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Aerobic exercise training (AET) improves the reverse cholesterol transport (RCT) in
cholesteryl ester transfer protein-transgenic (CETP-tg) mice. We aimed at investigating
the role of AET in the expression of genes and proteins involved in lipid flux in the
aorta and macrophages of CETP-tg mice. Three-month-old male mice were randomly
divided into trained (T; treadmill 15 m/min; 30 min/day) and sedentary (S) groups. After
6 weeks, peritoneal macrophages and the aortic arch were obtained immediately (0 h)
or 48 h after the last exercise session. mRNA was determined by RT-qPCR, protein
levels by immunoblot and 14C-cholesterol efflux determined in macrophages. AET did
not change body weight, plasma cholesterol, triglycerides, glucose and CETP activity.
In macrophages, at time 0 h, a higher expression of genes that encode PPAR gamma,
ABCA-1 and a lower expression of MCP-1 and IL-10, was observed in T as compared
to S. After 48 h, lower expressions of MCP-1 and PPAR gamma genes were observed
in T mice. Increase in ABCA-1, SR-BI and IL-6 and decrease of LOX-1, MCP-1, TNF
and IL-10 gene expression was observed in the aorta of T compared to S mice (0 h) and
LOX-1 and MCP-1 remained diminished after 48 h. The protein level of MCP-1 and SR-
BI in the aortic arch was unchanged in T animals after 48 h as compared to S, but
LOX-1 was reduced confirming data of gene expression. The apo A-I and the HDL2

mediated-cholesterol efflux (8 and 24 h) were not different between T and S animals.
In the presence of CETP, AET positively influences gene expression in the arterial
wall and macrophages of CETP-tg mice contributing to the RCT and prevention of
atherosclerosis. These changes were perceptible immediately after the exercise session
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and were influenced by the presence of CETP although independent of changes in its
activity. Reductions in gene and protein expression of LOX-1 were parallel and reflect
the ability of exercise training in reducing the uptake of modified LDL by the arterial wall
macrophages.

Keywords: exercise training, macrophage cholesterol efflux, reverse cholesterol transport, cholesterol ester
transfer protein, atherosclerosis

INTRODUCTION

Regular physical exercise reduces all-cause mortality and notably
those related to cardiovascular outcomes (Lee et al., 2014;
Schnohr et al., 2015). The beneficial effects are related to
the prevention and or amelioration of cardiovascular risk
factors such as dyslipidemia, hypertension, diabetes mellitus,
and endothelial dysfunction (Ficker et al., 2010; Cornelissen and
Smart, 2013; Umpierre et al., 2013; Guizoni et al., 2016). Exercise
reduces plasma triglycerides (TG), small dense low-density
lipoprotein (LDL), increases high-density lipoprotein cholesterol
(HDLc), and apolipoprotein A-I (Halverstadt et al., 2007;
Imamura et al., 2013; Sondegaard et al., 2014). In addition,
it improves reverse cholesterol transport (RCT), a system that
prevents atherogenesis by clearing the excess cholesterol from the
arterial wall allowing its secretion into bile and feces excretion
(Nijstad et al., 2011; Rocco et al., 2011; Pinto et al., 2015).
Lipid-poor apo A-I and nascent pre-beta HDL interact with the
ATP binding cassete subfamily A member 1 (ABCA-1) in arterial
wall macrophages removing free cholesterol that is esterified by
the lecithin cholesterol acyltransferase (LCAT) (Calabresi and
Franceschini, 2010). Larger HDL particles that accommodate
esterified cholesterol (EC) interact with the ATP binding cassete
transporter G-1 (ABCG-1) removing more cell cholesterol. In
animals lacking the cholesteryl ester transfer protein (CETP),
the scavenger receptor class B type I (SR-BI) in the liver can
directly remove EC from HDL (Azhar and Reaven, 2002). On the
other hand, humans and other animal species that express CETP
also have the EC transferred to apoB-containing lipoproteins
by an exchange with TG (Morton and Izem, 2014). In this
case, apoB-lipoproteins are removed by the B-E receptors in
the liver (Go and Mani, 2012). Although several clinical trials
addressed the impact of CETP inhibition in the enhancement
of plasma HDLc and cardiovascular end points results are
unsatisfactory for the most it is still not clear how CETP
inhibition can affect RCT (Barter et al., 2007; Schwartz et al.,
2012; Reveal Collaborative Group et al., 2017; Lincoff et al.,
2017).

