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A commentary on

Anaerobic Contribution Determined in Swimming Distances: Relation with Performance

by Campos, E. Z., Kalva-Filho, C. A., Gobbi, R. B., Barbieri, R. A., Almeida, N. P., and Papoti, M.
(2017). Front. Physiol. 8:755. doi: 10.3389/fphys.2017.00755

In their article, Campos et al. (2017) concluded that the highest values of anaerobic contribution
in competitive swimming occur at the 200 and 400m distances and are decisive in performances
below 400m. This is an important contribution regarding the energy balance of different
competitive events and subsequent training prescription. It is especially important because
“swimmers spend a long training time improving specific metabolisms.” We fully agree since
elite swimmers are engaged in two (or more) daily training sessions, 6/7 days a week, typically
performing 10,000–20,000 m/day (Chatard and Stewart, 2011). This implies the repetition of the
same gestures thousands of times per day, overloading muscles, joints and tendons, developing
painful overuse injuries impeditive of continuing practicing (Serra et al., 2017).

However, we found some imprecisions in their manuscript, preventing readers better
understanding the main message. It begins saying that “the aerobic contribution seems to be easily
calculated by the integral of oxygen consumption (VO2) during the effort” and “the determination
of the anaerobic contribution is complex.” In fact, although VO2 uptake assessment during
swimming is not new (Sousa et al., 2014), it requires cumbersome procedures and equipment, and
specialized personal. Moreover, swimmers need to be followed along the pool (swimming flumes
are scarce) using open-circuit metabolic carts or portable gas analyzers transported on a chariot
(Fernandes et al., 2003) or on a stick/cable over the water (Sousa et al., 2014; De Jesus et al., 2015).
So, even if mathematically the VO2 integral is “easily calculated,” the experimental data setup is
complex and very demanding (Chaverri et al., 2016), probably explaining the preference of Campos
et al. in assessing VO2 during the recovery period after exercise.

Furthermore, even if a more hydrodynamic, ergonomic, and comfortable snorkel generation is
available (Baldari et al., 2013), it still does not allow diving and tumble turning, leading to lower
velocities comparing to unimpeded swimming (Barbosa et al., 2010; Ribeiro et al., 2016). However,
we disagree that this apparatus “clearly disrupts the motor pattern,” as there are no evidences of
relevant technical modifications. Swimming velocity changes are not due to general kinematics or
swimming efficiency alterations (Barbosa et al., 2010) and similar physiologic and biomechanical
values were observed when swimming with/without snorkel at the same velocity (Pinna et al., 2012;
Ruiz-Teba et al., 2015). Defending that the respiratory snorkel does not allow “making undulations”
and “side respiration impossible during the effort” are not valid arguments since: (i) front crawl, the

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00507
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00507&domain=pdf&date_stamp=2018-05-07
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ricfer@fade.up.pt
https://doi.org/10.3389/fphys.2018.00507
https://www.frontiersin.org/articles/10.3389/fphys.2018.00507/full
http://loop.frontiersin.org/people/532176/overview
http://loop.frontiersin.org/people/538383/overview
http://loop.frontiersin.org/people/538053/overview
https://doi.org/10.3389/fphys.2017.00755
https://doi.org/10.3389/fphys.2017.00755


Fernandes et al. Commentary: Anaerobic Contribution in Swimming

technique mostly used in VO2 uptake studies, does not include
such undulating movements; (ii) breathing to the side constraints
higher speeds, leading swimmers to avoid it in sprint events;
(iii) snorkels are frequently used in swimmers daily workouts
for correcting asymmetries (Seifert et al., 2008). So, even if
direct oximetry has the advantage of allowing gas exchange
measurements during swimming, it is a hard task due to the
environmental characteristics and the equipment constraints.

We also disagree that “the most accepted method to estimate
anaerobic contribution is the accumulated oxygen deficit” (AOD;
see Reis et al., 2010), since blood lactate concentrations, as
the end product of glycolysis, have been used since the 1970s
for evaluating swimmers and controlling training process (e.g.,
Mader et al., 1978). Inclusively, in the 1980/1990s, due to the
development of portable battery-operated automated analyzers,
a growing number of researchers/coaches started testing during
training and, even, in competition. Therefore, lactate has been
often used as the indicator of anaerobic (lactic) metabolism,
particularly through this equation (Zamparo et al., 2011):

