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Computational fluid dynamics (CFD) models of blood flow in the left ventricle (LV)

and aorta are important tools for analyzing the mechanistic links between myocardial

deformation and flow patterns. Typically, the use of image-based kinematic CFD

models prevails in applications such as predicting the acute response to interventions

which alter LV afterload conditions. However, such models are limited in their ability

to analyze any impacts upon LV load or key biomarkers known to be implicated in

driving remodeling processes as LV function is not accounted for in a mechanistic

sense. This study addresses these limitations by reporting on progress made toward

a novel electro-mechano-fluidic (EMF) model that represents the entire physics of LV

electromechanics (EM) based on first principles. A biophysically detailed finite element

(FE) model of LV EM was coupled with a FE-based CFD solver for moving domains using

an arbitrary Eulerian-Lagrangian (ALE) formulation. Two clinical cases of patients suffering

from aortic coarctations (CoA) were built and parameterized based on clinical data

under pre-treatment conditions. For one patient case simulations under post-treatment

conditions after geometric repair of CoA by a virtual stenting procedure were compared

against pre-treatment results. Numerical stability of the approach was demonstrated by

analyzing mesh quality and solver performance under the significantly large deformations

of the LV blood pool. Further, computational tractability and compatibility with clinical

time scales were investigated by performing strong scaling benchmarks up to 1536

compute cores. The overall cost of the entire workflow for building, fitting and executing

EMF simulations was comparable to those reported for image-based kinematic models,

suggesting that EMF models show potential of evolving into a viable clinical research

tool.

Keywords: cardiac mechanics, computational fluid dynamics, finite element model, arbitrary Lagrangian-Eulerian

formulation, patient-specific modeling, translational cardiac modeling, total heart function
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1. INTRODUCTION

CFD models of blood flow in the LV and aorta are important
tools for analyzing the mechanistic links between myocardial
deformation and flow patterns. Typically, such models are either
driven by prescribed flow profiles measured in the LV outflow
tract or the aortic root (Goubergrits et al., 2013; Ralovich et al.,
2015; Andersson et al., 2017), or by image-based kinematic
models (Doenst et al., 2009; Schenkel et al., 2009; Mihalef
et al., 2011; Seo et al., 2013; Chnafa et al., 2014; Su et al.,
2016) built from segmentation of 4D medical imaging datasets.
While such models have proven to be valuable for analyzing
the hemodynamic status quo of a patient or for predicting
changes in hemodynamics in the aorta secondary to intervention
such as aortic valve repair (Kelm et al., 2017) or stenting of
a coarctation (Goubergrits et al., 2015), they are inherently
limited in their ability to assess cardiac function as the biophysics
driving myocardial activation and deformation is not taken
into consideration in the model formulation. EMF models that
capture the entire physics of a heartbeat based on first principles
show promise to overcome this limitation (Crozier et al., 2016a)
by rendering feasible the assessment of all essential myocardial
parameters, which are known to be key factors driving ventricular
remodeling and disease progression. Thus EMF models may
offer, in principal, the potential of predicting longer term
outcomes beyond changes in the acute response to therapies.

However, due to a number of factors such as the inherent
complexity of multiphysics models, the large-scale motion and
complex deformation of the myocardial walls as well as the
significant computational burden, these models pose substantial
methodological challenges. For LV EMF models and similar
applications, methods to overcome the problem of large-scale
deformations can be roughly classified into two categories: ALE
formulations using a moving fluid mesh (Tang et al., 2008, 2010;
Nordsletten et al., 2011; Vázquez et al., 2015; de Vecchi et al.,
2016) and immersed boundary (IB) methods (Vigmond et al.,
2008a; Seo and Mittal, 2013; Choi et al., 2015). While ALE
formulations often rely on severe simplifications or automatic
remeshing strategies (Long et al., 2013), IB methods are more
versatile as the moving wall of the ventricle is not explicitly
tracked. However, IBs and all related non-boundary-fitting
methods have a reduced accuracy for the solution near the fluid-
solid structure interface due to interpolation errors, pose severe
challenges on the implementation, and additional degrees of
freedom have to be introduced on interface cut elements, which
all contributes to significantly higher computational costs (van
Loon et al., 2007).

In this study, we report on the progress made toward a novel
EMF model of the human LV that is entirely based on first
principles and that copes with significantly large defomations,
i.e., ejection fractions (EFs) beyond 60%, without requiring
remeshing or IB principles. Validated in silico models taken
from a recent clinical modeling study where a cohort of in
silico EM LV and aorta models of patients suffering from aortic
valve disease (AVD) and/or CoA (Augustin et al., 2016a) were
built, served as kinematic driver to a computational model of
hemodynamics in the LV cavity and aorta. A hybrid two stage

modeling approach was adopted with regard to hemodynamics.
First, the afterload imposed by the circulatory system onto the
LV was represented by a lumped model of afterload and coupled
to an EM model of LV and aorta to compute LV kinematics.
Subsequently a full-blown CFD model with moving domain
boundaries based on an ALE formulation was unidirectionally
or weakly coupled to the EM model using the kinematics of its
endocardial surface as input. We show validation results for two
selected clinical CoA cases under pre-treatment conditions and
compare pre-treatment and post-treatment simulation results for
one patient case in which the CoA was geometrically repaired by
a virtual stenting procedure. Further, we demonstrate numerical
feasibility of the implemented approach by analyzing changes in
mesh quality and its impact upon solver performance under the
significantly large deformations of the LV blood pool mesh and
also provide strong scaling benchmarking results for a range of
96–1,536 compute cores. The overall cost of the entire workflow
for building, fitting and execution of EMF simulations is ≈ 48
h which is comparable to plain image-based kinematic driver
models (Mittal et al., 2016).

2. METHODS

The methodology to develop a coupled model of cardiac and
cardiovascular hemodynamics based on an ALE formulation is
structured as follows.

i) We begin in section 2.1 by describing MRI data acquisition
and anatomical FE model generation of the LV and aorta for
two patients suffering from CoA.

ii) Then, a brief summary of all model components is
given comprising an electrophysiology (EP) model to drive
electrical activation and repolarization (section 2.2.1); an
EM model describing passive biomechanics as well as the
generation of active stresses (section 2.2.2); afterload models
to provide appropriate boundary conditions on the LV
endocardium during the ejection phase (section 2.2.3); and
a CFD model with moving domain boundaries representing
blood flow in the LV and aorta during ejection. The EM and
CFD model are weakly coupled in a forward fluid structure
interaction (FSI) framework, where the EMmodel is used as a
kinematic driver to move the fluid domain (section 2.3).

iii) The solution procedure and software implementation details
are outlined in section 2.4.

iv) Finally, procedures implemented for the patient-specific
parameterization of themajormodel components is described
in section 2.5.

2.1. Clinical Data Acquisition and Model
Generation
Hemodynamic data of two patients with clinical indication for
catheterization due to CoA—all preceding a cardiac magnetic
resonance study—were acquired before and after CoA treatment
by stent implant, see Table 1. CoA treatment indicators included
an echocardiographic measured, peak systolic pressure gradient
across the stenotic region of > 20mmHg and/or arterial
hypertension. The study was approved by the institutional
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TABLE 1 | CoA patient characteristics from MRI and invasive catheter pressure recordings including end-diastolic volume (EDV), end-systolic volume (ESV), stroke

volume (SV), ejection fraction (EF), heart rate (HR), cardiac output (CO), diastolic and systolic pressures recorded in the aorta or estimated from cuff measurements

(Pao/cuff,dia and Pao/cuff,sys), mean arterial pressure (MAP) computed from pressure recorded invasively in the aorta or estimated from Pcuff,dia and Pcuff,sys, and aortic

valve open pressure Popen determined from invasive pressure recordings.

Sex Age EDV ESV SV EF HR CO Pdia
ao/cuff

P
sys
ao/cuff

MAP Popen

(ml) (ml) (ml) (%) (bpm) (ml/s) (mmHg) (mmHg) (mmHg) (mmHg)

28-Pre F 9 88.2 30.6 57.54 65.3 91 87.46 71.1/62 122.7/138 88.3/87.3 71.33

44-Pre M 12 91.7 31.6 60.09 65.5 76 76.31 74.6/120 125.2/154 91.5/131.3 74.78

research ethics committee following the ethical guidelines of the
1975 Declaration of Helsinki. Written informed consent was
obtained from the participants’ guardians. Acquired data are
summarized in Table 1.

2.1.1. MRI Acquisition and Post Processing
MR imaging was done with a whole body 1.5 Tesla MR scanner
Achieva R 3.2.2.0 using a five-element cardiac phased-array
coil (Philips Medical System, Best, Netherlands). Three MRI
sequences were used further in our study: (i) flow-sensitive four-
dimensional (4D) velocity-encoded magnetic resonance imaging
(4D VEC-MRI), (ii) three-dimensional (3D) anatomical imaging
of the whole heart (3DWH) during diastasis, and (iii) 4D gapless
short axis Cine MRI.