Inflammation that accompanies and aggravates the
atherosclerotic lesion development is favorably modulated by
exercise in many aspects. Particularly, by reducing intracellular
cholesterol accumulation and improving antioxidant defenses
in the arterial wall, exercise reduces inflammatory pathways
associated with oxidative stress in macrophages (Meilhac et al.,
2001; Wu et al., 2014). In addition, in many but not all cases,
exercise increases HDL that is known for its antioxidant and
anti-inflammatory actions (Kraus et al., 2002; Halverstadt et al.,
2007; Iborra et al., 2008).

Aerobic exercise training (AET) improves the in vivo RCT
in CETP-tg mice demonstrated by the increased recovery of
3H- cholesterol from intraperitoneally injected-macrophages in
the plasma, liver and feces. This was ascribed to a higher
expression of the B-E receptor in the liver and to the enhanced
plasma HDLc levels due to a higher expression of hepatic
ABCA-1 that contributes to the generation of new HDL particles
(Rocco et al., 2011). Nonetheless, it is still unclear the role
of exercise in the expression of genes that control lipid flux
and homeostasis in macrophages of CETP-tg mice. Hence,
we analyzed the role of an AET protocol in the modulation
of genes and proteins that control inflammation, oxidative
stress, lipid flux in the aorta and peritoneal macrophages and
vasodilation in aorta of CETP-tg mice that may contribute to
the exercise benefit on the RCT. In addition, we measured the
apo A-I and HDL- mediated cholesterol efflux from peritoneal
macrophages.

MATERIALS AND METHODS

Animals and Treadmill Training Protocol
Inbred C57BL/6J transgenic mice homozygous for human CETP
created by Dr. AR Tall’s laboratory were generously provided by
Dr. HCF Oliveira (University of Campinas, São Paulo, Brazil)
and were housed in a conventional animal facility at 22 ± 2◦C
with 12 h light/12 h dark cycle. After weaning and during
the experimental protocol, mice had free access to water and
were fed regular chow ad libitum (Nuvilab-Nuvital, São Paulo,
Brazil). Three-month-old CETP-tg male mice were submitted
to run adaptation, described previously (Pinto et al., 2015),
and then divided into trained (T; n = 52) and control group
that was kept sedentary (S; n = 50). The T-group performed
monitored aerobic exercise on treadmill at 15 m/min, 30-min
per day, five times a week for 6 weeks. The animal care was
performed in accordance to the National Research Council (US)
Committee for the Update of the Guide for the Care and
Use of Laboratory Animals (2011) and approved by Animal
Care and Research Advisory Committee (Hospital das Clinicas
of the University of São Paulo Medical School − CAPPesq
#441/11).

Plasma Analyses
Plasma total cholesterol (TC), TG and HDL-c were
determined before and after the experimental protocol by
enzymatic colorimetric kit (Labtest, Brazil) and glucose by
Accu-Chek R© Performa glucometer (Roche, Brazil). CETP
activity was determined by the transfer of 14C-cholesteryl
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oleate from human HDL to human VLDL and LDL, after
incubation with plasma from CETP-tg mice (Escolà-Gil et al.,
2001).

Blood Pressure Measurement
Blood pressure (BP) was determined using RTBP 2045 model
coupled to an RTBP 001 data acquisition, a Data Acquisition
System Laboratory – DASYLab 7.0, (DASYTEC, National
Instruments Company, NH, United States) and an analysis
system (Kent Scientific Corporation, CT, United States).

Lipoproteins Isolation and LDL
Acetylation
Low-density lipoprotein (d = 1.019 to 1.063 g/mL) and
HDL2 (HDL2, d = 1.063 to 1.125 g/mL) were isolated by
ultracentrifugation of plasma from human health donors. Protein
content in such lipoproteins was determined by the Lowry
method (Lowry et al., 1951). LDL was acetylated according
to Basu et al. (1976). Human procedures were performed in
accordance to the Declaration of Helsink and all volunteers
signed an informed written consent form approved by The
Ethical Committee for Human Research Protocols of Hospital
das Clinicas, University of São Paulo Medical School (CAPPesq
#441/11).

