or possibly formed cyclin
E/CDK1 complex (Aleem et al., 2005). Recently, it has been
shown that cyclin E1 activates CDK3 and forms cyclin E/CDK3
complex to promote G1/S transition (Satyanarayana and Kaldis,
2009).

Once the cells enter the S-phase the cyclin E1 expression
is subsided and the synthesis of cyclin A mRNA is initiated
and its expression becomes maximal with the progression of
S-phase (Petersen et al., 1999; Coverley et al., 2000). In the
present study, the cyclin A mRNA expression increased in
sample collected at 9 h post-infusion which suggests that the cell
population entered the S-phase. The activity of cyclin A requires
either CDK1 or 2 to form the complex cyclin A/CDK1/2 which
regulates the transition of cells through S-phase. In the present
study, the CDK1 mRNA expression concurrently increased with
cyclin A mRNA expression. Finally cyclin B is required prior to
mitosis (G2/M-phase) (Petersen et al., 1999; Coverley et al., 2000)
which binds with CDK1 to accomplish cell division (Riabowol
et al., 1989). In the present study, no significant changes in
cyclin B1 mRNA expression were observed in ruminal epithelial
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FIGURE 6 | Effect of ruminal butyrate infusion on mRNA expression of (I) proliferation and cell cycle inhibition and (II) apoptosis related genes in the rumen
epithelium of goats. Goats were infused by 0.1 M potassium phosphate buffer (50 ml) with sodium butyrate at 0.3 (B = butyrate group, n = 4) or 0 (A = control group,
n = 4) g/kg of BW per day for 28 days and slaughtered on day 28 at 9 h after infusion. The levels of gene expression were calculated with real-time PCR in
comparison with GAPDH mRNA. Values are mean ± SE. Asterisks exhibit the differences between groups with ∗P < 0.05.

tissue. This can be explained by the fact that cell populations
in the tissues collected at specific time points in the present
study did not arrive at G2/M-phase of cell cycle. However, the
tissue samples collected at 9 h showed that butyrate infusion
caused slight increase in cyclin B1 expression which indicates
the transition of cells through late-S/G2-M phase since the
genes required in next phase of cycle initiate to express in late
stage of previous phase (Petersen et al., 1999; Coverley et al.,
2000). The rise in cyclin B1 expression could be expected if the
fourth ruminal tissue sample were collected at certain time-point
after 9 h post-infusion. The present data demonstrate that the
proliferative effects of butyrate depend upon the specific stage
of dividing cells. Thus, while performing in vivo experiments the
location and tissue sampling time is very important because the
tissue sample collected from a particular site at one specific time
would represent the cell population in a particular phase of cell
cycle with expression of associated genes (Li et al., 2009; Yang
et al., 2012).

In the present study, the butyrate infusion increased p21
mRNA expression level in ruminal tissue collected at 5 h

post-infusion. The p21 has anti-proliferative effects which
binds with CDKs and prevent cell cycle progression and
arrest cell cycle at any phase through G0/G2 phases (Ogryzko
et al., 1997; Niculescu et al., 1998). It has been shown that
the increased proliferation rate in rumen epithelium leads
to rise in apoptosis in order to maintain the normal cell
homeostasis (Mentschel et al., 2001). Consistent with our
findings, (Crim et al., 2008) have shown that in vivo butyrate
administration upregulated p21 expression in colonocytes of
rats. In addition, butyrate-induced p21 upregulation increased
apoptosis in artificially induced-tumor cells (aberrant crypt
foci, ACF) in rats fed fish oil but no apoptotic effects were
observed in ACF in rats fed corn oil. This suggests that apoptotic
effects of butyrate depend upon the associated factors and
physiological status of the cell even after p21 upregulation.
Many studies have shown such selective effects of in vivo
butyrate which depend upon physiological status and cellular
phenotypes. Cecal infusion of butyrate increased proliferation
of normal intestinal cells in piglets (Kien et al., 2008) whereas
butyrate inhibited proliferation and increased apoptosis in
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TABLE 5 | Correlation between ruminal butyrate and mRNA concentration level of
genes.