4D VEC-MRI of the thorax was performed using an
anisotropic 4D segmented k-space phase contrast gradient echo
sequence. Retrospective electrocardiographic gating without
navigator gating of respiratory motion in order to minimize
acquisition time was used. Sequence parameters were: acquired
voxel 2.5 × 2.5 × 2.5mm; reconstructed voxel 1.7 × 1.7 ×
2.5mm; repetition time 3.5ms; echo time 2.2ms; flip angle
5°; 25 reconstructed cardiac phases; number of signal averages
1; High velocity encoding (3–6 m/s) in all three directions
was used in order to avoid phase wraps in the presence of
coarctation and associated secondary flow. Flow measurements
were completed with automatic correction of concomitant phase
errors. Postprocessing for analysis of flow rates across the aortic
valve was carried out with GTFlow 1.6.8 software1 (Gyrotools,
Zurich, Switzerland).

The 3DWH exemplary sequence parameters were: acquired
voxel 0.66 × 0.66 × 3.2mm; reconstructed voxel 0.66 × 0.66 ×
1.6mm; repetition time 4.0ms; echo time 2.0ms; flip angle 90°;
and number of signal averages 3.

Short axes Cine imaging data were acquired with sequence
parameters: 16 slices, with an acquisition resolution of 0.86 ×
0.86 × 6.0 mm, repetition time 4.24 ms, echo time 2.12 ms,
flip angle 60◦ and 25 automatically reconstructed cardiac phases
which were used to determine LV volume traces. The non-
compact myocardium as well as papillary muscles were counted
toward blood pool volume.

MRI based pressure mapping allowing to assess non-
invasively the relative pressures in a vessel by solving Pressure

1http://www.gyrotools.com/products/gt-flow.html

Poisson equation (PPE) was done with MevisFlow2. Briefly, the
PPE can be derived from the Navier–Stokes equations by taking
the divergence of the momentum Equation (26), see Gresho
and Sani (1987) and Krittian et al. (2012) for more details. For
more details we refer to Krittian et al. (2012). The processing
and analysis pipeline of the pressure mapping consists of the
following four steps.

i) Semi-automatic segmentation (labeling) of the aortic domain
from 3DWH data generating 3D mask of the aorta.

ii) Background phase correction and phase-unwrapping of
the 4D VEC-MRI data and generation of a sequence of
volumetric velocity vector fields.

iii) Coarse semi-automatic segmentation of the aorta based on
magnitude and phase contrast of the 4D VEC-MRI data and
registration with 3DWH based mask of the aorta.

iv) Solving (PPE) at each time step having 4D VEC-MRI data as
input. Furthermore, a 5% mask size reduction is applied in
order to avoid numerical inconsistencies close to the vessel
wall as suggested earlier (Meier et al., 2010).

Relative pressuremaps are represented with zero pressure located
at the center of the CoA (narrowest location). 3D mask based
on 3DWH data was used due to its better spatial resolution
compared to 4D VEC-MRI data. Correction of velocity data (step
ii) was done in order to minimize noise and aliasing artifacts
originating from multiple sources.

2.1.2. Invasive Catheter Recordings
During catheterization, pressure was recorded over the
cardiac cycle in the ascending aorta and the LV before
treatment and repeated in the ascending aorta after an
interventional treatment procedure was performed. Pressures
were recorded simultaneously at three predefined locations (LV,
ascending aorta, and descending aorta) and the femoral artery
during catheterization. Patients were sedated by intravenous
administration of a bolus of midazolam (0.1–0.2mg/kg,
max. 5 mg), followed by a bolus of propofol (1–2mg/kg, as
needed) and continuous infusion of propofol (1–2mg/kg,
as needed). Pressure measurements were taken with senior
cardiologists present. Pigtail catheters (Cordis, Warren, NJ,
USA) of 5-6F were connected to pressure transducers (Becton-
Dickinson, Franklin Lakes, NJ, USA). Routinely, patients
received balloon angioplasty with or without additional

2https://www.mevis.fraunhofer.de/en/solutionpages/mevisflow-non-invasive-

interactive-exploration-of-in-vivo-hemodynamics.html
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placement of a stent in order to treat a given stenosis by
removing the narrowing of the vessel and thus the pressure
gradient. To reduce duration of catheterization, pressures
were measured post-treatment only in the ascending aorta.
The Schwarzer hemodynamic analysis system (Schwarzer,
Heilsbronn, Germany) was used to amplify, acquire, and analyze
pressure signals.

2.1.3. Anatomical FE Model Generation
Multi-label segmentation of the LV myocardium, LV blood pool,
left atrium (LA) and aortic cavities was done at the DHZB
using 3DWH data and the ZIB Amira software3 (Stalling et al.,
2005). The segmentations were smoothed and upsampled to
a 0.1mm isotropic resolution using a variational smoothing
method (Crozier et al., 2016a). The resulting high resolution
multi-label segmentation was meshed using CGAL4 (The CGAL
Project, 2017), giving a global mesh �0

s,total
consisting of

tetrahedral elements. Here, (•)0 denotes themechanical reference
configuration at end-diastolic pressure. Themesh was subdivided
into various subdomains corresponding to predefined labels
which are summarized in Equation (3). We write

�0
s,total =

⋃

i∈I
�0

s,i, (1)

with the index set

I := {lv, ao, cushion, av,mv, lvbp, aobp}, (2)

see Figures 1E–G for illustration. The elements in the index set
are abbreviations for the following labels

lv ↔ Myocardium,

ao ↔ Aortic wall,

cushion ↔ Elastic cushion,

av ↔ Aortic valve,

mv ↔ Mitral valve,

lvbp ↔ Left ventricular bloodpool,

aobp ↔ Aortic bloodpool.

(3)

With this, we define the following submeshes

�0
s := �0

s,total\
(
�0

s,lbvp ∪ �0
s,aobp

)
, (4)

�0
s,bp = �̃0

f
:= �0

s,av ∪ �0
s,lvbp ∪ �0

s,aobp, (5)

where �0
s is the solid domain and �0

s,bp
is the unsmoothed blood

pool domain used for extracting a smoothed CFD mesh, see
Figures 1E,F. For later use, we define the following surfaces

Ŵ0
s,N := ∂

((
�0

s,lv ∪ �0
s,av ∪ �0

s,mv

)
∩ �0

s,lvbp

)
, (6)

Ŵ0
s,H := ∂�0

s\
(
Ŵ0
s,N ∪ Ŵ0

s,D

)
, (7)

Ŵ0
s,bp

:= ∂�0
s,bp\Ŵ0

s,D, (8)

3https://amira.zib.de
4http://www.cgal.org

where Ŵ0
s,D denote the cutoff faces as indicated by blue lines

in Figure 1; Ŵ0
s,N are surfaces subject to pressure; and Ŵ0

s,H are
surfaces with homogeneous Neumann boundary conditions. In
order to avoid numerical difficulties with non-smooth, jagged
boundaries, the surface of the mechanical blood pool domain
Ŵ0
s,bp

was extracted and smoothed using the VMTK toolbox5

(Antiga et al., 2008). The smoothed surface, Ŵ0
f,wall

, was used to
define the boundary of the fluid domain reference configuration,
�0

f
, for volumetric FE meshing using ANSYS ICEM CFD6.

Refined boundary layers were included in this process to better
resolve sharp gradients in the vicinity of Ŵ0

f,wall
occurring during

simulation of hemodynamics. The various processing stages for
building EM and CFD models are illustrated in Figures 1, 4,
respectively.

2.2. Electromechanical Model
2.2.1. Electrophysiology of the LV
A recently developed reaction-eikonal (R-E) model (Neic et al.,
2017) was employed to generate electrical activation sequences
which serve as a trigger for active stress generation in cardiac
tissue. The hybrid R-E model combines a standard reaction-
diffusion (R-D) model based on the monodomain equation with
an eikonal model. Briefly, the eikonal equation is given as

{ √
∇Xt⊤a V∇Xta = 1 in �0

s,lv
,

ta = t0 on Ŵ0
s,∗,

(9)

where (∇X) is the gradient with respect to the end-diastolic
reference configuration �0

s,lv
; ta is a positive function describing

the wavefront arrival time at location X ∈ �0
s,lv

; and t0 are

initial activations at locations Ŵ0
s,∗ ⊆ Ŵ0

s,N. The symmetric
positive definite 3 × 3 tensor V(X) holds the squared velocities(
vf(X), vs(X), vn(X)

)
associated to the tissue’s eigenaxes, referred

to as fiber, f0, sheet, s0, and sheet normal, n0, orientations. The
arrival time function ta(X) was subsequently used in a modified
monodomain R-D model given as

βCm
∂Vm

∂t
= ∇X · σ i∇XVm + Ifoot − βIion, (10)

where an arrival time dependent foot current, Ifoot(ta), was
added which is designed to mimic subthreshold electrotonic
currents to produce a physiological foot of the action potential.
The key advantage of the R-E model is its ability to compute
activation sequences at much coarser spatial resolutions that
are not afflicted by the spatial undersampling artifacts leading
to conduction slowing or even numerical conduction block as
it is observed in standard R-D models. Ventricular EP was
represented by the tenTusscher–Noble–Noble–Panfilov model
of the human ventricular myocyte (ten Tusscher et al., 2004).
As indicated in Equations (9, 10), activation sequences and
electrical source distribution in the LV were computed in
its end-diastolic configuration �0

s,lv
, that is, any effects of

5http://www.vmtk.org
6http://www.ansys.com/Services/training-center/platform/introduction-to-

ansys-icem-cfd-Hexa
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FIGURE 1 | Mechanics model generation: Starting from a patient specific MRI scan (A) a segmentation was performed (B) which was then upsampled and smoothed

(C). Myocardial fibers were generated in the tissue according to Bayer et al. (2012) (D). A labeled FE geometry �0
s,total including the blood pool was generated (G).