Macrophage Cholesterol Efflux
The cholesterol efflux assay was performed as previously
described (Pinto et al., 2015), utilizing peritoneal macrophages
isolated from T and S animals. Cells were previously overloaded
with acetylated LDL (50 µg/mL) and 0.3 µCi/mL 14C-cholesterol
and then incubated with apo A-I (30 µg/mL; 8 h) or
HDL2 (50 µg/mL; 24 h) in order to access the cholesterol
efflux pathways mediated by, respectively, ABCA-1 and
ABCG-1.

Gene Expression
Immediately (0 h) or 48 h after the last session of exercise
protocol, mice were euthanized and macrophages were
removed from the peritoneal cavity and aortic arch was
harvested. Tissues were macerated in liquid nitrogen and
homogenized as proposed by RNeasy R© Mini Kit (Qiagen,
Hilden, Germany). The expression of genes was determined
by real time quantitative reverse transcription polymerase
chain reaction (RT-qPCR) as described before by Pinto et al.
(2015) according to Livak and Schmittgen (2001). Using primer
by Applied Biosystems (Foster City, CA, United States), the
following genes were analyzed: Abca1 (Mm00442646_m1), Abcg1
(Mm00437390_m1), Nr1h3 (Mm01329744_g1), Nr1h2 (Mm00
437265_g1), Pparg (Mm01184322_m1), Scarb1 (Mm0045
0234_m1), Olr1 (Mm00454586_m1), Cd36 (Mm0113
5198_m1), Tnf (Mm00450234_m1), Il6 (Mm00450234_m1),
Il10 (Mm00450234_m1), Ccl2 (Mm00441242_m1), Nos3
(Mm004435217_m1) and Cat (Mm00443258_m1). A gene
stability assay was performed and according to a ranking order,

Actb (Mm00607939_s1) and Gapdh (Mm99999915_g1) were
utilized as endogenous control, respectively for macrophages and
aortic arch samples.

Immunoblot
Protein levels of LOX-1, MCP-1, SR-BI, and ABCA-1 whose
genes were affected after exercise were analyzed by immunoblot.
Artery samples were homogenized with lysis buffer containing
50 mM Tris, 0.15 M NaCl, 1% Triton X-100, 1% sodium
deoxycholate, 10 mM EDTA and 0.1% SDS plus protease
inhibitors cocktail (Sigma P8340) in a tissue disruptor. Protein
content was determined by the BCA (Pierce Biotechnology,
Rockford, IL, United States) method. Due to limitation in
protein amount from the animal’s aortic arch, analyses were
carried out with 40 µg of total tissue protein utilizing only
artery samples from animals killed after 48 h of the last
exercise session. Electrophoresis in 12% T sodium dodecyl
sulfate (SDS) polyacrylamide gel was carried out and proteins
were transferred to PVDF membranes, followed by blocking
unoccupied sites by incubation with PBS containing 5%
skim milk and 0.05% Tween. Membranes were exposed to
anti-LOX-1 (1:100; Sc11655, Santa Cruz Biotechnology, Santa
Cruz, CA, USA); anti-MCP-1 (1:1000; 2029, Cell Signaling,
Danvers, MA, USA), anti-SR-BI (1:1000; NB400-101, Novus
Biologicals, Littleton, Co USA) and anti-ABCA-1 (1:50; kindly
provided by Prof. Shinji Yokoyama from Chubu University,
Kasugai, Japan) primary antibodies. Membranes were washed
with PBS + 0.05% Tween and then incubated with horseradish
peroxidase-linked secondary antibody (1:5000, 1:2000; 1:1000
and 1:1000, respectively – Life Technologies, Carlsbad, CA,
United States). After reaction with ECL (WESTAR; Cyanagen,
Bologna, Italy), the bands were captured by the ImageQuant
350 (GE Healthcare, Piscataway, NJ, United States) and the
densities of the respective lanes, stained by Ponceau, were
used for normalization. The results were expressed as arbitrary

TABLE 1 | Body weight, plasma lipids and glucose, blood pressure and CETP
activity in sedentary (S) and trained (T) CETP-tg mice.