AnL =
[

La−
]

net
· β ·M

where the anaerobic lactic contribution for the overall energy
cost is obtained multiplying lactate net accumulation after
exercise, the energy equivalent for its accumulation in the
blood and the subject mass. Those authors also proposed
determining the anaerobic alactic energy contribution through
the phosphocreatine (PCr) splitting in the contracting muscles
using this equation:

AnAL = PCr ·
(

1− e
−t
τ

)

·M

where t is the time duration, τ is the time constant of PCr
splitting at work onset, M is the subject mass and PCr reflects
its concentration at rest. Thus, in opposition to the AODmethod
(a rather difficult to apply procedure), this methodology allows
obtaining more easily and independently both anaerobic lactic
and alactic contributions, being inaccurate to say that this energy
balance “is frequently ignored in swimming.”

Campos et al. (2017) referred some of the AOD limitations
but, for assessing the anaerobic alactic contribution per se,
they have determined the fast component of post-exercise
VO2 through the backward extrapolation technique, allowing
“maintaining the ecological validity of measurements and
increasing the results applicability.” That methodology has been
severely criticized, since it is an indirect technique and includes
errors derived from a delay at the onset of VO2 recovery (Pinna
et al., 2012; Chaverri et al., 2016). We know from experience
(Laffite et al., 2004) the difficulty of assuring that swimmers
successfully hold their breath completely at the swim end,
especially when exercise is all-out and supramaximal. Backward
extrapolation overestimates swimming VO2 (Lavoie et al., 1983)
and a forced apnea in the last moments of exercise will likely
induce an augmented expiration, rising post-exercise VO2 to
values that does not represent the true recovery baseline. So,
although easily applied in swimming, it could lead to significant
inaccuracies, related to the time necessary for putting the

face mask, the high possibility of leaks, the many potential
errors of the breath-by-breath analysis and the logarithmic back
extrapolation requirement (Sousa et al., 2014).

This technique was proposed for estimating alactic energy
at high-intensity short exercise bursts that might not be
applicable to swimming races over 100m. It is possible that
the Campos et al. observation of larger alactic energy in
longer events is due to methodological imprecisions in non-
really anaerobic all-out exercises. It has been established
that EPOC does not merely represents anaerobic exercise
bioenergetics, but also reflects overall return to homeostasis
(Asmussen, 1946). The Campos et al. alactic energy values at
the 50 and 200m events are within the literature physiological
limits but, even though varying considerably between subjects,
the same swimmers in different events should not have
presented such differences. The theoretical model herein
states that alactic energy is depleted within the first 30 s
of exercise and is replenished only when exercise stops. As
this was not proven to occur during supramaximal exercise
itself, the longer the event, the lower mean exertion, with
alactic energy values decreasing or maintaining, but not
rising.

Results herein imply that swimming 200m involve a
larger amount of alactic energy comparing with 50m all-
out, which is not consistent with exercise physiology general
knowledge. We disagree with the authors justifications that:
(i) this “may be explained by the short effort time . . .
too short to increase VO2 to the same level as the other
distances,” as there is no rationale considering that a shorter
event could have less alactic energy production due to
the oxidative metabolism inertia and (ii) as 50–400m are
performed “above their critical speed . . . it does not enable
recovery of creatine phosphate (Jones et al., 2008),” since
these authors compared predominantly aerobic knee-extension
exercise, very different from the analyzed swimming trials. We
must insist that there is no rationale to sustain phosphate-
pool energy replenishment during all-out competitive swimming
exercise.

Thus, without refuting the relevance of their study, we wonder
if the data presented could be negatively influenced by the
methodologies used. Although some findings are in accordance
with the literature and coaches believes, as the lower total
anaerobic contribution in the 800m and the highest values in the
200 and 400m (e.g., Bonifazi et al., 1993; Vescovi et al., 2011),
the lower anaerobic alactic contribution in the shorter event
(50m) is hard to accept (see Capelli et al., 1998; Gastin, 2001
for exercise in general and swimming in particular, respectively).
In fact, we have observed a VO2 amplitude of 2.7 ± 0.7
L/min after swimming at a ∼400m intensity, which is lower
than the value found by the authors for the 100, 200, and
400m. We remember that, despite finding good VO2 backward
extrapolation method agreement, it was concluded before that,
to ensure its validity, short-duration exercises and supramaximal
intensities should be avoided (cf. Chaverri et al., 2016). In the
future, to overcome these short-comings and limitations, we
suggest a data comparison between the referred methods. We
would be delighted to collaborate.
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