The geometry has been sliced to reveal the blood pool and valves and has been color coded according to the labels defined in Equation (3). Boundaries Ŵ0
s,D used for

prescribing homogeneous Dirichlet boundary conditions are sketched as blue curves. From this mesh the EM submesh �0
s (E) and the unsmoothed blood pool (F)

were extracted. Boundary Ŵ0
s,N was used to prescribe pressure boundary conditions inside the LV and Ŵ0

s,bp is the surface of the blood pool.

deformation upon electrotonic currents remained unaccounted
for.

2.2.2. Active and Passive Mechanics in the LV and

Aorta
The deformation of the heart is governed by imposed external
loads such as pressure in the cavities or from surrounding tissue
and active stresses intrinsically generated during contraction.
Tissue properties of the LV myocardium and the aorta
are characterized as a hyperelastic, nearly incompressible,
anisotropic material with a non-linear stress-strain relationship.
Mechanical deformation was described by Cauchy’s equation of
motion under stationary equilibrium assumptions leading to a
quasi-static boundary value problem

− ∇X · FS(ds, t) = 0 in �0
s , (11)

for t ∈ [0,T], where ds is the unknown displacement; F

is the deformation gradient; S is the second Piola–Kirchhoff
stress tensor; and (∇X ·) denotes the divergence operator in
the Lagrange reference configuration. Homogeneous Dirichlet
boundary conditions

ds = 0 on Ŵ0
s,D, (12)

homogeneous Neumann boundary conditions

FS(Eds, t) = E0 on Ŵ0
s,H, (13)

and inhomogeneous Neumann boundary conditions

FS(ds, t)ns,0 = p(t)J F−⊤(ds, t)ns,0 on Ŵ0
s,N (14)

were imposed, where ns,0 is the outward unit normal vector; p(t)
is the pressure; and J = det F. For sake of clarity, boundary
conditions are illustrated in Figure 1C.

The total stress S was additively decomposed according to

S = Spas + Sact, (15)

where Spas and Sact refer to the passive and active stresses,
respectively. Passive stresses were modeled based on the
constitutive equation

Spas = 2
∂9(C)

∂C
(16)

given a hyper-elastic strain-energy function 9 and the right
Cauchy–Green strain tensor C = F⊤F. Two different strain-
energy functions were used for characterizing passive mechanical
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behavior in the LV and the aorta. In the LV, where the underlying
mesh �0

s,lv
and fiber orientations (f0, s0,n0) are the same as for

the EPmodel, section 2.2.1, the transversely isotropic constitutive
relation

9Guc(C) =
κ

2

(
log J

)2 + CGuc

2

[
exp(Q)− 1

]
. (17)

by Guccione et al. (1995) was employed. Here, the term in the
exponent is

Q = bf(f0 · Ef0)2 + bt
[
(s0 · Es0)2 + (n0 · En0)2 + 2(s0 · En0)2

]

+ 2bfs
[
(f0 · Es0)2 + (f0 · En0)2

]
(18)

and E = 1
2 (C − I) is the modified isochoric Green–Lagrange

strain tensor, where C := J−2/3
C. Default values of bf = 18.48,

bt = 3.58, and bfs = 1.627 were used. The parameter CGuc

was varied for the different cases, see Table 2. In the aorta �0
s,ao,

unlike in previous studies (Augustin et al., 2014), we refrained
from assigning fiber structures, since our efforts were primarily
focused on modeling the biomechanics of the LV and, to a lesser
degree, the aorta. Thus, in absence of information on structural
anisotropy, an isotropic model due to Demiray (1972) was used

9Dem(C) :=
κ

2

(
log J

)2 + a

2 b

{
exp

[
b
(
tr(C)− 3

)]
− 1

}
. (19)

The parameter C̃ = a
2b

was chosen such that C̃ = 3,000 kPa in

the aorta, C̃ = 30,000 kPa for valves, and C̃ = 300 kPa for the
elastic cushion. The bulk modulus κ , which serves as a penalty
parameter to enforce nearly incompressible material behavior,
was chosen as κ = 650 kPa in both Equations (17, 19). For the
elastic cushion a value of κ = 100 kPa was used.

A simplified phenomenological contractile model was used to
represent active stress generation (Niederer S. A. et al., 2011).
Owing to its small number of parameters and its direct relation
to clinically measurable quantities such as peak pressure, plv, and
the maximum rate of rise of pressure, dplv/ dtmax, this model is
fairly easy to fit and thus very suitable for being used in clinical
EM modeling studies. Briefly, the active stress transient is given
by

Sa(t, λ) = Speak φ(λ) tanh2
(
ts

τc

)
tanh2

(
tdur − ts

τr

)
,

for 0 < ts < tdur, (20)

with

φ = tanh(ld(λ−λ0)), τc = τc0 + ldup(1−φ), ts = t− ta − temd
(21)

and ts is the onset of contraction; φ(λ) is a non-linear length-
dependent function in which λ is the fiber stretch and λ0 is the
lower limit of fiber stretch below which no further active tension
is generated; ta is the local activation time from Equation (9); temd

is the EM delay between the onsets of electrical depolarization
and active stress generation; Speak is the peak isometric tension;
tdur is the duration of active stress transient; τc is time constant
of contraction; τc0 is the baseline time constant of contraction;
ldup is the length-dependence of τc; τr is the time constant of
relaxation; and ld is the degree of length dependence. Thus, active
stresses in this simplified model are only length-dependent, but
dependence on fiber velocity, λ̇, is ignored. Unlinke in previous
studies (Niederer S. A. et al., 2011) we set the nonlinear length-
dependent function φ(λ) = 1 for the whole simulation. The
active stress tensor in the reference configuration �0

s,lv
induced

in fiber direction f0 is defined as

Sa = Sa (f0 · Cf0)−1 f0 ⊗ f0, (22)

with Sa defined in Equation (20). This active stress involves a
scaling by λ2 = f0 · Cf0, see Pathmanathan and Whiteley (2009)
for details.

2.2.3. Mechanical and Hemodynamic Afterload

Models
Hydrostatic pressures in the LV, plv, and the proximal aorta, pao,
were modeled using a 3-element Windkessel model (Westerhof
et al., 1971), and the system of PDEs (11) was linked to this
lumped model of the arterial system, see Figure 2. The models
were coupled by a diode (aortic valve) which opens at the end of
the isovolumetric contraction (IVC) phase when the pressure in
the LV cavity, plv, exceeds the pressure in the proximal aorta, pao,
and closes at the end of ejection when plv drops below pao and
the flow qlv starts to reverse. In its open state the aortic valve was
modeled as a linear resistor, Rav, in series with the characteristic
impedance of the aorta, Zc. During ejection, the pressure in the
LV was then computed by the Windkessel equation

dplv

dt
= 1

C

(
1+ Zc + Rav

R

)
qlv + (Zc + Rav)

dqlv

dt
− 1

RC
plv,

(23)

TABLE 2 | Fitted parameters for EM Model.

EM fitting

Speak tdur τc0 τr temd CGuc R Z C

(kPa) (ms) − − (ms) (kPa) (kPa ms/ml) (kPa ms/ml) (ml/kPa)

28-Pre 60.0 380 30.0 30.0 15.0 0.48 170.65 12.00 6.75

28-Post 55.0 380 30.0 30.0 15.0 0.48 170.65 12.00 6.75

44-Pre 90.0 400 50.0 50.0 15.0 0.48 166.65 13.33 7.42
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FIGURE 2 | Lumped circuit representation of the coupled EM PDE model of the LV with the cardiovascular system. The time-varying compliance of the LV is

represented as a PDE model which was coupled through the aortic valve (Rav) to a 3-element Windkessel model representing aortic impedance, Zc, and peripheral

arterial compliance, C, and resistance, R, during ejection, and through the mitral valve (Rmv) to a constant pressure pla in the left atrium during filling. Negative flows

−qla and −qlv mean the respective cavity is ejecting, while positive flow means cavity is being filled.

which predicts the rate of change of pressure in the LV as a
function of flow qlv out of the LV into the aorta. The resistor R
represents peripheral arterial resistance placed in parallel with a
capacitor C, representing vascular compliance.

A similar form of Equation (23) was also used to estimate
the pressure in the aorta, pao. In this case, there is no additional
resistance due to an outlet valve and hence Rav is omitted.
Balancing of the PDE (11) and the ODE (23) was achieved by
recasting Equation (11) as a saddle point problem, see Gurev et al.
(2015) and Hirschvogel et al. (2017).

For CFD simulations, hydrostatic pressures at artificial aortic
fluid outlets, were modeled using a similar 3-element Windkessel
model as in Equation (23) that was rewritten in the form of the
following differential algebraic equations for outlet i

Ci
dpd,i

dt
+ pd,i

Ri
= qi, (24)

pwk,i = Ziqi + pd,i, (25)

see Fouchet-Incaux (2014) and Bertoglio et al. (2017) for more
details. During ejection the Windkessel pressure pwk at an outlet
was then applied as an outflow boundary condition for the fluid
flow model, see section 2.5.5. In Equations (24, 25), Ci represents
compliance, Zi impedence, and Ri resistance of the peripheral
arteries for the respective aortic outlet and qi denotes the flux
through this outlet. Fitting of the parameters involved will be
discussed in section 2.5.5.