S (n = 50) T (n = 52) p

Body weight (g) 23.5 ± 1.8 Basal 23.5 ± 2.0 0.903

25.2 ± 2.1 Final 24.7 ± 2.5 0.890

TC (mg/dL) 81 ± 18 Basal 80 ± 15 0.841

75 ± 12 Final 76 ± 12 0.652

TG (mg/dL) 53 ± 14 Basal 47 ± 17 0.223

48 ± 12 Final 48 ± 13 0.923

HDLc (mg/dL) 51 ± 5 Basal 53 ± 7 0.525

50 ± 5 Final 56 ± 7 0.147

Glucose (mg/dL) 88 ± 12 Basal 89 ± 13 0.974

107 ± 12 Final 108 ± 18 0.383

%CETP activity 31.8 ± 4.1 Basal 32.3 ± 8.2 0.794

33.3 ± 7.2 Final 34.0 ± 9.7 0.798

BP (mmHg) 77 ± 3.4 Basal 84 ± 2.4 0.144

77 ± 2.8 Final 75 ± 4.2 0.707

Data expressed as mean ± SD; TC = total cholesterol; TG = triglycerides;
HDLc = HDL cholesterol; blood pressure = BP.
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FIGURE 1 | Expression of genes related to lipid flux in peritoneal macrophages harvested from sedentary (S) and trained (T) mice. Peritoneal macrophages from
CETP-tg S and T were harvested immediately (0 h; S n = 6; T n = 6) or 48 h (S n = 7; T n = 7) after the last session of exercise. The expression of genes was
analyzed by RT-qPCR and expressed as arbitrary units corrected per Actb. Comparisons were done by the unpaired Student t-test (mean ± SEM).

FIGURE 2 | Expression of inflammation-related genes in peritoneal macrophages harvested from sedentary (S) and trained (T) mice. Peritoneal macrophages from
CETP-tg S and T were harvested immediately (0 h; S n = 5; T n = 5) or 48 h (S n = 7; T n = 7) after the last session of exercise. The expression of genes was
analyzed by RT-qPCR and expressed as arbitrary units corrected per Actb. Comparisons were done by the unpaired Student t-test (mean ± SEM).

units, related to mean of the sedentary animal, which was set
as 100.

Statistical Analysis
Comparisons between S and T groups were done by the unpaired
Student’s t-test. Graph Pad Prism version 5.0 (San Diego, CA,
United States) was utilized and a p-value < 0.05, considered
statistically significant.

RESULTS

The specific number of animals utilized for each experimental
approach is detailed in the legends of figures. Body weight, plasma
lipid and glucose levels, BP and CETP activity were similar
between S and T animals in the basal and final periods (Table 1).
As compared to S group, in peritoneal macrophages harvested
from T mice immediately after the last exercise session (0 h) there
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FIGURE 3 | Expression of genes related to lipid flux in the aortic arch of sedentary (S) and trained (T) mice. The aortic arch was removed from CETP-tg S (n = 7) and
T (n = 6) mice immediately (0 h) or 48 h after the last session of exercise. The expression of genes was analyzed by RT-qPCR and expressed as arbitrary units
corrected per Gapdh. Comparisons were done by the unpaired Student t-test (mean ± SEM).

was an increase in mRNA levels of genes involved in lipid flux,
namely Pparg and Abca1. Nonetheless, after 48 h Pparg gene
expression was reduced in T animals. Other genes involved in
lipid flux were unchanged including Cd36, Orl1, Scarb1, Nr1h3,
Nr1h2, and Abcg1 (Figure 1). Regarding inflammatory gene
response, it was observed a reduction in the expression of Ccl2
(0 h and 48 h) and Il10 (0 h, only) in macrophages harvested from
T mice. No changes were observed in Il6 and Tnf expressions
in both periods after training. On the other hand, the expression
of the antioxidant gene Cat was increased at 48 h in exercised
animals (Figure 2).