Item r P-value

Butyrate × Cyclin A 0.146 0.730

Butyrate × Cyclin B1 −0.048 0.910

Butyrate × Cyclin D1 0.773 0.025

Butyrate × Cyclin E1 0.713 0.047

Butyrate × CDK1 0.075 0.859

Butyrate × CDK2 0.864 0.006

Butyrate × CDK4 0.954 0.000

Butyrate × CDK6 0.773 0.024

Butyrate × P21 0.892 0.003

Butyrate × Caspase 3 0.789 0.020

Butyrate × Caspase 9 0.927 0.001

Butyrate × Bax 0.863 0.006

Butyrate × Bcl-2 −0.028 0.947

Goats were infused by 0.1 M potassium phosphate buffer (50 ml) with sodium
butyrate at 0.3 (B = butyrate group) or 0 (A = control group) g/kg of BW per day for
28 days. mRNA concentration was analyzed for correlation with ruminal butyrate
concentration. (r) = measure of the strength of the association between butyrate
concentration and mRNA of genes.

artificially induced-ACF in rat intestine (Clarke et al., 2012).
The results of present study demonstrate that butyrate
induced apoptosis in ruminal epithelial cells during rapid

proliferation, since the overall ratio of proliferation was higher
than the apoptosis which was reflected in epithelial growth
(Figure 7).

For normal growth and tissue homeostasis a balance between
cell proliferation and apoptosis is important. Depending on
the cellular context these two antagonistic processes are linked
via shared molecular machinery (Evan et al., 1995). In the
present study, the butyrate infusion caused upregulation of
proapoptotic genes, i.e., Bax, caspase 3 and caspase 9 in ruminal
epithelial tissues at 5 h post-infusion, however, the expressions
of apoptotic genes at 7 and 9 h were not influenced by
the butyrate treatment. This suggests that butyrate induced
apoptosis in ruminal epithelial cells by arresting cell cycle
at G1. The inhibitory effects of butyrate on G1 phase of
cell cycle and the induction of apoptosis have been well
established (Li and Elsasser, 2005; Li and Li, 2006; Mathew
et al., 2010). As mentioned earlier that p21 is also upregulated
at the same time point which suggests the involvement of p21
pathway in butyrate-induced apoptosis. Consistent with our
findings, previous studies have shown that in vivo butyrate
administration increased apoptosis through p21-dependent
pathway in prostate cancer cell lines implanted in mice (Kuefer
et al., 2004). Over expression of caspase 3, caspase 9, and
Bax in the present study indicate that butyrate involved
p21-dependent intrinsic pathway mediated by Bax and caspase 3.

FIGURE 7 | Schematic diagram showing influence of ruminal Sodium Butyrate (SB) infusion on expression of genes related to proliferation and apoptosis in rumen
epithelium of goat. SB increased proliferation through upregulation of cell cycle related genes involved in early G1 (cyclin D1, CDK2, CDK4, and CDK6), mid G1
(cyclin E1) and S phase (cyclin A and CDK1). Simultaneously, SB also increased the mRNA expression level of p21, Bax, Caspases 3 and 9, leading to cell cycle
arrest and apoptosis. Since, the rate of proliferation was higher than apoptosis which was reflected in ruminal epithelial growth and papillae enlargement.
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In prostate cancer cells butyrate treatment up-regulated Bax (Mu
et al., 2013).

CONCLUSION

The present study demonstrates that butyrate stimulates
epithelial growth by modulating both proliferative and apoptotic
genes. Butyrate enhanced ruminal epithelial proliferation
by shortening various cell cycle phases through associated
cyclins/CDKs upregulation. Besides proliferation, butyrate
induced apoptosis in rumen epithelium through activation of
Bax, caspase 3, and caspase 9. Since the ratio of proliferation
was higher than the apoptosis which was reflected in epithelial
growth. To our knowledge, we report for the first time
the effects of in vivo butyrate infusion on cell cycle and
apoptotic genes in rumen epithelium of goats. Moreover,
the environment of large intestine in mammals generally
resembles with the environment of rumen so the results of
present study can be extrapolated on mammals including
human beings. However, the results of present study may
be carefully interpreted as rumen epithelium is a complex
tissue consisting of four different types of cell layers and the
effects of butyrate vary with cell phenotypes. Nevertheless,

this study provides a basis for understanding the molecular
mechanism underlying the butyrate action on ruminal epithelial
growth.
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