2.3. Fluid Flow Model
Human blood in larger vessels such as the LV or the aorta
complies with the assumptions of an incompressible, isothermal,
Newtonian and single-phase liquid (Nichols et al., 2011). Let
�f ( R3 denote the fluid domain, then the evolution of flow
is governed by the incompressible Navier–Stokes equations

ρf

(
∂

∂t
uf + uf · ∇xuf

)
− ∇x · σ f(uf, pf) = 0 in �f, (26)

∇x · uf = 0 in �f, (27)

uf = 0 on Ŵnoslip,

(28)

uf = gf on Ŵinflow,
(29)

σ fnf − ρfβ (uf · nf)− uf = hf on Ŵoutflow,
(30)

uf
∣∣
t=0

= u0, (31)

where uf denotes fluid velocity inm/s; pf is fluid pressure in Pa; ρf
is the density of blood, given as 1.060 kg/m3; σ f is the fluid stress
tensor in, Pa, defined as−pfI+µf

(
∇xuf +∇xu

⊤
f

)
, with dynamic

viscosity of blood µf given as 0.004 Pa s; gf, in m/s is a velocity
inlet; pwk, in Pa, is the Windkessel pressure solution to Equations
(24, 25); u0, in m/s, refers to the initial condition; nf is the
outward unit normal of the fluid domain; and (∇x) is the gradient
and (∇x·) is the divergence operator in the fluid domain �f.
The sets Ŵnoslip, Ŵinflow, and Ŵoutflow denote the complementary
subsets of Ŵf := ∂�f and we assume that |Ŵoutflow| > 0. Note
that Equation (29) is given only for the sake of completeness but
was not used in this study, as the inflow of blood into the aorta
is driven by the motion of the LV thus avoiding the need for
prescribing an inflow profile as it is necessary in models which
consider the aorta in isolation. For pwk ≡ 0, boundary condition
Equation (30) is referred to as directional do-nothing boundary
condition, see Esmaily Moghadam et al. (2011) and Braack et al.
(2014), and the term

(uf · nf)− := 1

2
(uf · nf − |uf · nf|) (32)

is added for backflow stabilization. A value of β > 1
2 was

assumed to guarantee stability of the system. However, in
practical applications values of β ≤ 1

2 were also used without
causing numerical issues, see Esmaily Moghadam et al. (2011).
In presence of multiple outlets outflow boundary conditions as
given in Equation (30) were prescribed at each of the outlets.

2.3.1. Extension to Moving Geometries
For time-dependent fluid domains, i.e., �f = �t

f
,

Equations (26–31) need to be modified to account for the
domain movement. This requires the linking of the equations
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governing fluid dynamics—posed in an Eulerian coordinate
frame—with the structural mechanics equations—posed in a
Lagrangian reference frame. This is achieved by using the ALE
formulation which combines both Lagrangian and Eulerian
formulation in a generalized description, see Bazilevs et al.
(2013, section 1.3) and Hirt et al. (1974). Similar to structural
mechanics, a reference fluid configuration �0

f
( R3 is used

which we identify with the mesh been generated at end-
diastolic state, see section 2.1.3. The coordinate system of the
Eulerian frame is denoted by x and the reference coordinate
system is denoted by X. Their relation is given by the ALE
mapping x = X + df(t,X). Here, df(t,X) refers to an arbitrary,
not necessarily physical, displacement of points to track the
deformation of the fluid domain. Using this ALE mapping the
time-dependent moving fluid domain is represented as

�t
f
:=

{
x : x = X+ df(t,X), ∀X ∈ �0

f

}
. (33)

Further, we define the fluid domain velocity wf as

wf :=
∂

∂t
df

∣∣
X
, (34)

where ∂
∂t (·)

∣∣
X
is the derivative with respect to t withX being fixed,

and the moving interface between fluid and solid domain as

Ŵt
f,mov

:= ∂�t
f \

noutlets⋃

i=1

Ŵt
f,outflow,i, (35)

where Ŵt
f,outflow,i

are the individual aortic outlets. The fluid
displacement at this point remains unknown and will be specified
in section 2.3.3. Combining these concepts, an ALE description
of the Navier–Stokes equations can be derived, see e.g., Bazilevs
et al. (2013) and Förster et al. (2006),

ρf

(
∂

∂t
uf

∣∣
X
+ (uf − wf) · ∇xuf

)
− ∇x · σ f(uf, pf) = 0 on �t

f , (36)

∇x · uf = 0 on �t
f , (37)

uf = gmov on Ŵt
f,mov, (38)

σ f(uf, pf)nf − ρfβ((uf − wf) · nf)−uf = −pwk,inf on each Ŵt
f,outflow,i, (39)

uf
∣∣
t=0

= u0 in �0
f . (40)

Along Ŵt
f,mov

we imposed equality between fluid velocity
and the velocity of the moving surfaces. Boundary condition
(Equation 39) is the ALE equivalent of the outflow stabilization
in Equation (30), see Bazilevs et al. (2013, section 8.4.2.3). Details
on how domain movement and velocity were chosen in our
application will be discussed later in sections 2.3.3 and 2.5.5.

2.3.2. Variational Formulation of the Navier–Stokes

Equations
Following Bazilevs et al. (2007), Bazilevs et al. (2013), and Pauli
and Behr (2017), the discrete variational formulation of the ALE
Equations (36)–(40) can be stated in the following abstract form:

find uh
f

∈ [S1
h,g

(TN)]
3, ph

f
∈ S1

h
(TN) such that for all vh ∈

[S1
h,0
(TN)]

3 and for all qh ∈ S1
h
(TN)

ANS(v
h, qh;uhf , phf )+ SVMS(v

h, qh;uhf , phf ) = FNS(v
h), (41)

with the classical bilinear form of the Navier–Stokes equations

ANS(v
h, qh;uhf , p

h
f ) := ρf

∫

�t
f

vh ·
(

∂

∂t
uhf +

(
uhf − wh

f

)
· ∇xu

h
f

)
dx

+
∫

�t
f

ε(vh) : σ f(u
h
f , p

h
f ) dx

+
∫

�t
f

qh∇x · uhf dx− ρfβ

noutlets∑

i=1

∫

Ŵt
f,outflow,i

((uhf − wh
f ) · nf)−v

h · uhf dsx, (42)

the bilinear form SVMS, which is explained later in Equation (45),
and the right-hand side contribution

FNS(v
h) := −

noutlets∑

i=1

pwk,i

∫

Ŵt
f,outflow,i

vh · nf dsx. (43)

In Equation (42), ε is the strain-rate tensor and wh
f
is the discrete

counterpart of the fluid domain velocity wf, i.e.,

wh
f (t

n+1,X) = df(t
n+1,X)− df(t

n,X)

1t
. (44)

The FE function space S1
h,∗(TN) is the conformal trial space

of piecewise linear, globally continuous basis functions over a
decomposition TN of �t

f
into N simplicial elements constrained

by vh = ∗ on essential boundaries. The FE function space S1
h
(TN)

denotes the same space without constraints. For further details
we refer to Brenner and Scott (2007) and Steinbach (2007).

From a mathematical point of view, the Navier–Stokes
equation can be seen as a multidimensional convection–diffusion
equation with pressure acting as a Lagrangian multiplier of
the incompressibility constraint. In the common case where
velocity and pressure are retained as unknowns, as above,
the Ladyzhenskaya–Babuška–Brezzi (LBB) condition has to
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be satisfied by the velocity and pressure spaces (Donea and
Huerta, 2003). A violation of the LBB condition may lead
to pressure oscillations. Stabilization techniques allowing the
circumvention of the LBB condition exist and have been
extensively studied (see for example Hughes et al., 1986; Franca
and Hughes, 1988; Douglas and Wang, 1989; Bochev et al.,
2006). However, with increasing Reynolds number the Navier–
Stokes equations become convection dominated. This requires
increasingly finer mesh resolutions to accurately resolve finer
flow details which, eventually, renders numerical solution in this
form computationally intractable. As a remedy, one can resort to
using turbulence models. In particular, in this study the residual
based variational multiscale turbulence model (RBVMS), see
Hughes (1995), Bazilevs et al. (2007), Bazilevs et al. (2013), and
Pauli and Behr (2017) was employed which acts as a stabilization
and a turbulence model. The underlying main idea is to split
the unknown solution into resolvable (coarse) and unresolvable
(fine) scales by the FE approximation, where the finer scale details
are taken into account based on element residuals. For details
on the derivation we refer to elsewhere (Bazilevs et al., 2007).
The term SVMS in Equation (41) denotes the bilinear form of the
RBVMS formulation and reads as

SVMS(v
h, qh; uhf , p

h
f ) :=

1

ρf

nel∑

l=1

∫

τℓ

τMOM

(
ρf

(
uhf − wh

f

)
· ∇xv

h + qh
)
· rMOM(uhf , p

h
f ) dx

+
nel∑

l=1

∫

τℓ

τCONT∇x · vh∇x · uhf dx

−
nel∑

l=1

∫

τℓ

τMOMvh ·
(
∇xu

h
f rMOM(uhf , p

h
f )

)
dx

− 1

ρf

nel∑

l=1

∫

τℓ

τ2MOMε(vh) : (rMOM(uhf , p
h
f )⊗ rMOM(uhf , p

h
f )) dx,

(45)

where the vector rMOM is defined as

rMOM(uhf , p
h
f ) := ρf

(
∂

∂t
uhf +

(
uhf − wh

f

)
· ∇xu

h
f

)
−∇x ·σ f(u

h
f , p

h
f ).