In the aortic arch, Scarb1 and Abca1 expressions were
increased at time 0 h in aerobically T animals, but after 48 h
they were no longer different. Orl1 was reduced at both 0 h and
48 h. Other genes involved in lipid flux such as Cd36, Pparg,
Nr1h3, Nr1h2, and Abcg1 were similar between groups in both
periods analyzed (Figure 3). Similarly to peritoneal macrophages,
it was observed a reduced expression of Ccl2 in the aortic arch
of T animals both at 0 h and 48 h. Tnf and Il10 were also
reduced but only at 0 h. On the contrary, Il6 gene expression
increased in T animals (0 h, only) and Nos3 and Cat were
unchanged in both periods analyzed (Figure 4). Protein content
was determined by immunoblot of total protein extracted from
the artery of animals after 48 h of the last exercise session only,
due to limitation of samples. As shown in Figure 5, the amount of
LOX-1 was reduced in T animals as compared to S mice after 48 h,

accordingly to the results observed in Orl1 mRNA expression.
No differences were observed regarding the amount of MCP-1
and SR-BI. We were unable to detect ABCA-1 protein levels by
utilizing 40 µg of total protein from artery tissue. The cholesterol
efflux was determined in peritoneal macrophages isolated from
T and S animals that were incubated with apo A-I or HDL2-
as lipid acceptors. The percentage of cholesterol removal was
similar after 8 h and 24 h incubation with apo A-I and HDL2
(Figure 6).

DISCUSSION

To better explore how exercise improves RCT in CETP-tg mice
we analyzed the effect of 6-week AET in the aortic arch and
peritoneal macrophages expression of genes involved in lipid
flux. CETP is expressed in humans and other animal species
susceptible to atherosclerosis (Cheung et al., 1996; Morton and
Izem, 2014). In this regard, mice with C57BL/6J background
transgenic for human CETP have been widely used for studying
atherogenesis.

Previous study from our group demonstrated that in WT
mice the expression of genes involved in lipid uptake and
efflux in the aortic arch and macrophages was not consistently
changed by AET (Pinto et al., 2015). Those results are coherent
with the thought that RCT is mostly influenced by systemic
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FIGURE 4 | Expression of inflammation-related genes in the aortic arch of sedentary (S) and trained (T) mice. The aortic arch was removed from CETP-tg S (n = 7)
and T (n = 6) mice immediately (0 h) or 48 h after the last session of exercise. The expression of genes was analyzed by RT-qPCR and expressed as arbitrary units
corrected per Gapdh. Comparisons were done by the unpaired Student t-test (mean ± SEM).

actions of exercise on HDLc plasma levels and receptors
involved in the last stages of the RCT in the liver of WT
mice.

In the present study, AET acutely enhanced the expression of
genes involved in cholesterol efflux in peritoneal macrophages,
Abca-1 and Pparg. Pparg that was increased in time 0 h positively
modulates Abca1 gene transcription, reduces inflammation and
ameliorates insulin sensitivity (Chawla et al., 2001; Bouhlel
et al., 2007; Ogata et al., 2009). In mononuclear cells from
healthy individuals peripheral blood a higher expression of
PPARG, NR1H3, ABCA1, and ABCG1 is described after a
bout of cycling in 70% of VO2máx or after 8 weeks of
low-intensity exercise (Butcher et al., 2008; Yakeu et al.,
2010). In another study exercise induced CD36 that by
increasing the uptake of oxidized lipids may activate PPARγ

and downstream target genes such as ABC transporters and
LXR (Chinetti et al., 2001; Thomas et al., 2012). Although
in the present investigation the expression of Abca-1 was
no longer increased and Pparg was even reduced after 48 h
of the last exercise session, we may consider the beneficial
effects of regular exercise in preventing macrophage lipid
accumulation. It was previously demonstrated that after a
single bout of exercise the generation of nascent HDL
particles by skeletal muscle is increased (Sviridov et al., 2003).
These particles are known for their efficiency in removing
cell cholesterol by interacting with ABCA-1 (Mulya et al.,
2007). In accordance, Brites et al. (2004) described in soccer
players an enhanced cholesterol efflux mediated by serum

in comparison to sedentary controls, which was positively
correlated with the concentration of circulating pre-beta
HDL.

The expression of inflammatory genes was evaluated
considering their role in atherogenesis. The chemokine MCP-
1 gene, Ccl2, is activated by the accumulation of modified
LDL in the arterial intima favoring monocyte recruitment
and phenotype differentiation (Shih et al., 1999). A lower
expression of Ccl2 in peritoneal macrophages isolated from
trained mice was observed in both periods, 0 h and 48 h, and may
contribute to a lesser monocyte infiltration and to an increment
in macrophage polarization into an anti-inflammatory M2
phenotype, as previously described (Yakeu et al., 2012). Il-10
mRNA was reduced, which may be related to the diminished
inflammatory stress elicited by exercise training even though we
were unable to find changes in Tnf and Il6 genes expressions in
T mice.