(46)

The definition of the parameters τMOM, τCONT according to Pauli
and Behr (2017) is given by

τMOM := min

{(
4

1t2
+ (uhf − wh

f ) · G(uhf − wh
f )

)− 1
2

,
ρfCM

µf

√
G :G

}
,

(47)

with 1t being the time step size and G := ∂ξ
∂x

⊤
K ∂ξ

∂x , where
∂ξ
∂x

denotes the Jacobian of the mapping from a physical FE to the
reference FE, the tensor K is defined as

K := 1

2 3
√
2




3 −1 −1
−1 3 −1
−1 −1 3


 (48)

and the constant CM = 0.0285. Further, the stabilization
parameter τCONT is defined as

τCONT := 1

τMOMgf · gf
, (49)

gf,i :=
3∑

j=1

(
∂ξ

∂x

)

ji

. (50)

2.3.3. EM-Based Kinematic Driver Model
Displacements computed with the EM model were used to
prescribe the kinematics of the blood pool mesh which in turn
was used for simulating hemodynamics in the CFD model. This
was achieved by imposing gmov = ∂

∂tds in Equation (38). Since

the surface of the reference CFD blood pool mesh, ∂�0
f
, is not

conformal with the surface of the reference EM blood pool mesh,
�0

s,bp
, and the overlap of the two surfaces is imperfect due to

smoothing of ∂�0
f
and remeshing of �0

f
, a direct transfer of

displacements between the two surfaces is not readily feasible.
As a remedy, we proceeded as follows. After solving the EM
problem the subset of displacements d̃s that form the endocardial
interface with the blood pool, Ŵ0

s,bp
, were extracted from the

solution ds defined at �0
s . Since the mesh interface between �0

s

and�0
s,bp

is conformal the extracted displacements can be applied

as inhomogeneous time-varying Dirichlet boundary conditions
to the blood pool mesh �0

s,bp
to solve a linear elastic problem

given as

−∇X · σ (ds(t)) = 0 in �0
s,bp, (51)

ds(t) = d̃s(t) on ∂�0
s,bp, (52)

where stress and strain tensor are

σ (ds) :=
E

1+ ν

(
ν

1− 2ν
∇X · dsI + ε(ds)

)
, (53)

ε(ds) :=
1

2

(
∇Xds + (∇Xds)

⊤
)
, (54)

the constant E is Young’s modulus in kPa and the constant ν is
Poisson’s ratio which is dimensionless in the range of [−1, 0.5).
Combining the solutions ds computed for �0

s and �0
s,bp

yields

displacements ds for �0
s,total

. Since ∂�0
f
is fully embedded in this

domain, �0
s,total

�0
s,total

can be used as a hanging background
mesh for interpolating displacements onto the blood pool mesh,
�0

f
, used for CFD simulations. However, for reasons of mesh

quality, interpolation is solely applied on the boundary �0
f
itself,

and to find the interior displacement field the exact same linear
elastic problem 51–54, is solved for df instead of ds.

In both patient cases studied, ejection fractions were large
leading to a substantial deformation of the blood pool mesh �t

f
.

To maintain mesh quality under such large deformations the
parameters E and ν governing stiffness and incompressibility of
the material were altered accordingly. Initially, a fixed E0 and ν0
was chosen while the subsequent modification of E and ν was
guided by a combination of the two following strategies.
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i) Quality based stiffening: For each element τℓ in the fluid mesh
a tetrahedral quality indicator κ(τℓ) based on the movement
from the previous time step was calculated, see Freitag and
Knupp (2002) and Kanchi and Masud (2007), and rescaled
such that for elements of good quality κ is close to 1,
while for elements with poor quality κ tends toward infinity.
Eventually, the parameter E was multiplied by κ within each
element.

ii) ν-Volume based stiffening: For larger deformation elements in
the fluid mesh may collapse or even invert, yielding a zero
or negative volume. When solving Equations (51)–(54), the
current element volumes were tracked and a volume ratio
relative to an undeformed reference element was computed
as |τℓ|

|τ̂ℓ| . For ratios below a predefined critical value the

parameter ν was set close to 0.5 to make this element nearly
incompressible.

2.4. Numerical Solution
Spatio-temporal discretization of all PDEs and the solution
of the arising systems of equations relied upon the Cardiac
Arrhythmia Research Package (CARP), see Vigmond et al.
(2003). Numerical details on FE discretization (Rocha et al., 2011)
and solution of EP (Vigmond et al., 2008b; Neic et al., 2012,
2017) and EM (Augustin et al., 2016b) have been discussed in
detail elsewhere. FE discretization and solution of the Navier–
Stokes equations were implemented recently using the same
numerical framework which was extended to account for non-
linear saddle-point problems arising from the discretized CFD
equations.

Two time discretization schemes were implemented and
compared for the applications in mind, and a computationally
cheap semi-implicit scheme, modified from Forti (2016, section
1.4.2), showed similar results to the more expensive fully-implicit
generalized-α method (Jansen et al., 2000). Hence, all results
in section 3 were obtained using the semi-implicit scheme; to
advance from time step tn to tn+1, only a linear block system
needs to be solved, where each block depends on data from
the previous time step only. Solvers for the block system were
taken from the PETSc library (Balay et al., 1997, 2016a,b).
We used a right preconditoned flexible GMRES method with
PETSc fieldsplit preconditioning (Silvester et al., 2001; Elman
et al., 2008) which in turn uses BoomerAMG (Van Emden and
Yang, 2002) to approximate sub-block inverses. While the time
step size for mechanics and CFD was the same, 1tmech =
1tCFD = 0.5ms, it was significantly smaller for EP, where
1tEP = 25 µs.

The implementation of the CFD solvers has been subjected to
various validation procedures against standard CFD benchmarks
(Schäfer et al., 1996). All simulations were executed at the
national HPC computing facility ARCHER in the United
Kingdom using 384 and 768 cores for EM and CFD simulations,
respectively.

2.5. Model Parameterization
2.5.1. Electrophysiology
Electrical activation sequences were indirectly parameterized
using the QRS complex of a given patient’s ECG as guidance.

Unlike in previous studies (Augustin et al., 2016a), we refrained
from a detailed parameterization which aimed at reproducing
the QRS complex of the ECG for a given patient by finding
appropriate locations and timings for the main fascicles of the
cardiac conduction system in the LV. Rather, default locations
and timings were used which yielded a total activation time
within the physiological range.

2.5.2. Passive Biomechanics
The LV myocardium was characterized as a hyperelastic, nearly
incompressible, transversely isotropic material with a nonlinear
stress–strain relationship (Guccione et al., 1995). Orthotropic
material axes were aligned with the local fiber, sheet and sheet
normal directions. To remove rigid body motion, homogeneous
displacement boundary conditions were applied by fixing the
terminal rims of the clipped brachiocephalic, left common
carotid and left subclavian arteries as well as the clipped rim
of the aorta descendens, see Figure 1. The model was stabilized
by resting the LV apex on an elastic cushion of which the
bottom face was rigidly anchored also by applying homogeneous
displacement boundary conditions.

The constitutive model was fitted to recorded clinical data as
previously reported with minor modifications (Augustin et al.,
2016a). The passive biomechanical model governed by the strain-
energy function given in Equation (17) was fitted to approximate
the end-diastolic pressure-volume relation (EDPVR). Due to
limitations in the recorded data we refrained from directly fitting
the model to the recorded pressure and volume data. Rather,
only one data pair—EDV and end-diastolic pressure (EDP)—
was used to fit the stress-free residual volume to the empiric
Klotz relation (Klotz et al., 2007) by adjusting the isotropic
scaling parameter CGuc in Equation (17). As the model anatomy
was built from a segmented 3DWH MRI scan—acquired during
diastasis—the FE model was inflated to increase the volume of
the cavity by the difference between the volume at mid diastasis
and the EDV. Using the end-diastolic geometry, default material
parameters and the recorded EDP, an initial guess of the stress-
free reference configuration was computed by unloading the
model using a backward displacement method (Sellier, 2011;
Bols et al., 2013; Krishnamurthy et al., 2013). The unloading
procedure was repeated with varying trial material parameters,
CGuc, until the difference between the unstressed LV volume
of the model and the prediction of the Klotz relation was less
than 5%.

2.5.3. Active Stresses
Parameters of the active stress model were fitted during IVC and
ejection phase. During IVC the LV volume was held constant
(Gurev et al., 2015) and the parameters of the active stress given
in Equation (20) rate of contraction, τc, and peak active stress,
Speak, were manually adjusted to fit the maximum rate of rise of
pressure, (dP/dt)max, and peak pressure, plv.

2.5.4. Afterload
When the LV pressure plv exceeded the aortic pressure, pao,
ejection was initiated by connecting the LV model with the
lumped 3-element Windkessel model (Westerhof et al., 1971).
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Volume traces recorded from a given patient during ejection
were used as input to compute aortic pressure traces by
solving Equation (23). Both types of data were not recorded
simultaneously as volume traces were computed from Cine MRI
scans and pressure traces were recorded later invasively by
catheterization. Volume and pressure traces were synchronized
in time by aligning the onset of ejection of the volume traceVlv(t)
with the instant of opening of the aortic valve in the pressure
trace pao(t). In those cases where heart rates were markedly
different between the two measurements, volume traces were
scaled in time to adjust LV ejection time (LVET) to the duration
of ejection in the pressure traces, that is, the time elapsed between
opening and closing of the aortic valve as these two instants in
time were clearly identifiable in all traces pao(t), see Figure 3.
Moreover, volume traces were offset to ensure that the model
volume based on the segmentation of the 3DWH scan acquired
during diastasis matched up with the Cine-MRI based volume
trace at mid diastasis. The parameter space of the Windkessel
model comprising characteristic impedance of the aorta, Zc, as
well as resistance, R, and compliance,C, of the arterial systemwas
sampled using a recently developed stochastic sampling approach
(Crozier et al., 2016b).

Numerous box constraints were used to constrain the
search space of parameter sweeps. In particular, we used
reported measurements in humans to define the mean values
and restricted the search space for each parameter to fall
within ±20% around the mean. Due to high frequency errors
introduced by the pressure transducer we refrained from
computing norms ||pao,meas − pao,fit|| to quantify the deviations

of fitted from measured pressure and opted for manual selection
using three criteria, aortic peak pressure, pao, closing pressure of
aortic valve and exponential decay of pao during diastole. For
the sake of fitting Zc we assumed pao ≈ plv since transvalvular
pressure gradients in all patients were very minor.

2.5.5. CFD Boundary Conditions
The validated EMmodels yield the time-dependent displacement
fields, ds, which were transferred onto the fluid domain to
drive simulations of blood flow in LV and aorta as described in
section 2.3.3 yielding df(t, x) defined on the whole CFD mesh.
Figure 4G shows a summary of the boundary conditions. On
the boundary Ŵt

f,mov
a Dirichlet boundary condition enforcing

the mesh velocity wh
f

is applied. On each aortic outlet
Ŵf,outflow,i(t) a 3-Element Windkessel model as described in
section 2.2.3 is attached. Further, the stabilization parameter
β in Equation (39) was set to 0.2. Estimation of the input
parameters for the hemodynamical Windkessel equations relied
on an extension of the simple hydraulic analog of Ohm’s law.
Given the patient specific MAP, CO, and a percentage αi of
total CO running through the outlet the resistance Ri was
estimated as

Ri ≈
MAP

αiCO
. (55)

The percentages αi were obtained either by measurement or by
applying Murray’s law (Murray, 1926). The impedances Zi were
chosen as 5% of Ri, and the compliances Ci were chosen such
that RiCi ≈ 1, 000ms. To keep the semi-implicit character of the

FIGURE 3 | (A) Invasive clinical recordings from cases 28-Pre and 44-Pre. Top: Recorded aortic pressure Pao (black curve) and recorded LV pressure PLV (blue

curve). Marked with dashed lines are Systolic pressure Psys, mean arterial pressure MAP, and diastolic pressure Pdia; Center: Volume change in the LV, VLV, in red

ranging from end-diastolic volume EDV to end-systolic volume ESV. Bottom: LV flow QLV in orange with marked peak flow Qpeak. (B) Comparison of EM simulations

and clinical data. Upper part shows a comparison of the LV model in end-diastolic (colored opaquley blue) and end-systolic configuration (colored by displacement).

Lower part shows comparison of clinical (colored blue) and simulated PV loops (colored red). The dashed orange curve shows the ideal Klotz curve, while the green

curve shows the simulated Klotz curve, with volume of stress-free unloaded configuration marked as V0.
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FIGURE 4 | Processing workflow used for generating blood pool FE models: (A,B) Elements labeled as blood pool or valve were extracted from the mesh used for EM

modeling. (C) Surfaces of extracted meshes were smoothed to avoid numerical instabilities due to reentrant corners resulting from a jagged surface. A closeup view of

the smoothing effect is displayed in the upper right. The smoothed surface is then used as input for the fluid mesh generation. (D,E) Comparison of the smoothed and

unsmoothed blood pool mesh immersed in the original EM mesh. (F) Closeup view of the generated boundary layer mesh. (G) Boundary conditions used for CFD.

Moving wall boundary Ŵtf,mov colored in orange, outlet boundaries Ŵtf,outflow,i colored in blue with attached illustration of the 3-element Windkessel models.

CFD system the Windkessel equations were solved with a semi-
implicit backward Euler method using the flow qni through the
aortic outlet, from the previous time step as input.

3. RESULTS

3.1. Building Electromechanical Kinematic
Driver Models
Using a previously developed automated workflow (Crozier et al.,
2016a), anatomical FE models of LV and aorta were built for
patient cases 28-Pre and 44-Pre based on segmented imaging data
acquired under pre-treatment conditions. Figure 1 illustrates the
key processing steps and the resulting FE model for case 28-
Pre. For the case 28-Pre the CoA was repaired by a virtual
dilatation procedure applied to the segmented image data with
the aim to restore normal cross sectional areas. Subsequently, a
new FE mesh was generated referred to as 28-Post, which was
essentially identical to 28-Pre, with the only difference being the
anatomical adjustment of the CoA in the aortic arch to the target
post-treatment anatomy after stenting, see Figure 5.

Passive biomechanical properties, afterload and active stress
models of cases 28-Pre and 44-Pre were parameterized using
clinically recorded pressure and volume data under pre-
treatment conditions, see Figure 3A. The fitted final parameters
used are summarized in Table 2. The goodness of fit of both
integrated EM models was verified by standard PV loop analysis
as shown in Figure 3B. Results of a quantitative comparison with

FIGURE 5 | CoA anatomy of case 28 before and after virtual stenting

procedure. CoA location is indicated with a red circle.

clinically derived metrics including EF, EDV and ESV, CO, and
peak systolic pressure are summarized in Table 3.

3.2. Blood Pool FE Modeling for CFD
Conformal FE blood pool meshes were extracted from EM
FE meshes, surfaces were smoothed and used for volumetric
remeshing with increased spatial resolution including boundary
layers. The corresponding workflow is illustrated in Figure 4.

Kinematics of the EM model were transferred to the CFD
blood pool mesh and the result is illustrated in terms of

Frontiers in Physiology | www.frontiersin.org 12 May 2018 | Volume 9 | Article 538

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Karabelas et al. CoA Impact Upon LV Load

TABLE 3 | Comparison of clinical indicators and indicators computed from simulation for the EM models.

EM comparison

EDVcl,sim ESVcl,sim SVcl,sim EFcl,sim COcl,sim P
sys
cl,sim

(ml) (ml) (ml) (%) (ml/s) (mmHg)

28-Pre 88.16/87.47 30.62/31.02 57.54/57.14 65.27/64.81 87.46/86.85 146.037/139.362

44-Pre 91.68/91.67 31.59/30.95 60.10/60.72 65.54/66.24 76.31/76.32 158.413/135.236

rel. error [%] 0.78/0.01 1.3/2.0 0.69/1.03 0.70/1.07 0.69/0.013 4.57/14.63

FIGURE 6 | (I) shows quality analysis for case 28-Pre. Spatial locations of elements of poor quality > 0.8 (in red) are shown at the top for different snapshots of

deformation (green lines in graph). The graph below shows linear iterations per time step (in blue) and percentage of elements with poor quality > 0.8 (in red). (II)

shows the processing stages of kinematic transfer for the 28-Pre case at maximum displacement. (A) Displacement ds on EM mesh �0
s . (B) Displacement ds

extended to conformal EM blood pool mesh �0
s,total which serves as hanging background mesh for the kinematic transfer onto the CFD blood pool mesh �0

f . (C)

Displacement ds on �0
s superimposed with fluid mesh displacement df on �0

f .

displacements ds, df in Figure 6II. Due to the large EF of about
65% for both 28-Pre and 44-Pre, the blood pool underwent
a significant deformation. However, using a combination of
element quality and ν-Volume based stiffening with an initial
Young’s Modulus E0 = 100 kPa and Poisson’s ratio ν0 = 0.3,
sufficient element quality was preserved throughout the entire
ejection phase and numerical instabilities could be avoided.
Figure 6I shows the 80th-percentile of bad element quality
against the number of linear iterations required for convergence
for the 28-Pre case. The quality of elements was calculated with
the same quality inidcator (Freitag and Knupp, 2002; Kanchi and
Masud, 2007) as described in section 2.3.3 but was rescaled to
the interval [0, 1], with the best element quality being 0 and the
worst element quality being 1. The modest increase in iteration
numbers of the iterative preconditioned GMRES solver provides
indirect evidence of sufficiently preserved mesh quality (see
Figure 6). Spatially, most lower quality elements were located in
the CFD boundary layer.

3.3. Numerical CFD Benchmarks
The implementation of the Navier–Stokes solver was verified
by solving a set of standardized benchmark problems, see

Schäfer et al. (1996). Computational performance was evaluated
by performing strong scaling experiments by repeating the
post-treatment hemodynamics simulation of case 28-Post with
varying numbers of cores ranging from 96 to 1.536. Details on
computational complexity and costs are summarized in Table 4.
For temporal discretization a time step of 1t = 0.5ms was
used to simulate the ejection phase lasting for 208ms. The
overall discrete system comprised 5,177,056 degrees of freedom,
which was solved over 416 time steps. Strong scaling results
are summarized in Figure 7. Efficient strong scaling behavior
was observed up to 768 cores with parallel efficiency slowly
degrading from 100% at 96 cores down to 55% at 768 cores.
Scalability stalled when doubling the core count to 1,536 which
reduced the degrees of freedom per parallel partition down to
3,386. Parallel efficiency dropped to 27% which is attributed
due to the unfavorable ratio between local compute work and
communication.