Right away the exercise session it was observed an enhanced
expression of catalase (Cat) in T animal macrophages. In spite
of increasing oxidative stress, exercise training is demonstrated
as effective in inducing antioxidants expression in the arterial
wall prevailing the benefit of the latter in the prevention of
atherosclerosis (Meilhac et al., 2001). Again, the expression of this
gene was no longer observed at time 48 h.

Murine peritoneal macrophage has been utilized as a useful
tool to study RCT, although the macrophage plasticity and
heterogeneity reflects its susceptibility to the microenvironment
influence (Cassado Ados et al., 2015). In other words, regarding
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FIGURE 5 | Expression of LOX-1, MCP-1, and SR-BI in the arterial wall of sedentary (S) and trained (T) animals. Immunoblot was performed by utilizing 40 µg of
total protein from the aortic arch of S and T animals after 48 h of the last exercise session in order to confirm results obtained by RT-qPCR. Immunoblot was
performed by using anti-LOX-1 (1:100); anti-MCP-1 (1:1000), anti-SR-BI (1:1000) and anti-ABCA-1 (1:50; not visualized) primary antibodies and horseradish
peroxidase-linked secondary antibody (see section Materials and Methods for more details). The band densities of the respective lanes, stained by Ponceau, were
used for normalization. The results were expressed as arbitrary units, related to mean of the sedentary animals, which was set as 100. Comparisons were done by
the unpaired Student t-test (mean ± SEM). Representative images (n = 4–8, as indicated).

lipid flux, peritoneal macrophages may not adequately represent
macrophages from the arterial wall compartment, that are
under specific metabolic influences that modulate atherosclerosis
development. Following differentiation, macrophages may have
distinct functional phenotypes according to diverse stimuli.
Then, we looked at the aortic arch of S and T animals.
In agreement to peritoneal macrophages, it was observed an
increased expression of Abca1 that favors cholesterol homeostasis
in the arterial wall. ABCA-1 contributes to the major amount
of cholesterol exported from cholesterol-loaded macrophages
and mutations in Abca1 gene cause atherosclerosis (Lee et al.,
2011; van Capelleveen et al., 2015). The importance of ABCA-1
receptor, as well as the ABCG-1, has been confirmed in recent
studies, in which the silencing of those receptors exacerbated
the accumulation of cholesterol and inflammatory response in
smooth muscle cells extracted from the aorta of mice (Cao
et al., 2017; Castiglioni et al., 2017). In addition, Scarb1 that
encodes for SR-BI was enhanced after exercise session in T
animals. SR-BI is a selective target of exercise in the liver
mediating the uptake of cholesteryl ester form HDL in last phase

of the RCT (Rocco et al., 2011). Here, we found that Scarb1
is up-regulated by exercise and may constitute an additional
route for cholesterol elimination from macrophages after HDL
tethering. Although the action of SR-BI on the removal of cellular
cholesterol is less representative than that observed by ABCA-
1 and ABCG-1 receptors, its expression seems to play other
determinant roles in atherogenesis, since its increased expression
protects against development of atherosclerosis in mice, while
its deletion induces plaque rupture in hypercholesterolemic
animals fed a high fat diet (Vaisman et al., 2015; Hermann
et al., 2016). After 48 h, those changes in Abca1 and Scarb1
were no longer different between T and S mice, and protein
levels of ABCA-1 was undetectable and SR-BI was unchanged
between T and S mice. The expression of Orl1 was significantly
reduced after 0 h and 48 h of exercise session and in
agreement, LOX-1 protein level was reduced in T animals as
compared to S after 48 h of exercise. This may contribute
to a lesser uptake of oxidized LDL by endothelial cells
and macrophages, which ultimately prevents atherosclerosis as
described by others (Mehta et al., 2007; Chen et al., 2016).
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FIGURE 6 | 14C-cholesterol efflux from peritoneal macrophages harvested from sedentary (S) and trained (T) 48 h after the last exercise session. Macrophages were
isolated from the peritoneal cavity of CETP-tg S (n = 9) and T (n = 7) mice 48 h after the last session of exercise. Cells were overloaded with acetylated LDL
(50 µg/mL) and 14C-cholesterol (0.3 µCi/mL) and, after incubation with equilibrium media, were exposed to HDL2 (A) or apo A-I (B) for 8 h and 24 h. The %
cholesterol efflux was determined as: 14C-cholesterol in media/14C-cholesterol in media + 14C-cholesterol remaining in cells x 100. Comparisons were done by the
unpaired Student t-test (mean ± SD).