3.4. Simulating Cardiac and Cardiovascular
Hemodynamics
Hemodynamics in the LV and aorta was simulated using the EM
simulations as a kinematic driver. Flow rates through various
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TABLE 4 | Discretization details for the studied cases.

Electromechanics model CFD model

NE NV h [µm] DOF NE NV h [µm] DOFU DOFP

28-Pre 747,266 167,509 897 502,527 1,943,060 352,006 746.5 1,056,018 352,006

28-Post 632,635 149,174 954 447,522 7,405,128 1,294,264 531.6 3,882,792 1,294,264

44-Pre 727,194 168,804 997 506,412 2,285,005 412,728 717 1,238,184 412,728

Shown are the number of elemens (NE), number of vertices (NV), average edge length h in µm, degrees of freedom for displacement (DOF), degrees of freedom for velocity (DOFU),

degrees of freedom for pressure (DOFP).

FIGURE 7 | Results of strong scaling benchmark based on case 28-Post with

5.2 million overall degrees of freedom. TAvgSolv is the total solving time divided

by the total amount of linear iterations per simulation run.

aortic cross sections and outflow orifices were calculated as
the integral over measured fluxes through the cross-sectional
plane for both 4D VEC MRI and simulated flow data. At
locations of interest which were εDSC, εBCA, εLCA, and εLSCA
denoting cross sections in the aorta descendens and the
orifices of brachocephalic, left carotid and left subclavian artery,
respectively, relative flows were computed from 4D VEC MRI
data as fractions αi expressed in percent of the total peak
flow through the aorta ascendens as determined over the plane
εASC. For those planes of interest where measurements were
not feasible due to noise, flow percentages were estimated based
on Murray’s law. Flow curves during ejection at selected cross
sections are shown in Figures 8A,E. MAP and computed mean
flow through each outlet orifice were used to determine the
parameters of the coupled Windkessel models of afterload in
Equations (24, 25), see Table 5. In the 28-Pre case this resulted
in flow splits of αi ≈ 23, 51.3, 12.83, and 12.83% whereas in the
44-Pre case the flow split ratios were αi ≈ 5.68, 57.45, and 34.01%
for εDSC, εBCA, εLCA, and εLSCA, respectively.

For the CFD analysis a time step of 1t = 0.5ms was
used. The ejection phases of the EM simulations were chosen

as time horizons for the CFD simulation which lasted from
t = 90ms to t = 302ms in the 28-Pre case and from
t = 70ms to t = 329ms in the 44-Pre case, yielding 424
and 518 time steps, respectively. The Windkessel parameters
for each outlet, calculated as described in section 2.5.5, are
summarized in Table 5. Pressure pf along the centerline sc and
fluxes through the planes εDSC, εLSC, εBCA, and εASC were
computed at the instant of peak flow in the aorta ascendens and
compared against measured data, which were pressures derived
from Pressure–Poisson mapping (see Figure 8D) and 4D VEC
MRI fluxes. For case 28-Pre pressure drops were calculated from
the pressure values on the intersection of the centerline and εDSC,
εASC respectively. Further, we calculated the average pressure
over the aforementioned planes as well. Both ways yielded a
simulated pressure drop across the CoA of ≈ 29.2mmHg
which agreed well with the clinically estimated pressure drop
of ≈ 30mmHg. Furthermore, we calculated the flux through
the various planes and compared them against the clinically
estimated fluxes. A quantitative comparison of fluxes is given
in Table 6. Figures 8C,G,H show velocity profiles at peak flow
condtions. Figures 8B,F show the pressure along the centerlines,
the velocity field Evf through the plane εASC, and the position of
all planes used for evaluating fluxes. Supplementary Materials 1,
2 contain videos of the time evolution of the velocity distribution
for cases 28-Pre and 44-Pre.

3.5. Post-treatment Simulations
Simulations of case 28-Pre were repeated on geometry of case
28-Post using almost the same set of parameters, see Table 2.
Only Speak was slightly adjusted, which resulted in a better peak
pressure value in the LV. The geometry of case 28-Post was almost
identical to case 28-Pre with the only exception being the virtual
repair of CoA anatomy. In this scenario only pre- and post-
treatment simulations were compared to evaluate their relative
differences in terms of pressure and flow velocities. Figure 9
shows results. Pressure drops were calculated as in section 3.4 for
both scenarios. For 28-Pre we calculated a pressure drop of ≈
29.2mmHg while for 28-Post a pressure drop of ≈ 14.15mmHg
was calculated.

4. DISCUSSION

In this study, we report on the progress made toward a novel
EMF model of the human LV that is entirely based on first
principles and as such, in principle, is able to represent all
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FIGURE 8 | CFD results. (A,E) show the given clinical measurements for flow through different planes. The planes are depicted in (B,F). (B,F) also depict the pressure

along the centerlines at peak flow conditions at t = 167ms and t = 142ms respectively. (C) shows velocity streamlines at peak flow. (D) shows the relative pressure

map from the Pressure–Poisson mapping used for validating the pressure drop in our simulations. (G,H) show velocity streamlines at peak flow and t = 200ms for

case 44-Pre.

TABLE 5 | Windkessel parameters for each outlet of cases 28-Pre and 44-Pre.

28-Pre 44-Pre

DCA BCA RSC LSC DCA BCA RSC LSC

R [kPams/ml] 590.46 264.6 1, 058.24 1, 058.24 2, 480.07 276.01 466.23 7, 440.2

Z [kPams/ml] 29.52 13.23 52.91 52.91 124.003 13.9 23.31 372.01

C [ml/kPa] 1.69 3.78 0.944 0.944 0.403 3.62 2.14 0.134

TABLE 6 | Comparison of clincal estimated flow rates and simulated flow rates through the various planes for cases 28-Pre and 44-Pre.

Flux comparison

28-Pre 44-Pre

Unit εDCA εASC εASC εBCA εLSC

Qpeak,sim ml/s 85.5073 286.056 316.713 160.493 132.540

Qpeak,cl ml/s 70.3071 290.719 352.114 171.571 109.290

rel. error % 21.62 1.604 10.054 6.46 21.27

cause-effect relationships with full biophysical detail. Unlike in
the majority of cardiac CFD studies where the use of image-
based kinematic driver models prevails, EM LV and aorta
models of CoA patients were employed to serve as a kinematic
driver to a computational model of hemodynamics in the LV
cavity and aorta. A hybrid two stage modeling approach was
adopted with regard to hemodynamics where EM and CFD
model are executed sequentially. First, in the EM simulations
the afterload imposed by the circulatory system upon the LV
was represented by a lumped model to compute LV kinematics.
These EMmodels were carefully fitted to available clinical data to

replicate important clinical metrics characterizing hemodynamic
and biomechanical work performed by the LV (Gsell et al.,
under review). In a subsequent step, a full-blownALE-based CFD
model with moving domain boundaries was unidirectionally or
weakly coupled to the EMmodel. The motion of the fluid domain
was driven by the kinematics of the EM model. Kinematics was
transferred from EM mesh onto the CFD blood pool mesh by
generating a combined kinematic model comprising LV, valve,
aortic structure and a conformal blood pool mesh which served
as a hanging background mesh for interpolation. The higher
resolution blood pool CFD mesh with refined boundary layers
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FIGURE 9 | Comparison of cases 28-Pre and 28-Post. Shown on the left are the pressures along the centerline at peak flow. Depicted in the middle are the slices

used for calculating the pressure drops. Shown on the right are velocity streamlines at peak flow.

was fully immersed in the EM background mesh. Kinematics was
transferred by interpolation only onto the surface of the CFD
blood pool mesh and extended into the volume of the blood pool
by solving a linear solid mechanics problem.

We show validation results for two selected clinical CoA
cases under pre-treatment conditions and compare between pre-
treatment and post-treatment for one patient case in which
the CoA was anatomically modified by a virtual stenting
procedure. Further, we demonstrate numerical tractability of the
implemented approach by providing strong scaling benchmark
results. The overall cost of the entire work flow for building,
fitting and execution of EMF simulations is comparable to
plain image-based kinematic driver models (Mittal et al., 2016),
suggesting that the proposed methodology may be, in principle,
compatible with clinical time scales.

4.1. Biomechanical Modeling vs.
Image-Based Kinematics
Modalities such as CMR and Cardiac CT on the other hand,
provide excellent spatial resolution. CMR has an in-plane
resolution of 1.5 × 1.5mm, but more limited through-plane
resolution (typically about 8mm) while CT is capable of isotropic
spatial resolution on the sub millimeter scale (≈ 0.5mm) and
clear delineation of trabeculae and lumen boundaries. CMR has
the advantage of higher temporal resolution (30–50 ms) while
temporal resolution in CT depends on the scanning system (50–
200 ms). This is orders-of-magnitude lower than the temporal
resolution required for the flow simulation (≈ 1, 000 phases per
cardiac cycle) and appropriate interpolation methods need to
be employed to create CFD-ready models. This stage of model
generation has been very difficult to automate, and remains the
biggest bottleneck for patient-specific cardiac flow modeling.
Compared to pure image-based kinematic approaches our model
is able to compute, e.g., the spatio-temporal distribution of wall

stresses, power density, the length of diastolic intervals available
for myocardial perfusion, O2 consumption, and metabolic
supply/demand ratios. The variations of all these parameters in
response to a changed afterload and many other biomarkers of
physiological interest can be derived, which is not feasible with
image-based models.

4.2. Kinematic Transfer to CFD Blood Pool
Model
Both patients modeled in this study featured healthy EFs of
> 60%, that is, EF was ≈ 65% in both cases. At a such
high EFs the wall motion of the LV is significant, leading to
substantial reductions in the LV blood pool volume. IB methods
(Vigmond et al., 2008a; Seo and Mittal, 2013; Choi et al.,
2015) are known to be more convenient to cope with the large
deformation of the CFD blood pool (Quarteroni et al., 2017).
IB methods and other non-boundary-fitting methods rely on a
fixed fluid mesh and the moving wall of the ventricle is not
explicitly tracked. The coupling between the CFD mesh and the
structure is performed via Dirac Delta functions (IB) or Lagrange
multipliers (fictitious domain methods) and is usually realized
by introducing additional degrees of freedom on interface cut
elements. While mesh generation is only necessary prior to
computation fixedmeshmethods typically require adaptive mesh
refinement or modifications (Wang and Liu, 2004) to obtain
reasonable accuracy for the solution near the fluid-solid interface.

In contrast, ALE algorithms capture the fluid-solid interface
more accurately, are in general stable and easy to implement,
no extra degrees of freedoms are introduced, and computational
costs are low in comparison (Tallec and Mouro, 2001; van Loon
et al., 2007). However, it is often assumed that unstructured FE
approaches, as implemented in this paper, critically depend on
automatic remeshing strategies (Long et al., 2013) to keep mesh
quality within acceptable bounds (Mittal et al., 2016). Our study
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demonstrates that this may not necessarily be the case. While
the mesh quality decreased with deformation over the course
of ejection, the linear elastic deformation of the CFD blood
pool mesh combined with the quality-based stiffening approach
prevented the degeneration of any elements. The number of
elements in which element quality degraded noticeably was
very small. As illustrated in Figure 6, virtually all elements of
reduced quality were located in the higher resolution boundary
layer of the CFD blood pool mesh. According to the element
quality metric used, an element quality of 1 refers to a fully
degenerated element of zero volume. Despite the significant
compression of the blood pool mesh, not a single element was
deformed to this degree. Even when applying a stricter threshold
where element quality is deemed poor if the quality indicator is
>0.8, which is not critical from a numerical point of view, the
number of elements in this range remained small with < 0.8%
(Figure 6). The worst element quality observed in the entire
mesh was 0.9994. Using a threshold of >0.95 where element
quality may be sufficiently poor to impact more notably on solver
performance, only 24 out of 2,506,987 elements were found.
Nonetheless, an increase in number of linear iterations required
for convergence was observed which is likely to be linked to the
gradual degradation of element quality. The number of iterations
per solver step increased from around ≈17 iterations during
early ejection up to ≈80 iterations during late ejection. While
the more than fourfold increase in linear iterations negatively
impacted overall solver performance and rendered simulations
computationally more expensive, the complexity of automatic
remeshing was avoided. We consider this a pivotal importance
as automatic remeshing in combination with a MPI parallel FE
solver is definitely feasible, but highly non-trivial to implement
robustly and efficiently.

4.3. Computational Feasibility
Computational feasibility of human scale cardiac simulations
by using strongly scalable numerical implementations has been
demonstrated previously for electrophysiology (Niederer S. et al.,
2011) and mechanics (Augustin et al., 2016b). More recently, we
reported on a novel reaction-eikonal model which reduces the
cost of EM simulations significantly by alleviating constraints
imposed by reaction-diffusion models upon mesh resolution
(Neic et al., 2017). In this study, this recent reaction-eikonal
approach was used for simulating EM using the same FE grid
with an average resolution of≈1 mm for both EP andmechanics.
Such lower resolutions suffice for solving for mechanics with
sufficient accuracy (Land et al., 2015). The overall reduction in
terms of nodes and degrees of freedom reduces the compute cost
substantially, rendering simulations in desktop environments
feasible. Using 96 cores, EM simulations of a full cardiac
cycle only lasted ≈180min which facilitated sufficiently short
simulation cycles for efficient model fitting. The entire workflow
for building and parameterizing one patient-specific EM model
is feasible within a day.

Owing to the higher resolution of the blood pool mesh and
the presences of a refined boundary layer the number of nodes
and degrees of freedom were higher than for EM simulations,

around 350,000/1,500,000 nodes/degrees of freedom for case 28-
Pre and 400,000/1,700,000 nodes/degrees of freedom for case 44-
Pre, respectively. To assess strong scaling properties of our CFD
solver implementation, the resolution was further increased to
1,300,000/5,000,000 nodes/degrees of freedom for case 28-Post
to cover a wider range of core counts. Strong scaling efficiency
leveled off when doubling from 768 to 1,536 cores. Local compute
load with 1,536 was 900/2,600 nodes/degrees of freedom per
core. The patient simulations were performed using 384 cores,
resulting in a load per core of about 900/2,700 nodes/dofs,
respectively. At these resolutions CFD simulations were executed
in ≈ 40min, suggesting that compatibility with clinical time
frames will be achievable.

4.4. Limitations
In the presented modeling approach numerous simplifying
assumptions were made which may affect the biophysical fidelity
of the model. In particular, while the aorta was taken into account
as a solid structure in the EM simulations, its biomechanical
description was simplified by assuming isotropic behavior, that
is, the fibrous organization of aortic walls remained unaccounted
for (Augustin et al., 2014). Further, as our main focus was on
the EM of the LV and, to a much lesser degree, on the aorta,
the aortic lumen remained unpressurized and, in absence of
distensibility measurements of the aortic wall, parameters of the
passive biomechanics model used for the aortic wall were not
fitted. Thus the model of the aorta does not respond to the rise
in pressure during ejection with an adequate distension 1V of
its lumen. In the CFD simulations 1V ≈ 0 translates into a
stiff aorta of low compliance which may cause a bias toward
overestimation of the computed pressure fields. Further, the
influence of the aortic valve upon blood flow was not taken into
account. Rather, it was assumed that with the start of ejection the
aortic valve is in its full open configuration, which allows blood
flow over the entire orifice area and in which the valve does not
influence the blood flow out of the LV in a significant way. Since
only CoA patients were modeled which showed no indications of
AVD this simplifying assumption may be well justified.

A potential main strength of the presented modeling
approach—the ability to predict the biomechanical response
of the LV to changed flow patterns in the aorta—was not
exploited. Due to the weak FSI coupling the immediate feedback
of altered flow or changed pressure gradients in the aorta on LV
biomechanics was ignored. In our current modeling approach
any such feedback must be mediated through changes in the
parameterization of the lumped afterloadmodel. However, owing
to regulatory mechanism of the circulatory system level this is not
directly predictable with the modeling setup used in this study
as flow distribution through the four outlets will be influenced
by factors which cannot be accounted for in a model comprising
only LV, aorta and lumped outflow impedances. In any case, one
cannot assume that the computed changes in pressure gradients
across a CoA translate directly into a reduction in LV peak
pressure. Independently of the modeling approach taken—be it
a strongly or weakly coupled FSI model—a lumped model of
systemic regulation is likely to be necessary to predict altered
LV loading under post-treatment conditions (Arts et al., 2005;
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Lumens et al., 2009). Compared to a fully coupled FSI model
our approach is limited in the sense that CFD simulations do
not influence the behavior of the EM model. However, in many
clinical settings CFD simulations in the aortic arch and LV with
image based kinematics prevail.

Image based kinematic models can only depict the status quo
of a patient. With our personalized EM model, based on first
principles, we can do simulations altering the motion, simply by
changing input paramters. The altered motion is then reflected
in the CFD simulation. Examples would include changes in heart
beats, infarcts or LBBB conditions.

In this work, the effect of stenting was only accounted for
by a geometric change in the computational geometry and an
ad hoc adjustement of the lumped model parameters. In future
studies, we intend to use a 1-D model of the arterial tree coupled
to a 0-D lumped model at the aortic outlets, thus being able to
account for the effect of stenting in a more detailed fashion, see
for example Quarteroni et al. (2017). As a first step toward our
ultimate goal of a fully coupled FSI model, that is based entirely
on first principles, we will add the dynamic fluid pressure ρf

2 |uf|2
to the pressure of the lumped model (0-D or 1-D). This results
in a spatio-temporal pressure inside the LV and the aorta, and to
incorporate the dynamic feedback of fluid upon structure we will
iterate between a CFD solving step and a EM solving step within
each timestep to guarantee a converged solution.

5. CONCLUSION

Biophysically detailed models of LV EM can be efficiently built
and parameterized with clinical data to be considered a viable
option for patient-specific simulation. Similar to image-based
kinematic models such biophysics-based EM models can be
used as a kinematic driver for simulating cardiac and vascular
hemodynamics. The cost of model building and execution
is comparable between the two approaches. Biophysical EM
models offer the significant advantage of being based entirely

on first principles and as such, may allow to make predictions
of interventions altering pressure and flow patterns onto LV
performance. In contrast, image-based kinematics modeling may
provide a more accurate representation of blood pool motion,
at least under pre-treatment conditions or post-treatment
conditions secondary to interventions which do not influence LV
kinematics in a significant way.
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