Then, the selective gene and protein expression observed in the
present investigation seems to prevent cholesterol accumulation
in the arterial wall compartment of T mice. No changes
were observed in the expression of Abcg1, Nr1h2, Nr1h3,
Pparg, and Cd36 in the aortic arch of T as compared to
S mice. The expression of Ccl2 was similarly influenced by
AET in macrophages and aortic arch. In the arteria, Ccl2
was reduced at both 0 h and 48 h after exercise session.
The inflammatory gene that encodes for TNF, Tnf, was also
reduced and the same was observed regarding Il10. On the other
hand, Il6 mRNA was acutely increased in the aortic arch of T
mice.

The in vitro evaluation of peritoneal macrophages
harvested from S and T animals revealed no changes in the
cholesterol efflux rate mediated by apo A-I or HDL2. The
in vitro experiments were conducted in order to estimate cell
changes induced by exercise without interference of HDL
and apo A-I concentration and physicochemical properties
that are likely to influence cell cholesterol removal in vivo.
Nonetheless, we should bear in mind that besides having
increased Abca1 and Pparg expression, that positively
modulates cholesterol efflux, the in vitro cell system lacks
other pivotal components of the RCT. They include LCAT
and CETP actions, the expression level of liver receptors and
enzymes as well as variations in HDL particle number and
functionality. All together, they create a centripetal cholesterol
flow that favors its elimination in the bile and modulate the
cholesterol content in the arterial wall (Hellerstein and Turner,
2014).

In conclusion, AET positively influences the expression of
genes involved in lipid flux in peritoneal macrophages and
arterial wall. The changes are perceptible immediately after the

exercise session in trained CETP-tg mice and are independent of
changes in CETP activity, although influenced by the presence
of this protein since they were not observed in previous study
dealing with WT mice trained in a similar exercise protocol
(Pinto et al., 2015). Reductions in gene and protein expression
of LOX-1 were parallel and reflect the ability of training in
reducing the uptake of modified LDL by the arterial wall
macrophages.

The pivotal role of CETP in modulating gene expression
in macrophages and in the arterial wall was not detailed
in the present investigation and needs further clarification.
Conceivably, CETP is involved in the exchange of neutral
lipids between lipoproteins by a bridging model, contributing
to HDL remodeling and RCT. Nonetheless, other roles are
described for CETP and include the selective uptake of EC-
HDL by cells, including adipocytes, independently of SR-BI, B-E,
and LRP receptors and the EC efflux out of cell membranes
leading to intracellular accumulation of free cholesterol (Stein
et al., 1986; Vassiliou and McPherson, 2004). Circulating CETP
influences in insulin secretion and sensitivity in a dose dependent
manner (Cappel et al., 2013; Guo et al., 2016). Altogether,
these actions can modify the intracellular content of sterols
and ultimately change the expression of genes in arterial wall
macrophages. Besides, CETP has anti-inflammatory properties
that are not strictly related to its lipid transfer activity but may
help to prevent atherogenesis and modulate gene expression
(Oliveira and de Faria, 2011), especially when combined with
AET.

The pharmacological inhibition of CETP did not achieve
success although increasing plasma HDL cholesterol levels.
This may relate to several physiological processes in which
CETP is involved. Although the mechanistic aspects were
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not clearly evidenced in the present investigation, the
demonstration that the arterial gene expression is differently
modulated by the presence of CETP is a new and original
aspect of this investigation. Our results reinforce the importance
of regular exercise in the prevention and regression of
atherosclerosis in an animal model that resembles human
lipoprotein metabolism conferred by the presence of
CETP.
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